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A generalization of the Lie group construction is proposed wherein the composition law depends,
apart from the parameters of the transformations composed, also on the transformed variables.
This construction is met, in particular, on the hypersurfaces specified by the first class constraints

in phase space.

PACS numbers: 02.20.Qs

INTRODUCTION

A generalization of the Lie group construction hence-
forth referred to as a quasigroup is proposed in the present
paper. At the infinitesimal level the quasigroup is given by a
set of generators that act as differential operators on func-
tions of some initial variables. These generators obey Lie
algebra commutation relations with the difference that the
structural coefficients now depend, generally, on the initial
variables. At the level of finite transformations the main dif-
ference between the Lie group and quasigroup is in the modi-
fication of the composition law which, in the quasigroup
case, depends not only on the parameters of the transforma-
tions under the composition but also on the variables
transformed.

As will be seen, the quasigroup construction is realized,
in particular, on the hypersurfaces of the first class con-
straints in a phase space. An example of a gauge theory with
the gauge transformations forming a quasisupergroup (see
below) is given by supergravity with auxiliary fields meant to
close the set of generators.

Let us sketch the contents of the paper. In Sec. 1. func-
tional equations of the quasigroup are formulated and some
of their consequences are studied. Here differential equa-
tions are obtained which are quasigroup counterparts of the
Lie and Maurer—Cartan equations and their transformation-
al properties are considered.

In Sec. 2 the formal integrability of the quasigroup dif-
ferential equations is checked and the problem of recon-
struction of the quasigroup, if the structural functions are
given, is solved. (Solution of this problem for the Lie group is
given in Ref. 1).

In Sec. 3 the quasigroup differential equations are ex-
tended to the case when initial variables and parameters are
elements of a graded algebra (bosons and fermions).

In Sec. 4 a realization of the quasigroup is considered in
a phase space on hypersurfaces of the first class constraints.

In Sec. 5, basing ourselves on the contents of the pre-
vious sections, we investigate the general structure of the
quantum transition amplitude (the S-matrix) in dynamical
systems subject to the first class constraints.

In the Appendix we introduce the left and right mea-
sures on a quasigroup and study their transformational
properties.
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1. QUASIGROUP

Let g°(1<a<n) be real variables for which the continu-
ous law of transformation is given by

g—g = f(g0),
which depends actually on the set of real parameters
6 *(1<a<r). Assume that transformations (1.1) possess the
following properties:

1) there exists a unit element which is common for all g*
and corresponds to

(1.1)

0°=0: f(gf=0)=g"; (1.2)
2) the modified compositions law holds:
f(f(80).8)=r(8p(6,6':8); (1.3)
3) the left and right units coincide:
p0,0,8)=06°, (1.4)
0058 =6"7; (1.5)
4) the modified law of associativity is satisfied:
Pp6,0'8),0":8) =@ (0,0(0'.0";f(8.0));8);
(1.6)

5) the transformation inverse to (1.1) exists and may be
represented as

g'=f""886)=r12616;3), (1.7
where the function 4 satisfies the equations

p06;8),6,8)=0, (1.8)

P60, 6(6,/(806));8) =0, (1.9)

which give the left and right inverse elements.

The set of functional equations (1.1)—(1.9) defines a for-
mal construction henceforth called quasigroup. In case the
compositional function ¢ *(6, 8'; g) does not depend upon
g’, these equations express ordinary group properties.

Taking the consistency of conditions 1}-5) for granted
we shall obtain some of their consequences. The infinites-
imal transformations follow from (1.1) when 6 “—0:

5¢"=Ri(g) 6", (1.10)
where
a ar(g,6)
Ro(9=—==2— . 1.11
O="Z0= |._, (1D
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Using (1.10) in the relation,
W =W(g (1L12)

which expresses the invariance of a function W ( g), we come
to the identity

RZ(8) W.(g)=0, (1.13)
where
IW(g)
w =20 .
(8) e (1.14)

Expose the composition law (1.3) to the action of the
Operator

& )
— — (@« (1.3 1.15
(aoaaeﬁ =B )4, (19
With the use of (1.2), (1.4), (1.5), and (1.11) we obtain
R‘(’l,bRZ—»R"BVbR‘;: —tls RS, (1.16)
where
Rﬂ
Re,=R:8 (1.17)
¥ agb
& — 8,6"2)
tz =|—————(a ¥ . ';g
R B ) L& o
(1.18)
Expose the law of associativity to the operation
; )
— %)
[(86 “96 430 ° 8 )
+ cyclic permutations of
X (a, ﬂ,é)] .(1.6)) (1.19)
6=0=6"=

Using (1.2), (1.4), (1.5), and (1.11) one obtains the modified
Jacobi relations for the structure coefficients (1.18):

Tapa R + 1500 R +1hsa R
+irb, ths U5, s+, 15, =0, (1.20)
where
ot
=28 1.21)
! 9°
Owing to (1.16) the generators
d
I',=R(8)— (1.22)
Ig*
obey the commutation relations of quasialgebra
o dp]l=tls( T, . (1.23)
Now expose (1.3) to the action of
a
2 a3 . 1.24)
a8’ (-3 ¢ =0q (

With the aid of (1.4) and (1.11) we obtain an analog of the Lie
equation,

5?1 _ a arn.
367 =R (51569,

where

(1.25)
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Agub =62, (1.26)
dp°(6,6';8)
a 6, = - ? s 127
us(0:8) Py - (1.27)
and it is assumed that
Det{ u}#0. (1.28)
Apply the operation
aZ
_— — (ye—d ) 1.6 1.29
(69995 @ ) )¢ )9'=9"=0 (1.29)

to (1.6). With the use of (1.2), (1.4), (1.5), and (1.18) we
obtain the equation for u(6; g),
s 5 Oy
365" " 0%
whence an analog of the Maurer—Cartan equation follows
for A (6, 8),

M= —15.(Dus, (1.30)

gAYy IAG w way

agﬁ‘ 86y+t,uv(g)/{ﬂ/17—0! (1‘31)
wherein the property

Ag@=0,8)=6; (1.32)
holds in virtue of (1.5). Apply the operation

d
—— (1.3 (1.33)
a8 ) =0

to (1.3). Using (1.2), (1.5), (1.11), and (1.25) we obtain the
transformation property

S3(gB)R g =RLIBU, 68, (1.34)
where we write 0 instead of 8’ and, besides,
g
54(8,0)=—=-, (1.35)
7(8:6) P
Ul “=Agu?, (1.36)
~ dp (8,6, g)
(@, g)= 2L 58] . (1.37
HEOO= " |, s )
It is assumed that
Det{ S } #0, (1.38)
Det{ 11} £0. (1.39)

As combined with the transformation property of the func-
tions (1.14),

W.(8)=W,(2S.(80), (1.40)

which follows from (1.12), relation (1.34) provides the co-
variant nature of the identities (1.13). Using (1.25) and
(1.34) we obtain an equation for the inverse transformation

(1.7

ag” ~
= —R (81569, (1.41)
86° (&¢s
where
Agul =52 (1.42)
Let us apply the operation
3 )
— (B«—p) )(1.6) (1.43)
(395(99'7’ ¢ n ) 0=6"=0
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to (1.6). With the help of (1.2), (1.4), (1.5), (1.11), (1.18),
(1.37), and (1.42) we obtain the equation for u(6; g)

(Dp g 1 — Dy 1) i = 15,(&) if (1.44)
where we again write & for 8 ” and, besides,
a ~, O
Dy=—— —R2{(g) A5 —. 1.45

Equation (1.44) leads to the following equation for 4 (6; g)

DyAs —DAg —t2(gAsir=0. (1.46)
Now expose (1.6) to the operation
2
J {1.6) . {1.47)

30796 "°
Using (1.2), (1.4), (1.5), (1.11), (1.27), (1.37), and (1.42) we
obtain the relation

86=6"=0

o

ay ;B s __
(D pus) 1y, — 398#5 =0, (1.48)
with & standing for 6'. An equivalent form of (1.48) is
. auy -
DpuD A — aey/lgzo. (1.49)

It follows from (1.16) and (1.46) that operators (1.45) com-
mute with one another

[DB,DT] =0. (1.50)
We have, besides, due to (1.25) and (1.34),
D;g=0. (1.51)

Components g° are independent variables in Egs. (1.44),
(1.46), and (1.48). Substitute now the inverse transformation
(1.7) into these equations. With g* as independent variables
we obtain, by using (1.34) and (1.41),

s —

803 iu’?’ agﬁggztgy(g)ﬁg9 (1.52)

e als L

7~ 25~ @454 =0, (1.53)

aug ~, _ o~

392 Hs — Dy ps) s =0, (1.54)

(9#§/15 5 oy I8 0 s

W ‘r'_( y:ué) B — y ( . 5)
where

= a " . a

Dy=—% +Ra(§)/1,ng. (1.56)

The 6-derivatives are to be calculated in (1.52)—(1.56) taking
into account the extra dependence on &, coming from the
substitution of g* from (1.7). Operators (1.56) commute with
one another,

[Ds.D,1=0. 1.57)
This follows from (1.16) and Eq. (1.31) after the latter is,
using (1.34) and (1.41), written with 2” as independent varia-
bles. We have, besides, due to (1.34) and (1.41),

Dyg*=0. (1.58)

Equations (1.41), (1.52), and (1.53) with the independent
variables.
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Let us now obtain analogs of the Lie equations for the
composition function ¢ “(6,8; g). Apply the operation
a
< .6
a0" (1.6) P

to (1.6). Taking into account (1.4}, (1.26), and (1.27) we
obtain

(1.59)

" =0

“(6,0; a , Vo
%7CI5D sl 0050 AL O5FOY . (16D
Expose (1.6) to the operation

a
{16 . 1.61)
38 (16) -0 (
Equations (1.2, (1.5), (1.11), (1.37), and (1.42) give
D,p(0.0';8) =3¢ (6.08);8) 12(6:8),
(1.62)

where we write 6,0’ instead of 6,0 ”. Operators D, are de-
fined as (1.45).

When written with g as independent variables [Eq.
(1.7) must be used to this end], Eq. (1.62) takes the form

900858 (008598 i50:0),
aer
where the extra dependence on 8 resulting from the substitu-
tion of g° from (1.7) should be taken into account when ful-
filling the @ *-differentiation shown in the left-hand side of
(1.63).
Now expose (1.6) to the operation

(1.63)

a‘ (1.6) , (1.64)
86 ¥ 6°=0

Using (1.4), (1.5), and (1.37) we come to the important rela-

tion between derivatives of the composition function

dp*6,8';8) _ O0p(6,0';8)

207 ,u?(ﬁ; g)= 907 ;75(0';§(9)),

(1.65)

where again we use 8 ' instead of 8 ”. Differentiating (1.8)
with respect to & and using (1.65) we obtain the equation
(with g” as independent variables)

36%(6; g)
30" i i
= —us(6(6;8;8 4126 f '(&8), (1.66)
where
6%0=0,5=0, (1.67)

as a consequence of (1.4) and (1.8). With the use of (1.61) and
(1.63) we obtain from (1.65) the following relation for the
matrix (1.36):

U, (@ (6,8%8):8) — Uz '“(6580) U (6,8

= 56,0590 220058 Rarg.  (168)
Jg”
Putting
0°=6%0"g)), (1.69)
in (1.68) one obtains
l. A. Batalin 1839



5o 4 92206(6:2).0:¢8)

R.(®)

=U;'(6f (80N U, #6688, (170
where the arrow indicates the argument subject to the differ-
entiation. Relations (1.68) and (1.79) show the deflection of
the compositional properties of the matrix (1.36) from the
multiplicativity characteristic of the group case. Deflection
from multiplicativity appears also in the compositional
properties of the matrix (1.35). Differentiating the law of
composition (1.3) with respect to g° and using (1.25) and
(1.34) we obtain the corresponding relation

S$5(56),6)Sig 6)
=Si(gp6,0;9)
6,0"; 8

x[af+Rz(g)/fz(¢(e,o';g);g)£’¢’—“(a?—— .
(1.71)

Now we are going to derive a formula for the determinant of
the matrix (1.35). From (1.25) we have

2 spin{S(8.6)]

96
s
=R (DAS+S,PR?
(DA + 2(8)- 3%
=R (DAg - HE Ra(gyiras (1.72)
a7

where (1.34) is taken into account in the second equality. Let
us write, next, (1.49) in a more explicit form

dus S s dus M5 15 _ dus

= R(g) A5 A2
967 207 8T g Re(BAids
(1.73)
From (1.73) we obtain subsequently
dus .
Ri(gAL A}
ag,, Y B8 _
=a:ug 5 _ a,ug 15
30 ”6 08" °
dAy ;]
= —ug — —5pl
Ho—ma ™ g5 P g
AL ) ]
= —uc — 15(DAL A +-———Slﬂ/l
H (aeﬁ (BAati)* 5o5°F
3 K]
= - ——Spind +t4(DAy+ —=Splnd,
= 5gr P Ind +15,(D) 207 P
(1.74)

where (1.31) has been taken into account. The substitution of
(1.74) into (1.72) gives

a
50—,;51? In{S(g,6)}

=A,(DA5+ :?—(Spln/l —Spind), (1.75)
where
A, (=R, () +105(8). (1.76)
It follows from (1.75), in particular, that
dInE
A (DAF = ——. (1.77)
(&4 = g7
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Equation (1.77) is at the same time the definition of the func-
tion E ( g,60). With the boundary condition

E(g8=0)=1, (1.78)
we obtain from (1.75) and (1.77)
Det{4 (6; 8)}
= E = .
Det{S(g,0)} (89) DTG0 (1.79)
where

E(g,9)=exp[ f A,(507) 450" )d0" )] . (1.80)

The integral in (1.80) does not depend upon the form of the
path of integration. Keeping this in mind and using (1.3),
(1.4), and (1.60) it is easy to obtain for the function E that

E(80)E(8(6)0)=E(g.¢(0,68)). (1.8D
Making the formal change
6—6(6;g); 6'—0 (1.82)

in (1.81) and taking (1.7), (1.8) and (1.78) into account one
obtains
E(86©6;2)E(f '(80)0)=1. (1.83)

To conclude this section consider transformation properties
of the quasigroup under the transformation of parameters

0°—Y*(6;8), (1.84)
where
P(0=0=0 (1.85)
Y
Det{—a—é-} #0. (1.86)

The change (1.84) introduces the new law of transformation
of variables g*

g=fi(g0)=r (b8, (1.87)
with

fi(80=0)=¢ (1.88)
due to (1.2) and (1.85). Making the formal change

6°—9Y*(6; 8) » (1.89)

8 “—y(6'; f1(8.9)) (1.90)

in (1.3), we come to the composition law for transformations
(1.87)

£i(f(8.6),8) = fi(g9:6,0%98), (1.91)
where the new composition function is determined by the
equation
@ (0 ), Y0; /1(8:0)); 8)

= g,(6,0';8);8) - (1.92)

Taking into account (1.4), (1.5), (1.85), and (1.86) it follows
from (1.92) that

pi00,8)=6", (1.93)

9700 8)= (1.94)
Making in (1.6) the formal change (1.89) and (1.90) along
with

6 —y(0"; f1(f1(80),61), (1.95)
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one obtains, using (1.92), the law of associativity

@ ‘11(471(9’0 H g)’e " g)
=@50.9,(6.0":11(89);8). (1.96)

The transformation inverse to (1.87) is written in the form

g = fi'(g8)= fi(86.6:2), (1.97)
where the functions 6 | satisfy the equations

P0,(6;2,6,2 =0, (1.98)

®%(6,6,(6:11(80) ;8 =0, (1.99)

and are connected with the functions 8 “ by the relations

6ey(6; £ (£.0)):8) = ¥(6,(6:8); 8) - (1.100)
Introduce, further, the functions
e s~ 9f1(80)
R 1B(g)=———:903 o
=R(8)25(8) (1.101)
o( gy I G:0) 102
25(Q=—"223 Ly (1.102)

Differentiating (1.92) with respect to 6’ and setting 8’ =0
one has

Y (6; 8) B (0.
BT 1, (6;8)
=pz(¥6; 8); 8) 25(£1(2.0)), (1.103)
where
3p (6, 6°;
56, gy= 21058 (1.104)

d0 ¢ 0'=0
The matrix inverse to (1.104) is defined by the equation
Ayl =55 (1.105)

Differentiating (1.92) with respect to 6 and setting @ = O one
has

(D\s¥7(6; 8)) 15,(6; 8)

= (0, 8) ;8) 25(8), (1.106)
where we again write 8 instead of @’ and, besides,
~, dpi(6',6;8)
%5(0; g)= ——-——— , 1.107
115(6; 8) 0% o, (1.107)
A, =82, (1.108)
—_ d a 7 a d
Dlﬁ= 33_5— R la(g)A‘ 18 @ . (1.109)
Now apply the operation
d? )
— — ) |(1.92 1.110
(30”595 v ) )« ) 6=0"=0 ( )
to (1.92). This gives
25(8)15,:(8)
=1,.(8)25(8)2;(®
e, 2002508 e, £00235(8)
+R5,(8) a;" — Ri5(8) 3;" ,  (L11D)
where
aZ
tl, = — — 7(6, 6"
tan (8) (50“(793 (aHB))‘pl( 2 9—=6'=0
(1.112)
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are new structure coefficients. )

Thus, the new functions f{( g,0), ¢ $(6,0; g), 6 (6, 8)
satisfy the same functional equations as the initial ones
f8.0), 6,6 8),0%6;g).

To finish the consideration of the transformation prop-
erties of the quasigroup we note that the inverse transforma-
tion (1.7) is also a particular case of the change of parameters
(1.84). Indeed, let us write g° instead of g in (1.84) and set

¥(6:8) =069 . (1.113)
Then
fi(86)=f""(§9). (1.114)
Equation (1.91) leads to
7S 6)0)=f""(5 @6, 6;8),
(1.115)
where, according to (1.92)
96(6:), 665 (2,6));2
=0%p(6,6':8);8) - (1.116)
From (1.96) it follows that
§F6.0;8).6";2)
=g 0.5(0'.8"f'(80));9)- (1.117)

It may be shown, that the function & is related to the func-
tion @ “ by the following formula

§(6'.0,/(8,6))=96,6'.f"'(88)). (1118)

2. INTEGRABILITY OF THE EQUATIONS OF
QUASIGROUP. RECONSTRUCTION OF QUASIGROUP
FROM THE STRUCTURE FUNCTIONS

In the previous section we obtained some consequences
of the functional equations (1.1)~(1.9). In particular, the dif-
ferential description of the quasigroup is contained in the
following set of equations:

X RupAG,

1.25'
207 (1.25)
g©e=0=g", (1.2
Y S ) ,
95~ v+ Im(®AsAT=0, (1.31)
A5(0=0)=52, (1.32)

which we complement by the equation for the compositional
function

dp (6,6, 8)

307

=uz(p6,0';8);8) A5(07;8(0)), (1.60%)
Agub =62, (1.26)
6,0 =0,g)=0°. (1.4')

We formulate now the following problem. Let there be given
structural functions R  ( 8), ¢ }5( £) that obey the Eqgs. (1.16)
and (1.20). Let us try, using (1.25")-(1.32"), to reconstruct
the quasigroup law of transformation, at least locally, i.e., in
a sufficiently small, but finite environment of the zero values
of the parameters.
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Let us, first of all check the fulfillment of the formal
conditions of integrability. Differentiating (1.25') with re-
spect to 8 7 and performing the antisymmetrization with re-
spect to the indices (7, # ) we obtain zero on the left-hand side
identically, while the vanishing of the right-hand side is pro-
vided by Egs. (1.16), (1.25"), and (1.31’}. Differentiate (1.31')
with respect to 6 ° and add next the cyclic permutations of
the indices (7, 8,8 ). The second derivatives of A cancel while
the other terms disappear owing to (1.20), (1.25"), and (1.31").
Thus, the formal conditions of integrability of Eqs. (1.25')
and (1.31) are fulfilled, which provides existence of a solu-
tion. This solution, however, is determined with the arbi-
trariness of the transformations of parameters under which
the system (1.25'}(1.32’) is covariant with the given func-
tions R, , t 5. These transformations have the form (1.84)
with 2 5( g) = 85 , where (2  is defined as (1.102). To fix a
unique solution of the set (1.25)—(1.32’) it is necessary to
impose auxiliary conditions on the functions 4  thus mak-
ing a special choice of parametrization of the quasigroup {see
below).

Assume now that functions g7(¢ ), 4 (6 ) which satisfy
Eqgs. (1.25')—(1.32') in a special parametrization, are found.
Let us check the integrability of Eq. (1.60'). Differentiating
(1.60') with respect to 8 ° and performing the antisymmetri-
zation with respect to the indices (8,7) we get identically zero
on the left-hand side, while on the right-hand side we obtain
via (1.31"), (1.60’), and (1.26')

L@ (6.0'58); 8L, ()

— 15 (&) A% (8580)A5(0:80)), (2.1)
where
g=r4f(g0),0), (2.2)
&=/(gpl6,0"8), (2.3)
f(80)=29). (2.4)
Differentiation of (2.2) leads to
ag; el = ainr
5—6—1,; =R5(8)A5(680), (2.5)
with
gie'=0=g9). (2.6)
Differentiating (2.3) with respect to £’ we have
983 ai=\ 1 . . 0ptB,8';g)
ag.ﬂ=Ra(g2)iy(¢(9’0’g),g) 60”
=RLZIAS@P(6,0';8) ;8 k(@ (0, 07;8)8)
XA 56" 86))
=RG(8)A5(0;80)), (2.7)
with
80 ' =0)=g¢). (2.8)

Comparison of (2.5) and (2.6) with (2.7) and (2.8) shows that
expressions (2.2) and (2.3), as functions of §', obey one and
the same differential equation (whose integrability has been
already established) and the same boundary conditions at
@' = 0. Hence we conclude that

g1(0) =86, (2.9)
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ie.,

fUf(80),8)=f(gp6.0';8). (1.3
By virtue of (1.3") expression (2.1) vanishes. Thus confirm-
ing the integrability of (1.60"). Simultaneously the law of
composition (1.3') is obtained as a consequence of the quasi-
group differential equations.

By analogy with (2.2) and (2.3) let us introduce the
functions

D=9 (p(6,0;8),0",8), (2.10)
D= (0,9 (0,0":1(80));8) .11

into consideration. Taking (1.60") into account one has for
(2.10)

D¢ a Bron. =
So He(P A6 8), 2.12)
while
PO =0)=¢%0,0';9). (2.13)
Analogously one has for (2.11)
a(pg a B ’ ", = =
207 =pu3(P8)Asl@(67,07;80));800)
, 9°0°,6":86)
ag
=p5(P; 8 ALl (667 810));860))
Xulp(6',0";810):810) 456" 8))
=us(Py 8) 50" ) (2.14)
while
PO =0)= 96,0 g). (2.15)

By comparing (2.12)and {2.13} with (2.19) and (2.15) we con-
clude that

PO ) =P30"),
1.e.,

Ppl0,0%8),0"8) =@ (6, @(0',0",f(80);8) . (16

(2.16)

Therefore, the modified law of associativity is obtained as a
consequence of the differential equations of quasigroup.
Further on, we find from (1.60')—(1.4')
Pi6=0,06g=0". (1.5)
Define now a function 8 %(8; g) of the independent variables
6; g as a solution of the equation

¢(616;8),6;8)=0. (1.8)
Then, taking (1.2) and (1.3’) into account we obtain

IS8 6(6:8)0)

=f(8p(0(6;8), 6;,8) =f(80) =& (2.17)
whence
fE0) =18 6(6:8). (1.7)
Substitution of (2.4) into (1.8") gives
P 0(6;,1(80)),6;/(86)=0. (2.18)
It follows from (1.4") and (2.18) that
2B (0(6,£(89)),6:f(80);8)=6°. (2.19)
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With the help of (1.6") we may represent (2.19) in the form

P (6,6(6,1(8.6)):8),6,8) =0 (2.20)
In virtue of (1.5') this equation has the solution
?6,0(6,/(80));8)=0, (1.9)

which is unique in a sufficiently small neighborhood of the
point § = 0.

Thus, we have not only confirmed the formal integrabi-
lity of the set of differential equations (1.25')}(1.4") but also
derived the functional equations of the quasigroup from it.

Let us now proceed directly to reconstructing quasi-
group when the structure functions are given. For the special
parametrization we choose the canonical one with the func-
tions satisfying the condition

/{gga=9a, (2.21)
or, what is the same,
us gP=9=. (2.22)

Multiplying (1.25’) and (1.31’) by 8% and 87, respectively,
and using (2.21) we obtain for the functions

Glx)=gx0), (2.23)
A S(x)=x15(x8), (2.24)
and the set of equations
4G° _ReG) e, (2.25)
dx
Gix=0)= g*, (2.26)
dA g
£ =83 +12,(G)o A%, (2.27)
dx
A%x=0)=0. (2.28)

The function (2.23) may be found from (2.25) and (2.26) and
then susbtituted into {2.27). The latter equation, along with
(2.28), determines the function {2.24) and (2.28). Then we
have
go)=6%=1),
AgO)=Agix=1).

(2.29)
(2.30)
Next one must show that the functions (2.29) and (2.30) do

satisfy Eqgs. {1.25')-{1.32'). To this end we must study some
consequences of (2.25)~(2.28). Introduce the function

h(x)=A3(x) 0% — x6°. (2.31)
With the use of (2.27} we have
dh°
=12 (G)6"h*, 2.32
ix wlG) (2.32)
with the property
h%x=0)=0, (2.33)

which follows from (2.28). From (2.32) and (2.33) it follows
that

h%x)=0, (2.34)
so that for all x the relation holds
AZx) 0P =x0° (2.35)
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as a consequence of (2.27) and (2.28). Introduce now the
function

aG*°

hax=2__ _R(G)A%. (2.36)
si=S75 —RLG)A;
Differentiating it with respect to x we have
dhp _ d dG*
dx dx 967
dG* dAp
—R%,(G ARG
a,b( )dx B ( )dx
Jd dG*
=2 22 _Re,(G)R%G)OTAS
T —RILIG)RG)6TA]
—~ RGNS +1],(G)O AL ). (2.37)
The differentiation of (2.25) with respect to 87 gives
Jd daG* aG*
— —— =R, (G ¢+ R4(G
867 dx #lG) 5g5 07+ RAC)
=R2,b(G)(h,’}+R$(G}A{;)9“+R;(G}.
(2.38)

Substituting (2.38) into (2.37) and taking (1.16) into account
we obtain

dhj b
=R:,(G)0%h,, (2.39)
dx
with condition
hax=0)=0, (2.40)

which holds owing to (2.26), (2.28), and (2.36). Equations
{2.39) and (2.40) lead to

hplx)=0, (2.41)
1.e. for all x the relation

aGg*e B o

507 =R (G)A; (2.42)

holds as a consequence of {2.25)—(2.28). Besides, from (2.25)
and (2.26) it follows that

Geloo=8". (2.43)
Introduce next the function
u dA ¢ 0A G " .
hﬁy(x)Eﬁl: — 207 +1.,(G)AGAY. (2.44)

Its differentiation with respect to x and the use of (2.25) and
(2.27) result in

dhg, g dAS g dAS

dx  36° dx 967 dx
+12,,G)R3G)0° AL A
+ 10 GNS +t5.(G)67AG) A
+tﬁv(G)A’5(5;+t;,(G)¢9’A‘;).

(2.45)

Differentiation of (2.27) with respect to 6 7 with the use of
(2.42) gives

g dAg

oY dx
=th(G)9”R§(G)Af,A§
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A4
a u“ a v B
+1,(G)AL +1,,(G)0O _—80” .

The part of (2.46) antisymmetric with respect to the indices
(By)is

g dAj d dAj
d6# dx a0r dx
=15a(G)O RE(G)AGAY — A5 AY)
+105(G)AL — 1t (G)AG +15,(G)0” hY,
—15,(G)0 th (G)AG AT, (2.47)
where the definition (2.44) has been taken into account. Sub-
stitution of (2.47) into (2.45) and the use of (1.20) result in

(2.46)

dh ZV

i =t5,(G)8"hy,, (2.48)
with the condition

hg,(x=0)=0 (2.49)
that follows from (2.28). Equations (2.48) and (2.49) provide

hgx)=0, (2.50)
for all x. Thus the relation

dA5  dAg

5% 397 +175(G)AEA, =0 (2.51)

holds as a consequence of (2.25)—(2.28). Besides, it follows
from (2.27) and (2.28) that

AG oo =x85 . (2.52)

Setting x = 1 in (2.35), (2.42), (2.43), (2.51), and (2.52) we see
that the functions (2.29) and (2.30) do realize solution of the

set of equations {1.25")—(1.32') with canonical variables (2.21).

Now consider Eq. (1.60') for the compositional function
in the canonical coordinates. Multiplying it by # 7 and using
{2.21) we obtain for the function

P “(x)=¢ (6, x6"; 8) (2.53)
and the following equation
dop° .
=p3(P;8 67, (2.54)
dx
P x=0)=6", (2.55)

where u3(6; g) is the matrix inverse to (2.30). After the solu-
tion of Eq. (2.54) subject to the condition (2.55) is found one
has

@i6,8 g =P x=1). (2.56)
We are going to show that the function (2.56) found in this

way satisfies (1.60'), indeed. To this end we introduce the
function

a — a¢a [¢4 . B
L LALYE (2.57)
where
palP )= us(P; 8), (2.58)
A :E XA 2(x8';816)) » (2.59)

so that the equations hold
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As "
2L =52 +19(G)O~ A, )
i % +15,(G) . (2.60)
Aﬁ(x=0)=0, (2.61)
dGa a ; ‘a

=R4%(G)6, X
dn 2(G) (2.62)
G(x=0)=g0), (2.63)

- »

with g%(0)in (2.63) defined as (2.29). The function G a, A a, in
B

accordance with the above said, satisfy the equations

*a

G .oy

<57 ~RaG)14 (2.64)
G .o =F0), (2.65)
oz oz ...

57 ao,y+tZV(G)ABAV =0, (2.66)
A: L =x55. (2.67)

From (2.57) we obtain taking (2.54) and (2.60) into account
s 9 do-

dx 907 dx
WP) s
————ul(P)OA
200 X (@) ,
- , - H
— 3PN +18,(G)ovA ). (2.68)
¥
Differentiating (2.54) with respect to 6 7 we have
d do“
407 dx
HEP) s e
== 50T AU A ) (@) (269
Substitution of (2.69) into (2.68) leads to
dhy _ E(®) gy
dx ap?®
_ - "V - l‘
+uG(PL (8P) —15,(G) 6™ A i (2.70)

where the effect the Eq. (1.31') has on the functions u3(6; g)
has been taken into account

Z‘;‘; ul — j’;ﬁ Wi = —15,(ZON g - (130)
The use of (1.25’) and (2.54) leads to
agii®) _ og°(P) do?
dx  9PP dx
=RE(ZPNAFP)5(P) O
=R (&P)E“, (2.71)
where
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F(Px=0) =g0). (2.72)

By comparing (2.62) and (2.63) with (2.71} and (2.72) we con-
clude that

FPx) =G x). (2.73)
In virtue of {2.73) one has from (2.70)
h a a ¢ )
hy _ W@ gy (2.74)
dx ap°
with the equality
hox=0)=0 (2.75)

following from (2.55) and (2.61). The only solution of Eq.
(2.74) with the boundary condition (2.75) is

h5x)=0. (2.76)
Therefore, at every x the relation
JP“ .8
=ugz(P)A 2.77
3997 Hs(P) , ( )

holds a consequence of (2.54) and (2.55). Besides, it follows
from (2.54) and (2.55) that

Po_o=0°". (2.78)
Setting x = 1 in (2.59), (2.77), and (2.78) one sees that the
function (2.56) satisfies (1.60), indeed.

Thus, the reconstruction of the local quasigroup, with
the structure function R ( g), £ },5( g) subject to (1.16) and
{1.20) given reduces, if canonical parameter are used, to the
following steps: (2.25), (2.26), and (2.29) lead to the transfor-
mation law g%(@); the auxiliary functions A 3(6; g) are found
from (2.27), (2.28), and (2.30); the composition law
@ %8, 8'; g) follows from (2.54), (2.55), and (2.56).

It remains to confirm that the canonical parametriza-
tion is admissible at least locally. Let g%(6), 4 3(6 ) be a solu-
tion of the set (1.25)-(1.32'). This set, with the structure
functions R §( g), ¢ 15( g) given, was already mentioned to be
covariant under the transformations (1.84) if 2 5( g) = &3,
where (2 3 is defined as {1.102). Write in this case the trans-
formation law {1.103) as

IY*(0; g)

2= = ug((6;8);8) 15,16, 8)

07 (2.79)

where

Y@=0;8=0. (2.80)
The function A {;(6; g) along with the corresponding func-
tion g7 (0; g) satisfies a set of equations which coincides with
(1.25")—(1.32’). To confirm that the canonical parametriza-
tion is admissible suffices it to point a function %6, g) that
satisfies (2.79) and (2.80) with the function 4 {;(6; g) obeying
the condition of canonicity

A 0P =07 (2.81)

Using the method that was developed above as applied to
(2.29), (2.30), and (2.56), it is easy to show that the function

(0 g)I=Pslx = 1), (2.82)

where @ §(x) is a solution of the equation
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ddg

=u5(P,; 8 60” (2.83)
dx
satisfying the condition
Dix=0=0 (2.84)

meets the requirement formulated as (2.79), (2.80), and
(2.81). Therefore, canonical parameterization is admissible,
at least locally.

We conclude this section by noting that for the canoni-
cal parameterization the relations are true:

ge= —6°, (2.85)

A56:8—0)=15(—6g). (2.86)
Note also that the function (2.29) may be formally presented
as

g(0)=exp{0°T,}¢",
where I, are the generators (1.22).

(2.87)

3. QUASISUPERGROUP

In the previous sections the variables g° and parameters
0 were assumed to be commuting (Bose) quantitites. Now
we are going to extend the quasigroup construction to the
case when the variables g° and parameters 8 ¢ are elements of
a graded algebra:

g8 =(—1""g%¢,

6°6° =(— 1)""g%“, (3.2

goc=(—1"6¢g", (3.3)
where n,, n, are Grassmann parities of the variables g“ and
parameters 6 %, respectively. Each of the parities n,, n, takes
the values of 0 or 1 depending on whether the corresponding
quantity is an even (bosonic} or odd (fermionic) element.

The functional equations (1.1)-{1.9) may be formally ex-
tended to the case (3.1)(3.3) to now define a construction
called quasisupergroup.

Infinitesimal transformations are defined by the formu-
la (1.10), where

_ 3,8 6)
0% lomo
Here d, is the right derivative. These functions satisfy the
relations

(3.1)

Ra() (3:4)

3,Raa Z_(_l)nang r ERb
dg’ g °
= —Rutl,, (3.5)
where
az
t? =|[(—- )" ——
o lg)=|(— U =
3z ]
— — "o, 8’ 3.6)
96430« el 8 6=6’ (
are the structure coefficients subject to the relations
tlg= —(—=1"""t},, (3.7)
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nony Ol ny Onth,
(_l)ua ﬁRa (_Url,,,, r&aRa

o ° ggt 7
Hn,, C?, tf;(s a n.n
R (= U e

(= )"l t g+ (— 1)t =0, (3.8)
The analog of Eq. (1.25) has the form

o€ =Ro(DAj (3.9)

36* * ' '
where

gOe=0=¢g", (3.10)

Ajul =67, G.11)

Ati?(é’;g)zél—'q-'i;—‘(Z’f’—‘g2 L (3.12)

Functions (3.12) obey the equation

0, pug d, ps
Y _(—1 nn, Yr ¥
307 uy — (=1 _—_597 Hp

= i (D (3.13)
and the condition
1z(0=0;8) =55 . (3.13a)
For the functions 4 5(&; g) , one has the equation
A wn OAG
; _ ( _ 1) Wi 8
a6 aer
+(=D"" 2 (DAL AL =0 (3.14)
and the boundary condition
A5(6=0,8)=5%. (3.15)

The equation for the composition function ¢ “(6,6; g) has
the form

d,9%6,0";8)

a0

=pui(p(6.0'8);8) 15(0";0)), (3.16)
with the boundary condition

P0,0'=0g=0°". (3.17)

Within Eqgs. (3.9), (3.10), and (3.14)-(3.17) one may put for-
ward a problem of reconstructing the quasisupergroup if the
structure functions R 2( g), ¢ 15( g) are given satisfying (3.5),
(3.7), and (3.8). This problem can be solved for canonical
parametrization (2.21) where the order of factors is fixed.
The final result is as follows: the function g%(@ ) is given by
{2.29), {2.25), and {2.26}, the auxiliary function 4 3(6; g) is
given by (2.30), (2.27), and (2.28), the compositional function
@ %6, 8; g) is given by {2.56}, (2.54), and {2.55), the order of
factors in (2.25), (2.27), and (2.54) being kept fixed.

We present now the formal expression for g°(6) in the ca-
nonical parametrization

§(0)= g exp{l,0°}, (3.18)
where
3,
r,= R(® (3.19)
ag°
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are generators acting to the left. In virtue of (3.5) the gener-
ators (3.19) satisfy the relations

DLy —(—0)""T,l,=—T,tl,. (3.20)

Thus, we see that inclusion of fermions does not cause any
essential alterations in the formal construction of the
quasigroup.

4.FIRST CLASS CONSTRAINTS AS AREALIZATION OF
THE QUASIGROUP

Let ¢, p,(i = 1,...,N ) be canonical coordinates and mo-
ments of a dynamical system with the initial Hamiltonian
H (g,p) and the first class constraints T, {g,p) (@ = 1,...,7). The
constraints 7, are in involution among themselves and with
the Hamiltonian:

{T,, Tg} = UL;T,, 4.1)
(HT,} =ViT,. (4.2)

It is assumed for simplicity, that the dynamical variables are
bosonic and the second class constraints are absent. Then
{-..} are ordinary Poisson brackets
A B
4p| =4 9B _ 3438 a3
dq' dp;  Ip; g’
It is convenient to combine canonical coordinates and mo-
ments in a column

g
@ 4.4
g (Pi) @4

and refer in what follows to the lower case latin indices as
running through the values (1,2,...,2N). Then (4.3) takes the
form

{AB} = __(9A € ___8B , 4.5)
dgg’ I
where €° = — €* is the corresponding simplectic matrix.

Introduce transformations of the variables (4.4) which
are generated by the constraints

s =R:(g)6", (4.6)
where
daT,
Ri(Q={g T} = e — @.7)
Jg

and 6 “—0. Let us calculate now the Lie bracket of the func-
tions (4.7). The use of (4.1) gives

aR: .
8g” Ry —(a—F)
au’y
=U§BR§+6M#T;H 4.8)
so that

=0, 4.9)

R"
(agb R};—(a«—»ﬁ)+rzﬂR;)

where the new designation of the structure functions of the
involution is introduced as

th(@=—-Ul;(8).

T'=0

(4.10)
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Equation (4.1}, along with the completeness and irreducibi-
lity of the constraints, allows us to state that

dt+
( B RS 1, tgé)
ag° T=0
+ cycl. perm. (e, 3,6)=0. 4.11)

Let us define finite transformations g°— g%(@) of the varia-
bles (4.4) by means of the equations

/8

S —RI(DAL, 4.12)
26° ®45

gFEe=0=g", (4.13)
M NG . .

255 " 3gr T (@454 =0, (4.14)
236=0)=63, 4.15)

where the structure functions are defined by (4.7) and (4.10).
Using (4.12) one has

art
=D - DT, @.16)
where
T.(®|ezo=T.(8) 4.17)

due to (4.13). If the initial data is localized on the hypersur-
face specialized by the constraints

T.(9)=0 4.18)
one has in virtue of (4.16) and (4.17)
T.(8=0. “4.19)

This means that the transformation given by (4.12)-(4.15)
leaves the variables (4.4) on the hypersurface (4.18). Appeal-
ing to (4.9), (4.11) and (4.19) one can confirm the integrabi-
lity of equations (4.12)—(4.15) under the condition that the
initial data is localized on the hypersurface (4.18).

Equations (4.12)—(4.15) define naturally an action of
the (local) quasigroup on the hypersurface of constraints.
This quasigroup is meant to be reconstructed based on the
structure functions (4.7) and (4.10) as it was described in
Sec. 2. The classical Hamiltonian action

W(g)= fa'r g e, &~ H(g)],

with the relation €, € = & holding, on the hypersurface of
constraints (4.18) isinvariant under the transformations giv-
en by (4.12)—(4.15).

Up to this stage we were dealing with the complete set of
the primary variables (4.4). One may, however, confine one-
self explicitly to the hypersurface of constraints (4.18) by
eliminating r variables. To this end let us divide the variables
(4.4) as follows

g’a
ga = (g"”) ’
wherea = 1,...,r; 4 =r + 1,...,2N — r. Assume that the
equation of constraints (4.18) when written in the form
T.(g.8)=0 4.22)

may be solved with respect to the variables g, i.e.,

(4.20)

(4.21)
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Det {———-‘9 T(e.8") } £0. 4.23)
ag’
Then it follows from (4.22) that
ge=74(g") 4.24)
and also
oI, ", 9Ta _, (4.25)

og* ag* g
From (4.1) on the hypersurface of constraints and (4.25) it
follows that
9% pa.
og
Transformations of variables g # on the hypersurface of con-
straints are

R: = (4.26)

¢ =R(g")0°, (4.27)
where
RAEI=RAE 8| ¢=ns - (4.28)

For the function (4.28) from (4.9) and (4.26) we derive the
relations

dRY 4
2 RE—(a—B)= —tl(g) R}, (4.29)
Jg
where
(8= 115(8 8" g = ngm - (4.30)

det

(8 'fi R +1t4, 11735) + cycl. perm. (¢,5,6)=0. (4.31)
g

The division (4.21) of the primary variables leads naturally

to analogous division in the functions

&= i) (4.32)
so that
7,(88)=0 (4.33)

simultaneously with (4.22).
Equations (4.12)~(4.15) may be represented on the hy-
persurface of constraints as

g _

=RA(Z"AS, (4.34
F =RUEN )
§e=0=g", (4.35)
AT S
o5 gy T (@D =0, (4.36)
A%(0=0)=25%, 4.37)

where the structure functions are defined by (4.28) and
(4.30). Equations (4.34)—(4.37) contain only independent
variables of the hypersurface of constraints.

5. GAUGE INVARIANCE

Let g° be real variables and W ( g) be a function invar-
iant under the infinitesimal transformations

g =R (g)6", .1
where the functions R 2 ( g) obey (1.16) and (1.20).
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Consider the formal integral over all g*:

Z, = fexplz'W(g)} 5(W(2) 44(2) du(g), (5.2)

where ¥ *( g) is the “gauge” function. [Its derivatives are
denoted for brevity by subscripts after acomma, like: ¥ % ( g)
=d¥ “(8)/g"]

A,(g)=Det {Z '}, (5.3)

Dy @=V5(R8, (5.4

du(g)=M(g) [ g - (5.5)
The function M ( g) satisfies the equation

FoM=tiuM, (5.6)
where

rr=— 9 Rucg (5.7)

a aga a '

are the transposed generators and ¢ },;( g) are the structure
coefficients in (1.16). In virtue of (1.16) I I obey the com-
mutation relations
(ri,rfl=-rh;

=tl, R —tl,I'T. (5.8)
The compatibility of Egs. (5.6) is provided by (5.8) and the
relation
tlciﬁ.aR —IY —'(taya

which follows from (1.20).
The law of finite quasigroup transformation of the func-
tion M follows from (1.25), (1.77), and (5.6):

M(®=M(g)E(g 6)) ", (5.10)
where E ( g,0) is defined as (1.80). Equations (1.79) and
(5.10) determine the transformation of the integration
measure

4 —(@——pB)) =0, (59

du(g) = y(6; 8) du(g) , 5.11)
where
o g— 2tACD] (5.12)

Det{1(6;8)}
An important property of the integral (5.2) is its indepen-
dence of a choice of the “gauge” function ¥ “( g) (the gauge
invariance). To see this let us perform the variation of the
integration variables in (5.2)

g—g + 8¢, (5.13)
where
6¢8° =R, D3 swP (5.14)

and Z§ is the matrix inverse to (5.4), 6% “( g) is an arbitrary
infinitesimal function. The variation (5.13) and (5.14) in-
duces, up to the first order in 5% “ the change of the gauge
function '

Y8~ V(g + ¥ (g). (5.15)
Using (1.16) and (5.6) and the invariance of ¥ ( g) one can

easily see that within the first order in §% * the relation
holds,
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Zy =2y, 5. (5.16)
Now we are in a position to return to dynamical systems
subject to the first class constraints. We shall see that the
quantum transition amplitude exactly reproduces the struc-
ture of the integral (5.2).

Let g° be again the variables (4.4) taken at a time mo-
ment £. Within canonical gauges ¥ %( g) the quantum transi-
tion amplitude for the systems given by the action (4.20) and
the first class constraints T, ( g) has the form?>:

2~ [expliW (o)} T80 () 40(8) ST () [] de.
(5.17)
where A, ( g) is defined by (5.3) and (5.4).
The factor (T ( g)) actsin (5.17) in two ways: in the first
place it localizes the integrand in (5.17) onto the hypersur-
face of constraints, in the second place itis an analog of M ( g)

in (5.5), as we are going now to see. Let us substitute the
functions (4.7) for R &, into (5.7). It follows from (4.7) that

R%,=0 (5.18)
and hence
rr——_r,= —r:9 (5.19)
ag°
Further on, we get in succession
d
rrer = — R, —&T
« (T (8) e (T)
a7,
= —_R® _Big(T)
dg* dT,
d
= — (T, T,} —6(T)
c?
= - U};a a 5(T)
= tZB 3 —&(T)
d Y
= —tly | —7T,8(T)— &, &T)
T,
=1t5,(8)8(T(g). (5.20)

In other words, the function 8(7°( g)) satisfies an equation
analogous to (5.6).

The functional integration in (5.17) is carried out over
the complete set of variables (4.4). One can, however by
making the division (4.21) integrate over the variables g
thus removing the §-function of the constraints. In this way
we obtain

z, =fexp{iW(g")1

X[[8(¥(g") Ay (8" dn(g"), (.21

where
W(gN=W(g,8)g-ner> (5.22)
v(gN)=Y(g 8 ¢ —ng s (5.23)
4,(g")=Det{Z ~'(g")}, (5.24)
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D' (8N =Yg )R5(8"). (5.25)
The functions R 2 ( g) are defined by (4.28).

The integration measure du( g") has the form

du(g")y=M(g") [[ds, (5.26)

A
where
’ ” —_1
M(g") = (Det [—-——"T( £.8") }) (5.27)
dg g =&

One can show that the function (5.27) satisfies the
equation

Tl(g"YM(g")=1t5(g"YM(g"), (5.28)
where
”n a ”
ra(g"=- —Ri(g") (5.29)
g

and the functions ¢ %;( g”) are defined by (4.30).

Note that the action (5.22) is invariant under the trans-
formations (4.27).

Thus, we see that expressions (5.17) and (5.21) have the
same general structure as the integral (5.2). Their gauge in-
variance is provided via the same mechanism that leads to
(5.16).
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APPENDIX

Here we introduce “left” and “right’* measures on the
quasigroup

dG (6; g)=Det{4 (6;8)} [d0 ], (AD)

dG (6;8)=Det{A (6, ~'(g.0))} [d0], (A2)
where

(d6] =[] d6“. (A3)
Let us change to the new variables 8¢ ,

Oi=p0'.6,f '(86"). (A4)
Using the relation

¢ N _ n 7 8

26 - psOc 5 f (860 A%(6;8) (A5)
which follows from (1.60) we obtain

dG(6,8) =dG(6,;f '(86). (A6)
Let us change now to the new variables 8 § in (A2):

Or=p (6,01 '(89). (A7)
Using the relations
a0 ~ -
—r =8OS (80N 4561 (8, 6) (A8)
which follows from (1.63) and also the relation

S8, 0)=f""(f(8 6" ,6r), (A9)
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which follows from (1.115) and (1.118), we obtain
dG (6;8) = dG (6x; f(86 ") . (A10)

The properties (A 6) and (A8) are analogs of the left and right
invariances of the corresponding group measures. Note that
the inversion

6°—6°(6; g)
turns (A1) into (A2) due to (1.7) and (1.66).

Let now ¥ *( g) be an admissible “gauge” function. Re-
present the unity as

(A1)

1= fa(wf( 2,0))) Det [-‘3W(g+6»] [d6], (Al12)

where the integration is to be performed over the region
which corresponds to the quasigroup as a whole.
Using (1.25) one has

WS(@ON _ ya (f( g0y X80

aer g
=¥ (f(80)R5(f(80)) A58,
(A13)
whence
Dot [2£1/120))
a6
=4, (f(80)) Det{i(6;g)}, (Al4)

where 4,( g) is defined by (5.3) and (5.4). Using (A14) in
(A12) we obtain

1= fé(&”(f(gﬂ))Aw (f(2,6)) dG®:g),

where dG is the measure (A 1). The inversion (A 11) converts
(Al5)into

- ftS(!I’(f*‘(gﬂ)))Aw (f ~(2.0)) dG (6 g), (AL6)

and dG is the measure (A2).

We are now going to give an alternative proof to the
gauge invariance of the integral (5.2) with the aid of (A15)
and (A16). Introduce into the integrand in (5.2) the expan-
sion of the unity (A16) where another admissible ““gauge”
function ¥, is taken

(A15)

z, = f JdG(H;g)Aw,(f"(gﬂ)) S/~ 26))

Xexp{iW(g)} 4y () 8(¥(g)) du(g)- (A17)
Perform the change of variables
g—f(80) (A18)

in (A17). Keeping in mind the invariance of W ( g) and using
(5.11) and (5.12) we have

z, =J f [d6 ] Det {4 (6; 8)} Ay, (8) 5(¥\(8))

Xexp{iW (g)} 4, (f((8,9)) 8(¥(f(g6))
X 0, 8) du(g)

- f f dG (8;8) Ay (F(2:8)) 5% (F(26)))

Xexpl{iW(g)} 4, (&) 8(¥(Q) du(g)=Z,, ,
(A19)
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where (A 15) is taken into account in the final equality. (Nauka, Moscow, 1973).

’L. D. Faddeev, Teor. Mat. Fiz. 1, 3 (1969).

3E. S. Fradkin, Acta Univ. Wratislav. N 207, Proc. Xth Winter School of
'L. S. Pontriagin, Nepreryvnie Gruppy (Continuous Groups), 3rd edition Theoretical Physics in Karpacz (1973).
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A criterion for completeness of Casimir operators
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Max-Planck Institut, D813 Starnberg, West Germany
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We give a criterion for a set of Casimir operators of any semisimple Lie algebra to be an
algebraically independent generating set of the algebra of the Casimir operators. The criterion is
applied to supply complete sets for the Casimir operators of 4,, B,, C;, and D,. With the aid of a
method to construct some Casimir operators we then furnish complete sets for the Casimir
operators of the exceptional Lie algebras using the criterion.

PACS numbers: 02.20.Sv

In the physics literature there are many papers which
construct Casimir operators for the classical series 4,,B,,C,,
and D, and for the exceptional Lie algebra G,''® (see Refs.
17-23). But their proof of completeness is in no way satisfac-
tory. In this paper I give a criterion for a set of Casimir
operators of any finite-dimensional complex semisimple Lie
algebra to be complete in the sense that it generates algebra-
ically all Casimir operators and is algebraically independent.
This is important because the simultaneocus eigenvalues of
such a set of operators characterizes the irreducible finite-
dimensional representations of the Lie algebra in a one-to-
one manner. I will apply this criterion then to give complete
sets of Casimir operators for 4,,B,,C,,D,, and G,. I give also
a method for construction of some Casimir operators of any
semisimple Lie algebra which fulfill a part of the criterion.
With the aid of this method I will give in a second paper
complete sets of Casimir operators for the exceptional Lie
algebras F,, E,, E,, and E;. In a third paper I will construct
complete sets of Casimir operators for all the real restrictions
and real forms of the above Lie algebras.

In the following L is a finite-dimensional complex semi-
simple Lie algebra, H a Cartan subalgebra of L, U (L ) the
universal enveloping algebra of L, and Z (L ) the center of
U{L ). Casimir operators are representations of the elements
of Z (L ), which we call Casimir elements. In a more precise
language the above statements on Casimir operators are in-
tended for Casimir elements. To formulate our criterion we
need the following definitions and assertions. Let.S (L ) be the
symmetric algebra over L and S, (L ) the algebra of the in-
variants of the adjoint group Int (L )of L in S (L ); that means
St (L) = {s&S(L)/g(s) = s,gelnt(L }}, where gis the unique
extension of gelnt(L ) to an algebra automophism of S'(L ).
Thenthereexistsa vectorspaceisomorphismA:S (L }—U (L),

/{“'S(L)): = 11/(1,;,

Apwa-p,): p zya(l)yam « Votprs (1)
where peN, y,eL, 1\1<p, and S, is the symmetric group,
withA (Sy,, (L)) = Z (L )({seeRef.24, pp. 344-346)(byadot-we
denote the product in a noncommutative associative algebra,
whereas for the product in a commutative associative alge-
bra we denote nothing). To prove our criterion we need

Lemma 1: Let {1,,....I,}, €N, be a subset of Sy, (L ).

Then {1,,...,],} generatesS,,, (L }iff {4 (1,),...,A (I,)} generates
Z(L)
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Proof: The right hand side of Eq. (1) can be brought into
the form y,-yz-.l.-yp + rwith grad (r) < p, where grad means
the filtration of » (see Ref. 25, p. 75). Now let {x,,....x, | be a
basis of L and g; the graduation of I,, 1<i</. Then I, can be
written in the form I, =3, , ,_,“nqiaj“,_,#"x’,“---x’,,‘", GLI.,.#"EC
(complex numbers), i, €{0}UN, 1<k<n. With the above we
derive

x/‘l...x‘r:"x;"...x:")

Za,ul ;/. v,
=AL)A L)+ A(r) (2)

withreS;, (L }and grad (r) <g; + g;, where we set r = O for
grad (r) <0. Now let ze Z (L ). Then there exists s € S}, (L)
with A (s} = z and s has the form

s= z Ay T 7 b,....€C.
ny,...,nefOJUN
It follows from Eq. (2) that
Als) — by n A L) A )" = A7),

with grad (r) < grad(s) and A (r)eZ (L ). With this it follows by
induction on grad(z), zeZ (L ), that {A (I,),...,A (/)] generates
Z (L), because for grad (z) = 0, plainly, z is generated by
A(lsy,) =1y, and {1,,....],] generates ls..,- The opposite
conclusion is proved analogously by using the following
form of Eq; (2):

Ll —r =472 L)A (L), grad(r) <g, +g,. G

Using Eq. (2) one can easily show,?*?® that if {I,,...,(Z,)}] is
algebraically independent and consists of homogeneous ele-
ments, then {4 ({)),...,4 (1,)} isalgebraically independent. We
remark that the above assertions are valid for every real or
complex (not necessarily semisimple) Lie algebra.

Now let L * and H * be the algebraic duals of Z and H,
respectively, W * the set of nonvanishing roots of H in L,Int
(W *, H)theWeylgroupomeL(actmgonH*) Sine (H *)the
invariantsof Int (W *, H )inS (H *)[S ( (-)means the symmetric
algebra], P (L ) the algebra of polynomial functions over L [it
is P(L)=S(L*), Py, (L) the algebra of the invariants
of Int{Z )in P(L) [Py (L ): = (peP (L )/pog = p,gelnt(L }}, “o>”
means composition of mappings] and R:
P(L)}>P(H)=S(H*),R (p): = p|,l therestrlctlonofponH )-
Then we have R (P,,,,( L )) = Sy (H *) and the mapping R:
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Py (L )=S1. (H*), R (p): = R (p) is an algebra isomorphism
(see Ref. 27, pp. 504, 521-523). The algebras S, (L ) and

Py, (L) are isomorphic and the isomorphism can be con-
structed with the aid of the Killing form X (.,.) of L: The
mapping:L—L *,8(x): = K (x,.)[K (x,.): L~C,K (x,.)(p): =
K {x,p)] is linear and bijective and its extension to &:
S(L }—P (L )has, dueto theinvariance of K (.,.) under the ac-
tion of Int(L ), the property: & (Sy, (L )} ) = Py, (L ). Thus
St (H *) and Sy, (L ) are isomorphic. It is known by a theo-
rem of Chevalley”® that there exists an algebraically indepen-
dent subset {/1,,...,I;} of Sy, (H *), where I: = dim (H ) is the
rank of L and I; is homogeneous, such that {15 ,,.,, 1,,....1,)
generates Sy, (H *). It follows by Lemma 1 that Z (L ) is iso-
morphic to the ring C {¢,,...,7, ] of indeterminates ¢, and that
everysubset {z,,...,2, } of Z (L ) which generates together with
gy, the algebra Z (L ) is algebraically independent. For the
sake of brevity we define the algebra U *(L ) which s generat-
edby Lin U(L) (U *(L)is an ideal in U (L )] and
Z*HL):=Z(LnU™L)

Now we are in a position to formulate and to prove the

criterion.

Theorem: Let L = H & L, bethe decomposition of L

acW*
into root spaces, B: = {h,, b, /h,€H, 1<i<l], b,eL,,acW *}
abasisof L, H the (commutative)subalgebrain U (L ) generat-
ed by H, {z,,....z;} a subset of Z *(L ) such that grad
(z)<grad(z;)<--<grad(z,), z; = h, + b,,1<i</, with &,
€H, grad(h, ) = grad(z;)and b, is a sum of such monomials «
in the elements of B so that grad () < grad|(z;) and for grad
(4) = grad (z,) at least one factor in u is an element of {b,,
/eeW*}, and {(Ro8°4 ~')(h, )/1<i<! }, a subset of homo-
geneouselements of S (H *) which together with 1, ., gener-
ates Sy, (H *). Then {z,,...,z,} isan algebraically independent
set which generates Z *(L ).

Proof: We set {x,,...,.x, }: = B, where n: = dim(L ). As
in the proof of Lemma 1 it holds that: 4 ~'(x; -x, - - x; )
=X, X;,..x; + s,peN,grad(s) <px, ,....x; €B. Thusi ~'p, )
=pilx,,-- ,x )+ Piolhysey), wherep,eC[t,, ot s Pio
€C[t,,...,t,], in every monomial of p; there is at least one fac-
tor which is an element of {b, /acW *} and grad (p,)
< grad(z,). Now, asis wellknown, K(b, ,#) =0, acW *, heH
(see Ref. 29, p. 108). Therefore, we have (Ro8)(p;(X,,....X,,))
= R[p,(K (x;,.),....K [x,,.))] = 0, 1<i<]. With this it follows
that (Ro8o4 ~')(z,) = (Ro§oA ') (h, ) + (Ro&°A ~')(b, )
= (Ro8°A ~"h, ) + (Ro8)po(1s....h,)) and grad
[(Ro8)pyo (hys--h,)) ] < grad(z;). As we stated above, we have
(Ro8oA ~')(z,)eS),, (H *) and by assumption (Ro§oA ~')(h, )
€S\ (H *). Therefore (Ro8)(p (A s...,7,))ES 1 (H *) and
grad [(Ro8)(p,o{h,...H,))] < grad(z;). Now it follows by the
generating property of the set {(Ro§°4 ~')(h, )/1<i</ ] and
the homogeneity of its elements that (Ro8)(p l#,,-...11,)) = O,
because it is not possible to generate algebraically by a set of
homogeneous polynomials a polynomial the graduation of
which is less than the minimum of the graduations of the
polynomials of the set. Therefore, the following equations
must hold:
(R84 ~')z,) = (Ro8oA ~)(h,)
(Ro8o4 ~)z2) = (Ro8A ~){h,) + (ROS)paoll 1)
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= (Ro8°4 ~')(h,,) + :((Ro8°4 ~ '), )
(Ro804 ~')z2) = (Ro8oA ~)(h,,) + (RoB)(psoffy-..h)
= (Ro802 '), ) + g4((R6°A ~ ), ),
(Ro604 ~ '),
(Ro8o ~Yz,) = (RO3%4 ~Wh ) + RS8N gl )
= (Ro8°A )ik,
+ /(R84 ~"\h,)...(Ro8A ~Yh,, ),

where g;€Cl[¢,,...,t;_, ] and grad
[4;{(Ro8°4 ")(hzl),...,(Roéo,l *‘)(h,j D] <erad(z;), 2<j<.
These yield by iterative insertion that to every g, ! there exista
g;€Clty,...t; 11, 2<j<!, with g;((Ro§°4 ~')(n, ),

ws(RO8OA ~ Y, )=
qj((ROcSO/l _')(z,), S(Ro8°A 7Nz _ ).
Therefore, {(Ro§o4 ~')(z,)/1<i<! } is, together with 15 ;,.,,2
generating set of Sy, (A *). From this, Lemma 1, and what we
said above about the isomorphism between Sy, (H *) and
Sine (L) the theorem follows immediately. O

Remark 1: Let {x,,....x, } be any basis of L and

{x],....x, } its dual. Then 8(x,) = En;K(x,,xj )x;. Therefore,
j=1

one can easily calculate, because of the commutativity of H,

the element (504 ~'} (x), xeH. This shows, as we shall see,

how useful our criterion is in practice.
Remark 2: Let{z,) = S a, ., xy-

v,
Vi V,e§ OJUN

X 1<igd,

a, . €C, from the theorem be such that s;:

= a, .
vV, Ef OJUN
can be shown, analogously to our proof, that {s,,...,s;} is
algebraically independent and that {15, ,s,/1<i</ } gener-
ates Sy, (L ). As this assumption is fulfilled by the Casimir
elements which we will construct, we will have also con-
structed complete sets for the invariants of the adjoint
groups of all simple Lie algebras.

Now we construct out of each class of simple Lie alge-
bras A,,B,, C,, D, and G , for one model a complete set of
Casimir elements. Each time, we first present the model (see
Ref. 29 for 4,, B,, C,, D,, Ref. 30 for G,).

A LetM; | bethesetof (/ + 1) X{/ + 1) matrices, [eN,
sI( 4 1) = (MeM,  , /tv(M} =0,
1= 0, Iihkom<I+ LAy =2 —e€, 1,0,
I<k<I+ 1, and By, i = {hy, e, /1<k<], 1<i, j<l + 1,
i#j}. Thensl{l + 1)ed,, By, , xs abasis of s/ ({ + 1), the
linear span H of {4, /1<k</ ] is a Cartan subalgebra of
sl + 1), {w, —wj, w, , —w,w, —w, /I<IK, j<I ] is
thesetofrootsof Hins/ (I + 1), where {w,/1<i</ }isthedual

i

_x}'...x," is an element of Sy, (L ). Then it

of {h/1<k<l}andw, ;i = — Z w;, the root space of
i=1

w; — Wy, i#Ef, wy,  —w, and w; — w, . is {ce;/ceCY,

{ce,, ./ceC}, and {ce,, , ,/ceC}, respectively, and the

Weyl group of H in sl (! + 1) is the symmetric group of {w;

/1<i<! + 1}. We define now a new basis of s/ (/ + 1) which

allows us to construct easily the Casimir elements Let xu

c= ey, i), 1<, j<I + 1, and x40 = by
1<k<! + 1. Then {x,

X /1< <+ 1, z;é}, 1< %ll isa

iy
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basis of s/ (! + 1) and it holds that [x;,x,,, ]
=06, X, 5,,,,ku, 1<, j, k, m<l + 1. Now let (z));: = x;,

Zx,k (z,)1;» n€N, and z,,: Z(z );i- Then it

(zn+l)u
i=1

follows by usmg the equation ad (x)(zn Jm)
= 8,4(2,)im — 8im (2, )1; (ad is the extension of the adjoint re-
presentation to the universal enveloping algebra), that z,
*(s/ (I + 1)). Now we establish
Lemma 2: {z,/2<n<[ + 1} is a complete set of Z *
(s2(/ 4+ 1))

Proof: Leth, :
K, b)) =21+ 1) (1 +5,,) 5(h)—2(l+1)(w — w4
and R(w,) = w;:(Ro8°A ~")(h,, )_-(2(l+1))"2w These

i=1
power sums generate the elementary symmetrlc polynoml-

als, which build an integrity basis for Sy, (H *), and vice
versa. Thus Lemma 2 follows because 2, and b,
=z, —h, ,2<n<l + 1, fulfill all assumptlons of the

I+
2 {x;)", neN. Then one obtains using

theorem. O
B,: Let
1 0 O
S:=10 0 1, |,
N 0 1, O
leN, B,: = {MeM,,, /M-S, = —S,-M"} (M"isthe trans-
pOSCOfM),h =€rpniv1 T gyttt 1€,
P= 1 T i 1€ = €y, —w,
=Ciij+1 TG it i+ 1€
T s+ T i ie 1 Cu by
ej+1,l+1+1 _ei+1.j+l+t’1<i:j<l9 and

B:=t{h,e,,e_,, €y — 109 € — w0y — s Cuoy + w/ LF T k<m,
1<iyj,k,m<l}. Then B,€B, (I>2), Bis a basis of B, the linear
span H of { 4;/1<i<! ] is a Cartan subalgebra of B, the linear
functional w,: H—C, 1<i</, which maps every matrix R
(hj)icijeary Of Hontheentry h,  ,, ,isarootof Hin B,
({w,/1<i<!} is the dual of {4, /1<i<] }), { +w;, w;, —w;,
+ (Wi + w,)/i#j, k <m,1<i,j, k,m<l }istheset W* of H
in B, and the element of B indexed by an element of W * is a
vector from the corresponding root space. Now Let x;
=h,x

it T Gy wp Xiot T €y Ko, — it =€y Xkem,

= efw o Xk mt =y 4 ik <m, 1<iEj,k,m<,
andx = —x;, —I<i,j<l. Then {x;/i >_], Ii,j<l }isa
basis of B, and it holds that [x;,x,, ] =6, _;x,,

—8 Xy + 6, Xk —6,,%,,. By these commutation
relations it is easily proved that z,z =2, toinprin<t % — iy
Cipiyt e X, o nEN, is an element of Z * (B,).

Lemma 3: {z,, z4,...,2,,} is a complete set of Z *(B,).
Proof:Leth, : =22!_ {x, _,)". Then(Ro8°4 ~'}(h, }is
proportional to 2!_ | (w;)". As S,,,, (H *) is generated by

{Z/_,(w,)"/n =2,4,.,21 | together with 1., 4, and b,
: =z, — h,_fulfill the assumptions of the theorem. O

C,: Let

; [0 1,]
"l-1, 0)

IeN, sp(21,C): = (MeM, /M "'J, = —J,-M }, e;eM,,,
1<Lj<2L hii=e; —e; iy os Co—w, =€ ~ € i
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ew,,+ w =yt ey = (e, + w;)s €,

Py 1€ ) T (e2w ) 1<i, j<U, and Bsp(ZIC) = {h;,
ej;Zw ’ ew —w;» -t(wk+w )/I¢J’k<m l<l:/’km<l}
Then sp (21 CleC; (I>3), B, (10) is a basis of sp (2/,C), the
linear span H of {4,/1<i<! } is a Cartan subalgebra of sp (2/
,C), the linear function w;: H—C, 1<i</, which maps every
matrix of H on its /th diagonal entry, is an element of the dual
of {h,/1<i<l }, fw;, —w; , |, 2w, /1 <i<l — 1} is a simple
system of roots of sp (2/,C) relative to H, { 4 2w;, w, — w
+ (W +w, )/i#], k <m, 1€iyj,k,m<]} the set W* of H in
sp(2/,C), and the element of B, ;, ¢, indexed by an element of
W * is a vector from the corresponding root space. It is easily
proved that the first / power sums in w?,...,w? generate

S (H*). Nowletx;, ;:=h,x, ;:=e X
Pl X Tl Xyt = — 20 gy, X
1= 2e,,, 1<i,j>] and x;=x,;, ije{ + 1, +2,.., + 1}.
Then {x;/i>j,i,j#0, — I<i,j<! } isabasis of sp (2/,C) and it
holds that [x;, X4, | = €8 _ 4%, + €,6 _; n%u

+ €0 _ 1 X, +€,6 %, wheree, = 1 for 1<ig/and¢;
= —1for —I<i<—1. Nowlet(z) ,;: = €;x;, (z,, 1),
c=63 X (2. ijEl £ 1, £ 2, i 1}, neN, and
(z,): == _,c;ci(2,); _;- Then it follows with the aid of ad
(xlj )((Zn )km) = 61'5 — ik (Z,, )im + €m5 — j.m (Z" )ki

+ €0 _ k(2 )im + €40 _;,.(2,)y, nEN, that z,€Z *(sp(2/,C)).

wj— wy ¥

& Lemma 4: {z,,2,,...,2,,} is a complete set of
Z *(sp (21,C)).

PrOOﬁ 2, = 2 — Igi,..‘.\ingle € xl| — iy xlz, —iy "xi,,. — iy
Nowleth, : =2 _ ., ,(€)"x; ;)" Thenh,
=23!_ | (x,_,)" foreven n. With K (x ,,,,J,J)._K(h,,h)

= 4(I + 1)8;, 1<, j</, it follows that (RoSo4 ') (h, )is pro-

portional to 2/ _ , w?, n even. Therefore, {z,/n=24,.,21}

fulfills all the assumptions of the theorem. O
D,: Let

[O 1,]
S = ,
I, O

leN, ] # 1 (weexclude/ = 1because otherwise we would geta
nonsemisimple Lie algebra), D, = {MeM,,
/MS, = —S;-M'}, e;eM,;, 1<i, j<2l, h;: =
€ L=y _en+l,1+l’ew+w, =ei+1,j'—ej+1i’e~w,.~w-
:=(ew+w) IGJ<E Bo= (e _up oyt 0,0 €~ w,,
/i#j,k <m, 1<ij,k,m<I}. Then D,eD, (I>4), B is a basis of
D,, the linear span H of { h;/1<i<!} a Cartan subalgebra of
D,, the linear functional w,:H—C, 1<i</, which maps every
matrix of H on its ith diagonal entry, an element of the dual
of {h,/1<i<l}, {w; —w; gy w,_ | +w,/1<i<l— 1} isa
simple system of roots of D, relative to H, {w, — w;,
+ Wy +w,V/i#j, k<m, 1<ijk,m,<l | theset W* of Hin
D,, and the element of B indexed by an element of W* is a
vector from the corresponding root space. Lets;, 1<i</ — 1,
be the power sum in / indeterminates. Then one can prove®'
that {s,(w?, w3,...,w}), w,w,w,/1<i<! — 1} is an algebra-
ically independent set which together with 1., generates
St (H *). Nowletx,_,- =h,x, _;=e x
= ey, +w, L7£) k<m, 1<, k,
X, ]e{ +1,+2,...,+/}.Then {x,

€ii —€ it

w; — w;

wy — w;? “-mk
_e—w,(—w,,,’x‘k

m<l, and x; = -
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/i>ji, j#0, — I<ij<l} is a basis of D, and it holds that
[XXkm ] =) _kXim — O _imXig + 8 _ i Xai — 6 _ 1 Xjm-
From these commutation relations follows that z,
2= E el b 11X i X iy e X i NEN, and Z,
=X, il tdion 1] Cigjgoiy X —iyy—j," oo X g, j, ATE ele-

ments of Z * (D,), where € is the totally antisymmetric unit
tensor.

Lemma 5. (2, z,,...,2y _ 5, £} is a complete set of
Z* (D).

Proof: With the aid of K{h;,h,) = 4(/ — 1) 5,, the proof
is analogous to those of Lemmas 2—4. O

Before proceeding with the construction of a complete
set for G, we establish two lemmas which we need for the
case of all exceptional Lie algebras. The first lemma is a
generalization of a method of Racah'” and is found in Refs.
16 and 32; in Ref. 16 it is formulated only for compact semi-
simple Lie algebras and in both cases the proof is group-
theoretical, where our proof is purely algebraic. In the fol-
lowing K is either R (real numbers) or C.

Lemma 6. Let LbeoverK {x,...,.x, }, neN, a basis of L,
K: = (Kj)icijen Where Ko = K (x,,x,), K¥: = (K =), %/
: = 27_,K’x,, D a finite-dimensional. representation of L,
and [, (D): =2, ;. atr(Dx,)-D{x,) - -D(x,))
x"ex™ ... .x”, peN. Then I, (D)eZ *[L].

Proof: Let c",-j, 1<i, j,k<n, be the structure constants of
L relative to {x,,...,x, }. Then

ad (x,)(Z, (D))

= 2 (tr(D (xil )- we D (xip))K i,“l'...xl}_ . .xi,n 1

i

. [xk X ].xi"’ e o ”)

T<yrnsipfps Pt
t<m<p

(te(D (x;,)- =+ <D (x; )K ey

!

Xxi'. e ox ™ Lx .xi"' LI .xi")
r?" ’

n
P =1

Now, ¢, being totally antisymmetric, it holds that 2
K"dn, =dn =31 K", . Thus
ad(x,)(Z,(D))

= 2

L<bpodppr<n

(te(D (x; ) = -D(x;, 1" uDx; ) o

l<m<p

.D (xl,’))x"'. .xi'" ‘.x’.xi'" e .x[")

= Z 2 (tr(D (x;, ) oD (xi,,, ,)'D ( [xi,,,’xk ])

L<ipnipzn Tamap
D(x,, e D e ettt x'%)
=0,
because

S (D (x, ) Dix, D ([x;, XD (xi, ) Dix D]

= trD (x, D (x,)-D x, ) = -D{x, )
— (D (x,)-D (x,)- = -D(x,))
+tr(D x, D [x,, D (x,)-D x, ) = -D (x, )

1854 J. Math. Phys., Vol. 22, No. 9, September 1981

— tr(D (x; )-D (x;)-D (x,)- = D (x, ))
+ 4 tr(D (xi. ) we D (xip).D (xk))
—te(D(x; ) - -Dix; )-D(x)-D(x,))
— —tr(D(x,)-D (x; ) -~ -D [x, ))
+tr(D (x,,)- - -D (x, )-D (x; )

O
Two equivalent representations D and D supply the same
Casimir elements: I,(D ) = I, (D). Further, J ,(D)is indepen-
dent of a basis of L. Let {y,,...,y, | be another basis of L and
x; =2/_A4;y;. Then K} = K(x,,x;) =2} Ay
A K Wiy ) =20 - 1 A K5 A Ly
(A“K™~"A4), =(K”". Thus I,(D) R
=2 (T ,) Dy Iyt - "). Let D,

: =27 D(x;);x', 1</, k<d, where d is the dimension of the
representation D, and D: = (D )y ;xcq- Then I, (D) =tr
(DP) =2y, ,<aD;j,"D; , = -D;;, - In this abbreviated
notation we will state the Casimir elements of all exceptional
Lie algebras. We denote that 7, (D ) interpreted as an element
of S (L) is an element of S, (L ) (cf. Remark 2 above).

Now we show that the Casimir elements constructed by
Lemma 6 fulfill part of the assumptions of the above
criterion.

Lemma7:Let {h;, b,/1<i<l,@ eW*} beabasis of L as
in the theorem, D a finite-dimensional representation of L, z,
:= 1,(D)for some p €N, &, : = tr((2{_ , D (h,)h '¥) and
b,:=z,—h, Thenz, =h, + b, fulfills the decomposi-
tion assumptions of the theorem and it holds that (RoSo4 ')
(1, ) €S (H *).

Proof: In the above basis K; has the following form:

=1

that means

S 0 O
(Kij)lsti,j\nz 0 0 D |,
0 D O

where S €M, is symmteric and D eM,, _,,,, is diagonal.
Therefore it follows by inspection that z, = 4, + b, fulfills
the decomposition assumptions. Now, as equivalent repre-
sentations yield the same coefficients for the monomials of

z,, we assume that D (&, is diagonal. Thus D(k,) = diag
(w(A)..owith) wylh),...,w.lh) W (A, A)
—— , Where w,, 1<k<m, are

d, times

ey e —— yeesy
d, times d, times

the weights of H relative to D and d,, is the multiplicity of w,

(d=27_,d,). Now let @;: = 8(h,). Then there exist num-

bers a,, such that w, = 2, _ a,,a,. Thus

(D (Al = wyyh) = 2.17: 19k g% (h2)

=3!_,a,;,Kh,h,) for some k depending on j,1<j<d.

From this follows, because of the form of K, that

(21[': D (h:)h i)j[ = Ef,r: (D (hi)ij frhr)

= Ell'.r,qz lak(j)qinKirhr = ny: 1@ g hq- BY (ROSOA Ay

= a, we have (Ro§oA ~')(h, ) = Z{_ \d, wi. Now itis

known thatg € Int (W * ,H ) permutes the weightsand that the

multiplicity of the weights is invariant under g (see Ref. 29, p.

113). a
The degrees of the elements of a minimal set of homo-

geneous elements that together with 1, .) generates

Sin (H *) are known for all complex simple Lie algebras (see

Ref. 27, pp. 508-509, 515-516, 518, and 520). By the above-

cited theorem of Chevalley the cardinality of such a set is
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equal to the rank of the Lie algebra. By the knowledge of the
degrees of the elements of such a set we construct minimal
generating sets for the invariants of the Weyl groups of all
exceptional Lie algebras. For G, the degrees are 2 and 6.
Now we present a model for

G,:

Let, for a = (a,,a,,a,) €C?, the matrix M (a) €M, be de-
fined as (M (a)),: = 23 _ | €4;0,,1<4, j<3, where € is the to-
tally anti-symmetric unit tensor with €,,; = 1. Further let
G, = {(MeM,/

0 J2a J2b
b Mia)
—J2a Mp) -8

a,beC Sesl(3)],

e; €M, as before, h
hy: = ey — ess

11 = €3 — €55 — €33 1 €¢,

—€4a + €158, [ TC 11 T8 i
1<, j<3, 8, = \/2(91,1+ 1 =€y an)

+ €Egulen v 1jra — €y 1k 48 K '—‘\/2(91.54,4 —e 1)
+ €l v ajr1 — € pany ) (k)€ [(123),(213), (312)},
and B: = {h,hg,, 8 8a SIF) 1</, j<3}. Then

G, € Gy, Bisabasis of G, the linear span of H of {4,,4,} isa
Cartan subalgebra of G,, the linear functionalsa, and a; _,

a, _s(h):=1,and @; _;(h,): = 2 are a simple system of
roots of G, relative to H, {a, a, _;,a_;= —a, a, _,
= e, Q= 20 +a; _sha,,

= tla ta, _s)ha,

= -y _yr=3ata5,0,

1= — @, _,:=3a,+2a, _,}istheset W"‘omeGz,and
the element of B indexed by an element of W * is a vector
from the corresponding root space.

Lemma 8 Let I, and I, be homogeneous elements of
St (H *) with grad (£;) =/, j = 2,6, and {1,,/,} an algebra-
ically independent set. Then the union of {I,,I} with 1.,
is a generating set of Sy, (H *).

Proof: From the above there exist two homogeneous
elements S, and S, with degrees 2 and 6, repsectively, which
generate together with 15 ., the algebra S|, (H *). Thus,
I, = ¢S,,c €C,c #0. Therefore, there is a p €C[¢,,,] with
1, = p(I,,S.).From this follows, because of the degrees and
homogeneity of I,, I, and S, that I, = a(l,)* + bS,, ab C,
and b #£0, since {1, I} is algebraically independent. Thus
{S,, S,} is generated by {1,, I, }. 0

UsingK (B,B): = {K (a,b }/a,b €B } one obtains:h ' =
2k, — hy), h* = L( — b, + 2h,), “"’—gga B
g9=—tg, & '= — 248, {7/, 1<1, j<3. Now let D be
the identity representation x—x of Gz, X er Then D = LG

L
24

on H defined by a,(h,): = — La,(h,): = — 1, (cf. Lemma 6) by the above formula, where G: =
]

[0 (e, 2Bk, —W2e, - (k. — 23
(y2/3%... by + o) g, | i ~ k.
(ﬁ/3) a, g(xl_ 2 %( - 2hl + hZ) ga_,‘ 2 - %g(z 3 0 %ga 1
( 2/3)ga, gal‘ 3 g(lz‘ 3 %(hl - 2h2) %ga 2 jl&g(z f 0
(\ 2/3) @ = O %ga;, _l _%(hl +k2) _ga, 2 —g(xl‘ 3
( 2/3)g(1 - - _%gaJ 0 _%ga, - gaz‘ f %(Zh - h ) - gnt2 3

| 23k, ., ~ ., 0 ~ 8, ~ 8, . Y= hy+ 20y

We have by Lemma 6 R

z;: =tr (G')eZ *(G), jeN.

Let A _ ‘

A= 2((hy + hof + (hy — 2R} + (B, — 2h,)),
Jeven. Then (Ro§od ~ YY)k, .} €81 (H *) by Lemma 7: It fol-
lows by calculation that (R °8o4 ~)(h,)

=2 F24((a\y + (@) +a,, 3V + Qa, +a, _3h)
Now we can prove
Lemma 9: Let

Li=la}f + (o +a, 3V +2a +a, ;).

Then [, I} is algebraically independent and generates to-
gether with 1 ,,. the algebra S, (H *).

Proof: Because of Lemma 8 we need only to prove the
property of algebraic independence. Let

7. t[&lz/&al 812/8041‘_3]
T Norsoe, ar/a, )
ThenJ(2 h, + hy)) = — 144040, w

Because of the above assertions we have proved by our crite-
rion

1855 J. Math. Phys., Vol. 22, No. 9, September 1981

LemmalO: {z,,z,} is a complete set in Z +(62).
Remark 3: Leta: =1(g,,.8,,:8a,)

b:i=(8, +8x 8« ,C= (8 ,8a ,18a, ,)and
d:=(gaz‘ ,’gal ,,g(,zv 3). Thenz:,_ =

2[ — @b+ ba)+ (cd + dec) + Y1) + (ho)* — hyohy)] .
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We construct explicitly algebraically-independent generating sets for the Casimir operators and
the invariants of the Weyl groups and adjoint groups of the exceptional Lie algebras F,, Eg, E,,

and F.
PACS numbers: 02.20.Sv

This paper is an extension of the work done in Ref. 1.
Up to now, sets generating the Casimir operators of F,, Eg,
E,, and Ej, respectively, were not known. To find complete;
sets of Casimir operators for £, E, E;, and Eg, we construct
with the aid of the lowest-dimensional representations some
elements of the center of the universal enveloping algebra.
By a criterion given in Ref. 1, we show that the elements
obtained in that way are a complete set of Casimir operators,
in the sense that they generate algebraically all Casimir oper-
ators and are algebraically independent. In order to prove
our assertions on Casimir operators we need complete sets of
the invariants of the Weyl groups. Therefore, we constructed
the Weyl invariants of the above exceptional Lie algebras.
According to Remark 2 and the statements subsequent to
Lemma 6in Ref. 1, we have also constructed complete sets of
the invariants of the adjoint groups of the Lie algebras under
consideration. We emphasize that we have constructed com-
plete sets for the above invariant algebras of the exceptional
Lie algebras for the first time in the literature. The method of
presentation is the same as that of G, in Ref. 1. The models of
F,E, E,, and E, are taken from Ref. 2. A mistake in repre-
senting E; in Ref. 2 is eliminated.

In order to compute our Casimir operators explicitly we
have to know all the generators (e.g., a Cartan—-Weyl basis) of
the Lie algebras under consideration. But this knowledge is
not necessary for our proof of the algebraic indepdence and
the generating property of our sets of Casimir operators. For
this we need only the explicit form of a basis of a Cartan
subalgebra. Therefore, presenting the models of our Lie alge-
bras, we restrict the explicit representation of a basis of the
Lie algebra by furnishing a basis of a Cartan subalgebra as
explicit matrices and indicating how to calculate all the oth-
er generators which are elements of rootspaces correspond-
ing to nonzero roots.

Further we need the knowledge of the degrees of the
elements of a minimal set of homogeneous elements that to-
gether with 15, ., generates the algebra SIm (H *) (we use the
same symbols as in Ref. 1). These are for’

F,:2,6 8, 12
Eg2,5,6,8,9,12;
(1)
E,: 2,68, 10,12, 14, 18;
Eq: 2,8, 12, 14, 18, 20, 24, 30.
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Presenting our models of the above algebras we always give a
list of objects first, followed by a list of propositions.

Fa

Leth;, e,eM,,, 1<i<4, asin Ref. 2, pp. 169 and 170; H
be the linear span of {4,/1<i<4}, 4 =(4;).; j.s€M, as in
Ref. 2, p. 200; ; be linear functionals on H with
a;(h): = 4,,1<i,j<4, 1(4): = {(1,0,0,0}, (0, 1,0,0), (0,0, 1,
0),{0,0,0,1),(1,1,0,0),(0,1, 1,0}, (0,0, 1, 1), (1, 1, 1,0}, (0, 1,
1,1),(0,1,2,0),(1,1,1,1),(1,1,2,0),(0, 1,2, 1), (1, 1,2, 1), (1,
2,2,0),(0,1,2,2),(1,1,2,2),(1,2,2,1),(1,2,2,2), (1,2, 3, 1),
(1,2,3,2),(1,2,4,2),(1,3,4,2),(2,3,4,2)], W *: = {(ay, ay
a3, a4j-a'/asl (4)}(. is matrix multiplication, t means trans-
pose), W ™:={ —a/acW "}, :=e,1<i<4,

€ ta vyt ta, = [ [€a, 0a, Jea, Jmrta,
A 2)

e_,= —e ,acW B . ={e,/acW B = e,
/ae W™}, andF4(C) bethelinearspanofB "u B U H. Then
F,{C) € F, with the Lie product [x, y}: = x-y — y-x, x,

Yy € F,(C), H is a Cartan subalgebra of F,(C), 4 is the Cartan
matrix of F,(C}, {a,/1<i<4] is a set of simple roots of F,(C),
W™ and W ~ are the set of positive and negative roots, re-
spectively, and the elements of B * and B ~ are elements of
the rootspaces corresponding to positive and negative roots,
respectively.

First we prove

Lemma I:Let {I,/j = 2,6, 8,12} be a set of algebraical-
ly independent homogeneous elements of S,,,, (H *) with grad
(£;) =Jj,j=2,6,8,12. Then the union of {I,/j = 2, 6, 8, 12}
with 1g ., is a generating set of Sy, (H *).

Proof: Because of (1) there exist four homogeneous ele-
ments S,, S, S5, and S, with degrees 2, 6, 8, and 12, respec-
tively, which generate together with 1., the algebra
St (H *). Thus I, = a, S,, a, € C, a,#0. Therefore, there
exists a polynomial pe C[z,, t,] with I, = p(I,, S,). Because of
the degrees and homogeneity of I, I¢, and S, it follows that
Iy = ag (L) + b Sg, ag,bse C, and by 0, since {I,,1,} is al-
gebraically independent. Analogously there exist polynomi-
als p\.e Clz,, t,, t;] and pye Clt,, t,, t,, t,] with I = p,(I,, I,
Sg) = ayll,)* + bglS, + ¢S, ag, by, c5€ Cand Iy, = py(I,, I,
Iy, Si2) = ay,(1)° + b)Y + c oIl

+ d L1, + €158, a5, by -y €156 C. Then ¢330 and
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e, #0, since {1, I, I3}, and {1, I, I, I,,} are algebraically Since in (4) each homogeneous part has to be identically zero
independent. Thus {S,, S, S, S),} is generated by {I,, I, I;,  and since 8/, /da,#0, k = 2, 6, 8, 12, it follows that

1,10 a, =a, =a; = a, = 0. Thus the rows of the above matrix
Now we construct some Casimir operators with the aid are linearly independent and therefore J 0.0
of Lemma 6 in Ref. 1. For the Killing form restricted on By the above we have proved
H X H we compute Lemma 3: {z,,2¢, 24, 2,,} isacomplete set in Z * (F,(C)).
5 1 0 Now we show in the same manner as for F, that for E,
and E, there are, respectively, 6 and 7 Casimir operators
(K./HXH), .. ..s =18 —1 2 —2 0 which generate all Casimir operators and are algebraically
v e -2 4 =2 independent. Since the methods and proofs are analogous to
0 0 -2 4 those for F,, we state the lemmas without proofs.

and
4 Ee
6 Let &, e;€ My, 1<i<6 asin Ref. 2, pp. 170 and 171; H
<<t T Fel4 g be the linear span of {,/1<i<6},4 =(4,),.;;.¢€ Msasin
2 4 3 2 Ref. 2, p. 201; ; be linear functionals on H with a;{4;):

— A<t i<6,
(see the proof of Lemma 7 in Ref. 1). Therefore, we have 1<

=4 (4h, + 6hy + 4hy + 20, h% = & 1(6.1): = {(1,0,0,0,0,0), (1,1,0,0,0,0, (1,1,1,0,0,0),
(6, + 12/, + 8hy + 4h,),h° = L(dh, + 8h, + 6k, + 3h,),  (L11L0G1),(1,1,1,1,00), (1,1,1,1,0,(1)), (0,},(1),(1),3,(1)),
and h* = L(2h, + 4h, + 3k, + 2h,). Let D be the identity ~ (1,1,0,00),(0,1,1,0,0,1), 0,1,1,1,6,0}, (0,1,1,1,0,1),

(K7 '/H XH), :

—
[\
A 00
w N

representation ofF4(C),{x1,...,x52}: = (0709170,010)1 (0,0,1,0,0,1), (0,0,1,1,0,0), (0,0,1,1,0,1),
B*UB-UH,D, (0,0,0,1,0,0), (0,0,0,0,0,1), (0,1,2,1,0,1), (1,1,2,1,0,1),

= 3 D 1<, m<26,and B = (B} gmize. Then 012 LU (122,101, 0.122.L1) (LL2LLL
Z:=tulD*e Z *(FC) ke N. Leth, (1,2,2,1,1,1), (1,1,2,2,1,1), (1,2,2,2,1,1), (1,2,3,2,1,1), 5
:=tr[(2?:,D(h,»)h")k].Then hz,‘ :(ﬁ)k (1,2,3,2,1,2)}7 ( )
(2h, + &hy + 3hy + 2h) + (2h, + &hy + 3hy + by 1(6.2): = {(1,1,1,1,1,0), (1,1,1,1,1,1), (0,1,1,1,1,0),

+ 2k + Shy + 2k + hy)* + 2k + 2k, + 2k + ) (0,1,1,1,1,1},(0,0,1,1,1,0}, (0,0,1,1,1,1), {(0,0,0,1,1,0), 6

+ 2k, + 2y + by + by + 2k + 20y + b (0,0,00.1,014, (

+ (2, + 2k, + By + (b, + By + By + 2k, + hy)E W™= {{ay,..a¢)ra'/ac I{6.1)U1 (6.2)},

+ (A3 + ) + (h)F + (hy)*), k = 2,6, 8, 12. Then B:={e, e ,/acW *|[e, defined as in Eq. (2)], and E,(C)
(Rosoy ™"} h, ) €Sy, (H *) (see Lemma 7 in Ref. 1). It follows is the linear span of BuH. Then E(C)e E, with the Lie prod-
by calculation that uct [x,y]: = x-y — y-x, x, y € E((C), H is a Cartan subalgebra

Ji: = (Ro8oA ~')(h_ ) of E(C), 4 is the Cartan matrix of E¢(C), {@,/1<i<6} isa set

= (&) (@, + 2a, + 3a; + 2a,)" + (@, + 22, + 3a, + a,) of simple roots of E¢(C), W * is the set of positive roots, and
4 (@ + 2, + 20, + @) + @, + @y + 2, + ;z g the elements of B are elements of the rootspaces correspond-
L 2 3 4 1 2 3 4

L A ing to positive and negative roots, respectively.
+la +a,+a;+a,) + (@, + 2a;, +a,) Lemma 4:Let {I,/j=2,5,6,8,9, 12} be a set of alge-

+ o+ as + ay) 4 (@, + ay + a) + (@, + as)f braically independent homogeneous elements of Sy, (H *)
+ ey + ) + (@) + (@)<).k =2, 6,8, 12. with grad(l;) =j,j =2, 5, 6, 8,9, 12. Then the union of {5,/
Now we can prove J=12,5,6,8,9,12} with 1 ., isa generating set of Sy, (H *).
Lemma 2: Let J, beasin Eq. (3). Then [J,/k =2, 6,8, Now we construct some Casimir operators. For the
12} is algebraically independent and generates together with Killing form restricted on H X H we ::ompute
15+ the algebra S, (H *). (Ky/H X{’”Ku«: = 112’4:‘1_’ and (K ;7 '/H XH )\ 6
Proof: Because of Lemma 1 we have only to prove that = &id i )15 ij<er A 7 asin Ref. 2, p. 201. Therefore, we
{J,./k =2, 6, 8, 12] is algebraically independent. Let know that i =2}_ K7 /H X H h;,1<i<6. Let D be the
identical representation of E4(C), {xy...xz4}: = BUH, D,,
5./2/561, 8J2/¢9a2 ajz/aag 3]2/6(14 — 27;1D(xi)jmxi71<iyj<27! D: = (Djm)lg,m&27‘ Then 2z,

7 — det| /% : = tr(D *)e Z *(E,(C)),keN by Lemma 6 in Ref. 1. Obviously
aJ/da, : h, =tr[(2_,D(h;)h)*]. Since we know the matrix entries
dJ ,/3a, . . aJ,»/da, D (h,) we compute b, =3, p(d p-lhy,..he) ') Sk =2,5,6,8,

Suppose 9, 12, where

" ( al, al, o, an)+._. +a4(aj,2 3y, aJ,, Iy

da, da, da, da, da,” da, day’ 6a4? 1P: :5“_64, —45, —26, —3;‘»—23— 3),
=0, a,, a,, a;, a, € C. Then, (— 1:—2,—6,—4,—2,—3),
aJ, al aJg al,, (—1,—2,—3,—4,-2,—3
a +a =O 4 ) s ) s 5 >
361 +az aal+ 3(90. 4aal () (_1’_2,_3,_1’_2,_3)’(_1,_2’—3,—1,1,—3),

a,
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(—=1,—-2,—-3,—4,-20),(—-1,—-2,—-3,—-1,—2,0),
{(—1,-20,~-1,-20),{— 110, — 1, - 2,0),
(—-1,—-2,-3,-1,L1,0,(—-1,-20,—1,1,0),
(-1,-2,0,210), (- 1,1,0,— 1,1,0}), ( — 2, — 1,0,1,2,0),
(—1,1,0,2,1,0), ( — 1,2,3,2,1,0), (2,1,0, — 1,1,0),
(2,1,0,2,1,0), (2,1,3,2,1,0), (2,4,3,2,1,0), ( — 1,2,3,2,1,3),
(2,1,3,2,1,3), (2,4,3,2,1,3), (2,4,6,2,1,3), (2,4,6,5,1,3),
(2,4,6,5,4,3)1. (7)

Since 6(4,) = — 12a,,1<i<6, we have
J, = (Ro8°4 ~Y\h

2

= z;,(%p'(ahazr“"adt)k’ (8)

where Pisasin (7), and J, € S}, (H *),k =2,5,6,8,9, 12 by
Lemma 7 in Ref. 1. With the aid of 47, /3a,#0, ke N, k>2
we can prove

Lemma 5: LetJ, beasin Eq. (8). Then {J,/k =2, 5, 6,
8,9, 12} is algebraically independent and generates together
with 1g ., the algebra S, (H *).

By the above we have proved

Lemma 6: {z,/k =2,5,6,8,9, 12} is a complete set in
Z T (E((C)).

E;

Let h;, e;€ My, 1<i<7, as in Ref. 2, pp. 171, 172; H be
the linear span of { #,/1<i<7}, 4 =(4 ), ;7€ M, as in Ref.
2,p. 201; a, belinear functionals on H with @ (h;): = 4,,,1<i,

Jj<7,

I(7):=1{(0,1,2,1,1,1,1),(1,1,2,1,1,1,1), (0,1,2,2,1,1,1),
(1,2,2,1,1,1,1), {1,1,2,2,1,1,1), (0,1,2,2,2,1,1), (1,2,2,2,1,1,1},
(1,1,2,2,2,1,1), (1,2,3,2,1,1,1), (1,2,2,2,2,1,1), (1,2,3,2,1,1,2},
(1,2,3,2,2,1,1), (1,2,3,2,2,1,2), (1,2,3,3,2,1,1), (1,2,3,3,2,1,2),
(1,2,4,3,2,1,2), (1,3,4,3,2,1,2), (2,3,4,3,2,1,2)}, (9)
W= {{a,...as, ar)a'/ac I(6.1) VI (6.2)}u}(a,,....as,
a,)a' + ag/ac I(6.2)jufag}ui(a,,...a;)-a ' /ac I{7)}[see
Egs. (5), (6), and (9)],B: = [e,, — e, /acW * }[e, defined as
in Eq. (2)], and E,(C) be the linear span of BUH. Then
E,(C)eE, with the Lie product [x,y]: = xy — yx, x,

y € E,(C), H is a Cartan subalgebra of £,(C), 4 is the Cartan
matrix of E,(C), {a;/1<i<7} is a set of simple roots of E,(C),
W * is the set of positive roots, and the elements of B are
elements of the rootspaces corresponding to positive and
negative roots, respectively.

Lemma 7: Let {I,/j =2, 6, 8, 10, 12, 14, 18} be a set of
algebraically independent homogeneous elements of
St (H *) with grad ([;) =/,j =2, 6, 8, 10, 12, 14, 18. Then
the union of {;/j =2, 6, 8, 10, 12, 14, 18} with 15,,., isa
generating set of S|, (H *).

Now we construct some Casimir operators. For the
Killing form restricted on H X H we compute
(Ky/H XH ), ;<; = 244 ;. Therefore, we know
h'=3]_KYH XHh;,1<i<7.Let Dbe theidentical repre-
sentation of E,(C), {x,,...,x 33} :=BUH, D,
= 2}2,9 (%: yim*', 1<j, m<56, D: = (D}, ), mese- Then
2, = tr(D*)e Z *(E,(C)),keN, by Lemma 6 in Ref. 1. Obvi-
ously k, = tr[(Z]_, D (h;}a ') ]. Since we know the matrix
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entries D (h,) we compute h, = 2, p( p-(h,....h,)'), where

P: = {(2,4,6,5,4,3,3), (2,4,6,5,4,1,3), (2,4,6,5,2,1,3),
(2,4,6,3,2,1,3), (2,4,4,3,2,1,3), (2,2,4,3,2,1,3), {0,2,4,3,2,1,3),
(0,2,4,3,2,1,1), (0,2,2,3,2,1,1), (0,0,2,3,2,1,1), (0,0,2,1,2,1,1),
(0,0,0,1,2,1,1), (0,0,0,1,0,1,1), (0,0,0, — 1,0,1,1),

(0,0,0, — 1,0, — 1,1), (0,0,0, — 1, — 2, — 1,1),(0,2,2,1,2,1,1),
(2,2,2,1,2,1,1), (2,2,2,3,2,1,1), (2,2,4,3,2,1,1), (2,4,4,3,2,1,1),
0,2,2,1,0,1,1), (0,2,2,1,0, - 1,1}, {0,0,2,1,0, — 1,1},
(0,0,0,1,0, — 1,1), (0,0,2,1,0,1,1), (2,2,2,1,0,1,1),

(2,2,2,1,0, — 1,1}}. (10)

Since 6 (h;) = — 24a,,1<i<7, we have
Ji = (Ro8oA ~')(h,,)

= Y (p-leyenai)), (11)
peEP

where Pisasin (10)and J, €S, (H *),k = 2, 6, 8, 10, 12,14,18
by Lemma?7in Ref. 1. With the aid of (3/, /da ) #0, k>2, we
can prove

Lemma 8:LetJ, beasin Eq. (11). Then {J, /k = 2,6, 8,
10, 12, 14, 18} is algebraically independent and generates
together with 14, ., the algebra S, (H *).

By the above we have proved

Lemma 9: {z, /k =2, 6,8, 10, 12, 14, 18} is a complete
set in Z *(E,(C)).

Ea:

Remark: There is a mistake in Ref. 2 representing the
entries (A, )5, 157,1<i<8, which would yield as correspond-
ing root
a:=2a,; + 5a, + 8a; + Ta, + S5as + 3as + 2a, + 4a,.
But a is not a root of Eg. In the following we furnish all the
roots and a basis for a Cartan subalgebra of E,. Let
A=(A,),.,;.;€M, as in Ref. 2, p. 202,

I(8): = {(0,1,2,1,1,1,1,1}, (1,1,2,1,1,1,1,1,
(0,1,2,2,1,1,1,1), (1,2,2,1,1,1,1,1), (1,1,2,2,1,1,1,1),
{0,1,2,2,2,1,1,1), (1,2,2,2,1,1,1,1), (1,1,2,2,2,1,1,1),
(0,1,2,2,2,2,1,1), (1,2,3,2,1,1,1,1), (1,2,2,2,2,1,1,1),
(1,1,2,2,2,2,1,1), (1,2,3,2,1,1,1,2), (1,2,3,2,2,1,1,1),
{1,2,2,2,2,2,1,1), (1,2,3,2,2,1,1,2), (1,2,3,3,2,1,1,1},
{1,2,3,2,2,2,1,1), (1,2,3,3,2,1,1,2), (1,2,3,2,2,2,1,2),
(1,2,3,3,2,2,1,1), (1,2,4,3,2,1,1,2), (1,2,3,3,2,2,1,2),
(1,2,3,3,3,2,1,1), (1,3,4,3,2,1,1,2), {1,2,4,3,2,2,1,2),
(1,2,3,3,3,2,1,2), (2,3,4,3,2,1,1,2), (1,3,4,3,2,2,1,2),
(1,2,4,3,3,2,1,2), {2,3,4,3,2,2,1,2), (1,3,4,3,3,2,1,2),
(1,2,4,4,3,2,1,2), (2,3,4,3,3,2,1,2), (1,3,4,4,3,2,1,2),
(1,3,5,4,3,2,1,2), (2,3,4,4,3,2,1,2), (1,3,5,4,3,2,1,3),
(2,3,54,3,2,1,2), (2,3,5,4,3,2,1,3), (2,4,5,4,3,2,1,2),
(2,4,5,4,3,2,1,3), (2,4,6,4,3,2,1,3), (2,4,6,5,3,2,1,3),
(2,4,6,5,4,2,1,3), (2,4,6,5,4,3,1,3), (2,4,6,5,4,3,2,3))], (12)

W*: = {la,,..asag)a'/acl (6.1)0 1(6.2)}u{(a,,...,as,aq)a"

+ ag/ael (6.2)ju]a;lul(a,,....aqag)a"/
acl (T)julla,,...,as.as)-a"

+ ag + a,/ael (6.2)}ufagaes + asluf(ay,...a,)-a'/ael (8))
[see Eqgs. (5), (6), (9), and (12)],

{BirsBrao}: = W {BiagssBoag): = { —B/BeW ™ }.hi€
M5, 1<i<8, with (h;);: = B;(h,),1</<120, 129<;<248,
(h;);: =0, 121¢j< 128, (h;)y,,: = O for k #£m, 1<k, m<248,
and H be the linear span of {4, /1<i{<8}. Then 4 is the Car-
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tan matrix, W * the set of positive roots, {a,,...,a;} a set of
simple roots, and A a Cartan subalgebra of a model
E4(C)eE;. Itis standard to construct by the above a canonical
basis for E,(C) (see Ref. 4, p. 126; physicists call it Cartan—
Weyl basis). As mentioned before we need only the basis of H
explicitly.

Lemma 10: Let {I,/j = 2,8, 12, 14, 18, 20, 24, 30} be a
set of algebraically-independent homogeneous elements of
St (H *) with grad(l}) =,/ = 2, 8, 12, 14, 18, 20, 24, 30.
Then the union of {I,/j =2, 8, 12, 14, 18, 20, 24, 30} with
lg(z+ is a generating set of S, (H *).

Let {x,,...,x,45} be a canonical basis of E4(C) containing
{h,/1<i<8}, Dbethe kientical representation of E4(C) with
D(x,)=x,;,1<i<248, D, = 328D (x,)[mx’,lgi, m<248,
and D: = (D,,,,), ;me2as- Then z, = tr(D *)eZ *(E4(C)),keN,
by Lemma 6 in Ref. 1. Obviously &, = tr[(Sf_, D (h,)h )" ].
Since the weights of D are the roots, we have
(RoBoA ~Yh,) =2, . o (B =TS\ (H*)

. 1295248 .
by Lemma 7 in Ref. 1. Therefore we can prove by the aid of

(8. /38;)#£0, k =2, 8, 12, 14, 18, 20, 24, 30

Lemma 11: Let J,: = 231%° (B,)*. Then {J,/k =2, 8,
12, 14, 18, 20, 24, 30} is algebraically independent and gen-
erates together with 1., the algebra Sy, (H *),

Therefore, we have

Lemma 12: {2z, /k =2, 8, 12, 14, 18, 20, 24, 30} isa
complete set in Z *(E4(C)).

Remark: The lowest dimensional representation of Eg is
its adjoint representation with the aid of which we construct-
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ed a complete set for Z *(Eg). This is not always possible. Let
L beasemisimple Lie algebra and W the set of its roots. Then
one can construct Casimir operators to each degree keN by
the method of Lemma 6 in Ref. 1 using the adjoint represen-
tation. It follows that (Ro§oA ~')h, = 2, ,,(B)*. This term
vanishes for odd k. Therefore, it is obvious that for those Lie
algebras which have generating elements of their Weyl-in-
variants S|, (H *) of odd degree one cannot hope to get a
complete set of Casimir operators by the adjoint representa-
tion of L using the above method. For F, and E; one gets
complete sets of Casimir operators using that method by the
adjoint representation, but we reject its presentation. We de-
clare further that we computed complete sets of Casimir op-
erators in canonical bases. Due to the assertions subsequent
to Lemma 6 in Ref. 1 one gets the same complete sets using
other bases of the Lie algebras under consideration.
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Analytical expression and uniform bounds for the / th partial wave off-shell T"matrix are derived
for infinite rank separable potentials. It is proved that Fredholm’s alternative can be used to solve
the Lipmann-Schwinger equation in some cases of noncompact nonlocal potentials in the strong

L, topology.
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. INTRODUCTION

The analytical properties of the two-body off-shell T’
matrix have been topics of intensive investigation and appli-
cation in several branches of the nuclear physics.' As is well
known the introduction of the nonlocal rank-¥ separable
potentials simplifies considerably the calculations of the
two- and three-body problem. The 7" matrix for rank-» sep-
arable potentials is studied by several authors.??

The problems related to the rank-N separable potentials
can be solved with two methods. One is developed by K.
Chadan** and the other is based on the manipulation of N-
dimensional determinants.?* QObviously these methods are
not generalizable in the case of the nonlocal potentials ex-
pressed as infinite series of separable terms. In our work,
these potentials are called infinite rank potentials.

In this paper a method of solution of the Lippmann~-
Schwinger (LS) equation is proposed. This method is appli-
cable in the case of both finite- and infinite-rank separable
potentials. The proposed solution does not require the com-
pactness of the potential in the strong L ,-topology (the po-
tential is not necessarily a Hilbert-Schmidt operator).

To preserve the analytical properties of the off-shell 7'
matrix it has been necessary to study some properties of the
intersection of the Lipschitz space®™ and the usual L ,-space.
The necessary mathematical apparatus is given in the Ap-
pendix A. An extension of the notions of the product and the
determinant introduced above as well as a generalization of
Hadamard’s lemma is introduced for these cases.

In Sec. II, the analytical expression of the / th wave off-
shell 7'matrix is given and its uniform bounds are found. The
restrictions imposed on the nonlocal potential are weaker
than the compactness in the strong L, -topology. This aim is
obtained by the use of Fredholm’s alternative®'® extended in
some families of noncompact potentials. The proofs of the
convergence of Fredholm’s series in such cases are studied in
Appendix B.

1l. SOLUTION OF THE LS EQUATION

In this paper nonlocal potentials (r|¥ [r'} are used. The
angle dependence of the potentials that are introduced here
comes only through the angle between r and r’. The coordi-
nate representation of these potentials is given by the relation

TViey =3 S () () Y IR Y ).

=0 {mi<!
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The free wavefunction is normalized as follows:
[ty . = 6 (& — E gl (1

where E = k2, §,, is the solid angle & function, # = 1, and
2m=1.

The normalization (1) of the / th partial free wave func-
tion implies

@En) =120, 5 (E /21

The [ th partial wave off-shell 7' matrix satisfies the off-
shell LS equation''

T(E.E'z)= V,(E,E’)
+ f dE" V(E,E")T(E".E'z2)/(z—E"),
0

2
where 2)

V,(E,E’):J drf ar @, ([Erv,(rr ), (E,r).
(4] (¢]

The general form of the / th partial wave potential, in
our normalization, is assumed to be expressed as a series of
separable nonlocal potentials:

VIE,E') = (1/m) Zlf(E 8. (E). (3)
In the last equation, as well as in the next, in our notation, the
! index, which is related to the angular momentum, will be
omitted for reasons of simplicity.

The functions £, and g, are assumed to satisfy the fol-
lowing restrictions:

HA<F, and S g, /iy =G < + oo (4

n=1

Here the norm ||-[| is defined as the sum of the norm ||-[| ;,
of the Lipschitz space Lip (R, ,d “)** and the usual norm
[|-||, ofthe L (R, )space (R , isthe positive real axis). Under
therestrictions (4) the potential V' (E,E ') given by Eq. (3)isnot
compact in the strong L ,-topology. The operator V (E,E ')
given by Eq. (3) under the restrictions (4) is a nuclear opera-
tor'? defined from the Banach space L, (R . ) into the Banach
space Lip(R _ ,d %).

For a fixed £’ the LS equation (2) can be studied as a
Fredholm’s second kind integral equation with kernel

N(EE'z) = (1/m) ifn(E)g,.(E’)/(z—E')- (3)

n=1
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In Appendix B these integral equations, obeying the restric-
tions (4), are studied in detail; it is proved that the Fred-
holm’s series converge. Therefore, the analytical solution of
the LS equation is given by the equation

T(\EE'z = V(EE')
n sp|am | mdsTM'(SJ/(z—s)]gnl(E’), .
L+ (1/m) | “dsptol/z

where

= $ 0 5 e, Jy )
AT
=550 5

8.8  &ufu,  &ufu, v &ufu,
&S &S &di v &, 6 ®)

gn,,,f_‘f' gn,,fnz gn,,/;l‘ gnmf;lm

The o-determinant, which appears in the above equations, is
a generalization of the usual determinant when the general-
ized o-product gof = gf + gfis used. The g and fare the
Hilbert transforms'®!? of the functions g and f respectively
(for details see Appendices A and B). The functions p(s) and
T, (s) are well-defined functions in the space X (R ,a,p).

The solution (6) of the LS equation can be formulated as
follows:

T(E.E';z)=A(E.E';z)/D{z), 9)
where
Dizj=1 +{1/77')fm ds p(s)/(z — s). {10}

The function D (z} is a holomorphic function in the complex z
plane with a cut on the positive real axis. The roots of this
function correspond to the bound states of the problem. The
function 4 (E,E ';z}, for fixed E and E’, is an holomarphic
function with a cut on the real positive axis. So the off-shell T’
matrix is a meromorphic function with a cut on the real
positive axis.

The uniform bounds of the function D (z} are given in
Appendix B:

D (- +i0) — 1| <H (F-G-D (a,p)), (11)

1D (- + i) = 11| <H{F-G-D (ap))/ ¥, (12)
where F and G are defined by (4), D (a,p) is a constant which
depends only on a, and p and H,, H, are entire functions
defined by (B15) and {B16) in Appendix B.

The inequalities (11) and (12) involve the following as-
ymptotic property:
lim D(z) = 1. (13)
[EAEE

By the same way [see formula (B24) in Appendix B] the
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following bounds are found for the off-shell 7" matrix:

||D(- + O[T (E,E";- + i0) — V (E,E")]||
<PDYap)( SLE) gl
><( E‘, 8. (E ’)\)Hg(F-G-D (a,p)), (14)

where H, is an entire function defined by {(B25) in Appendix
B.

The inequality (A21), of Appendix A, imposes the
bound

|D(x + iV)[T(E,E';z) —

FD| | ,p(Z | (B )| HgnHLm>

V(E,E")

X( 3 lea £} H(PG-Dicp). 13

The relations (14), (15), and (16) imply the foliowing asymp-
totic property:

lim T(E,E';2) =

|z}

VAEE").

11l. CONCLUSIONS

In this paper, Fredholm’s alternative is used to solve the
LS equation for infinite rank separable potentials. Also this
method can be used to solve the LS equation when the poten-
tial is a finite rank separable one. In the last case all the
determinants, where the rank is greater than the rank of the
separable potential, are zero. Consequently the proposed
method is a generalization of the known methods.

The analytical expression and the uniform bounds of
the off-shell 7" matrix are given. The infinite rank 7 matrix
has the same analytic properties as in the case of finite rank
separable potentials.

Another result is that the infinite rank potential is not
necessarily a compact operator in the strong L, topology but
itis a nuclear operator (therefore compact) from the L, space
into a Lipschitz space.

Osborn'® and Levinger'® have proved that for a local
potential the off-shell 7' matrix is noncompact in the strong
L, topology. Therefore the convergence of any separable
approximation for the T matrix from local potentials is im-
possible in this topology. In this paper the convergence of
separable approximations for the 7 matrix for some families
of noncompact potentials in the strong L, topology is
proved. This work is not sufficient to explain the sucessful-
ness of the separable approximations to the off-shell T ma-
trix from a local potential because the imposed restrictions
(4) are not satisfied for a Gaussian or a square-well potential,
as it can be shown after extensive calculations.

APPENDIX A

In this appendix some properties of the functions in the
space X (R, ,a,p) are studied. This space is defined as the
following intersection:

X(R ap)=Lip(R,.d“INL,(R ). (A1)
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The space Lip(R , ,d ©) is the well-known®® Lipschitz space,
d is the usual distance d (x,y) = |x — y| and « is a positive
number less than 1. This space is complete by the norm

[l-[{is Where

U e =L + 1 e (A2)
where

AL, =122X(V(x)l), (A3)

1711 = sup (Ifbx) = f W1/ “be) (A4)

The space L,(R , ), p>2 is the space of real integrable func-
tions with norm

il ={ [ ax e (AS)

The space X (R ,a,p) is a complete (Banach) space as the
intersection of two complete spaces. In this space, the norm
||-]| is defined as follows:

A =11 e + 1A (A6)

The following properties are necessary to study the space
X (R, .ap).
Property 1: Let g be a function in X (R, ,a,p). Then

lgll.. <Ilgll e+ lI8l],- (A7)

Proof: Let g, be the minimum of the function |g(x)]
when x belongs in the interval /,, = [m,m + 1], where
m =20,1,.... Then

m+ 1 m + 1
=¢J‘ a<j dx |g(x)"<| gl

m

Consequently

gn<l|lgll,-
For every xel

m

the following inequality holds:

|g(x) _gmi<||g| |d")

as one can see from the definition (A4).
The above inequalities imply

lglx)|<l|gll, + 18],

for every m. Then the relation (A7) is true.
Property 2: Let g be a function which belongs in
Lip(R , ,d ) and f'a function in X (R, ,a,p). Then

g S11<1lglluin- IS <118l I1A1]- (A8)

Proof: The above inequality is a direct result of the
inequalities
le A1, <llgll. 1A,

and

HngLip<HgHLip‘|’f||Lip-

In the next proposition we summarize some useful
properties of the functions which belong in the X (R , ,a,p)
space. The proofs are given by Titchmarch.'?

Proposition 1: Let f'be a function which belongs in the
real X (R , ,a,p) space. For every {y|#0 the function
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(i) Plx+y)=

@ (x + iy) is defined as follows:

@+ )= (1) [ difte e = 1),
and i

@ (x + 10) = lim & (x + iy).

Then "

i e+l = || axdewrop] <611,
i (A9)

where C, is a constant which depends only on p (Ref. 13,
Theorem 101, p. 132).

(i) (1@ -+ i0) |, = sup (| (x +0)

<F | f1l g (A10)

where F,, is a constant which depends only on a (Ref. 13,
Theorem 106, p. 145).

(iii) (|2 ¢+, <I[f1],/]-

The last inequality is a result of the Holder’s inequal-
ity.'? Property 1 [Eq. (A7)] is also valid for the complex
X (R ,a,p) space. Consequently the function @ {x + 0} be-
longs in the complex X (R . ,a,p) space. The relations (A7),
(A9), and (A 10) imply the following inequality:

A1 <@+ D) <Dap)l| f1],

where D (a,p) is a constant which depends only on « and p,
and this constant is greater than 1.
The study of the integral equations is simplified consid-
erably by the introduction of some kind of product.
Definition 1: Let ¢, and ¢, be functions in the real
X (R ,a,p) space, then the o-product of these functions is
defined as follows:

— @ (y + i0)|/d “(x,p))

(A11)

(A12)

(@1°@,)x) = @,(x)@(x) + @, (x)@a(x), (A13)
where
1(x) = d ’ @i(t)
0 X — t

10,13

is the Hilbert transform of the function ¢;.

Property 2 [relation (A8)] implies that ¢ ¢, is a func-
tion in the X (R , ,a,p} space. By recurrence, the o-product of
N functions can be defined

N
O- H ¢)l, =

i=1

N1
(0- II ¢,-)°¢JN = @O0 Oy (A14)
i=1

The o-product is connected with the usual product by Pro-
position 2.

Proposition 2. If the functions ¢ ,¢,,...,¢y belong in the
real X (R _,a,p) space, then:

3G atys)
= (I/F}J; dt (O-kI:I 1¢")(t Vx4 iy —t),
(A15)
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and

(i) [lo- 1 @ull <||@ (- + 0| <D¥ap) T [l
(A16)

The function @ (2),z = x + iy, is holomorphic in the complex
z plane with a cut on the positive real axis.

The proof of the relation {A15) is trivial in the case
N =2, if the imaginary parts of the successive members of
{A15) are compared for y—~0". The generalization by recur-
rence is obvious if the definition (A 14) of the o-product is
used. The relation (A 16} is proved if the inequalities (A8) and
(A12) are combined.

A natural generalization of Definition 1 is the introduc-
tion of the o-determinant,

Definition 2: If the functions ¢, where 1<i<N, 1<j<N,
belonginthereal X (R ,a,p)space, then the ¢-determinant of
these functions is defined as follows:

Pu@izPriv
o-det{g,] = o- P21 P22 PN
PnPne @y

)P¢k,o¢2k:o"'0‘pk,\; (A7)

= 2( —
the sum is extended in all transpositions

12N
k kykoy

and P is the parity of this transposition.

The o-determinant has all the linear properties of the
ordinary determinants, that is to say, it is zero if some col-
umn (row) is the linear combination of others columns
(rows). A direct result of the Definition 2 is the generaliza-
tion of Proposition 2.

Proposition 3: If the functions @;;, where 1</<N and

<J<N, belong in the real X (R | ,a,p) space, with p>2, then

(1) Px+iy= det((l/ﬂ') det @tV (x + iy — t))

= (l/ﬁ)fwdt (o-det{@; | )()/(x + iy —t),
’ (A18)
(ii) [[o-det{g@;lll, <[|P( -+ 0},

< (Dapn* 1L (S iy} (419

i) [lo-detig, }|lo- <@L+ O
<1Dlapl" [T (3 liey 1) (20

[Da

<—,;fmﬁ (J;II%\P)‘“ (A21)
(zu%w)m

(A22)

The last inequality is a generalization of Hadamard’s lemma

(iv) (1@ + ).

~

(v) [[o-det{g;]l] <(N+2)[Dap)}* 1
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in the case of the o-determinants.

For simplicity, we define the functions @, 7{x + iy} as
follows:

D,lx + iy) = (1/7) fwdt @)/ (x + iy —1t).

Hadamard’s lemma applied in the second term of Eq. (A18)
gives

@+ i0)|2<(§¢1,(x + o))

XH(}_‘,H‘% +i0)|| .. )

F=2\j=
If p>2, the functions |@ (x + /0)|* and |P,;(x + i0)|* belong
in the space L, (R ). The Minkowski inequality'” gives

194+ 0 <( S 1101+ o 2)

=

xn(znab,,( +0)1..%).

i=2\j=
The inequality (A 19} is an obvious result of the last
relation.
From the definition of the equation @ (x + i0) it is clear
that

P (x +i0) — P (x’ + i0)
= (=) (P, (x + i0) — Dy, (x' + i0))
X Doy (X + 10Dy, (x + i0)
)P X

'+ 10) (P (% + 10) — Py (¥ + 10)

X Py (x + i0)-
+ 20—

X (Do x + 10) — D, (x” + i0)).

The difference @ (x + i0) — @ (x' 4 i0) can be understood as
a sum of determinants. If we divide the two parts of the last
equality by |x — x'| “ and Hadamard’s lemma is applied for
each determinant, then we find

P (- + 0],

<5 [(}Euqb,,,, LoE )ﬁ(i”%mm)]m

i, (X + 10) + -

)P¢lk, (x + ’.0)4)21\»_, {x' + i0)--

=1 i= V=1
i£m
The inequality (A20) is a trivial result of the last rela-
tion. Property 1 [relation (A7)] and the inequalities (A19)
and {A20) imply the relation (A22). Relation (A21)is a resuit
of the inequalities (A11) and (A19).

APPENDIX B
In this appendix the following integral equation will be

studied:
o 1, &2

= ent 7PN B1
—f(u)+/12fn(u)ﬁ£dt —— (B

n=1

plu;z)

where 2 is a complex number.
The function £, and g, are assumed to obey the restric-
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tions The kernel of the integral equation is
B2 u)g,(t
Vsl <F for every n (B2) Nz = L 5 F08nl0) B4)
and Ti=1 z—1
- The first Fredholm’s series is given by the formula
G= 3 lIgnlluip < + 0. (B3) m
HZ'I ’ DAz)=1+ 2 ——c’” m(2), (BS)
In this section we will prove that the sums of both Fred- m=1
holm’s series®!'® converge in this case. where
1
1 m oo o o
C.(2)= ( —) J ds,J- dsz---j ds,,
m 0 (4] 0
fn, (Sl)gn, (S])/(Z - sl) fn, (sl)gn, (SZ)/(Z - SZ)"'f;l,,,(sl)gnm(sm )/(Z - sm)
XY (o528 (802 —51) S, (5208, 52/ (2 — 55)+f, (5,08, (5. )02 —5,) | (B6)
Vn, (sm )gn, (sl)/(z - Sl) fn, (sm )gn, (SZ)/(Z - SZ)"fn,,,(sm )gnm(sm )/(Z - sm)
|
For any determinant in Eq. (B6), all the elements of the [|D (A, + i0)||<H,(|A |FGD (a,p)), (B13)
Jjth column are multiplied by and
&)/ —3) (B) 1D (A + i0)|[<(1/ [P |H(|A |FGD (@p)).  (B14)

Therefore all these factors could be placed outside of each
determinant as multiplication factors. After this manipula-
tion the jth row can be multiplied by the factor (B7) and
finally the formula (B6) is transformed as follows:

¢, (2)= 2 dt[ J-dg"()f()] (B8)

The formulas (B6) and (B8) are valid when the series are finite
sums. In the following we will show that the restrictions (B2)
and (B3) are sufficient for the convergence of the infinite
series (B8).

The equation (A 18) of Appendix A implies the follow-
ing equation:

© o_d
calt)= 3 %L dt( et{g"'f"’})(t). (B9)

z—1

The extension of Hadamard’s lemma, Eq. (A22), gives the
following results:

|lem (- + 0} | < (m + 2)[D (@,p)]”

me ifll(j§]||g,.fn,r|2)”2], (B10)

and
, [D(ap)]”
Hem(- + 0)]1, <—LI—‘|’L)—
x 5 [ $leslf)”]
(B11)
Formula (A8), in Appendix A, implies
{18, S, 11 < 1180, |Lip 11 S5 1. (B12)

Consequently, the first Fredholm’s series, (B5), are
bounded by
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The functions H,(z) and H,(z) are entire functions in the com-
plex z plane, defined as follows:

o m+2mm/2 .
H= ¥ (_—773*2 ,

m=1

(B15)

and
m/2

© m
Z g z".

m=1
The space X (R ,a,p) is a Banach (complete) space. This fact
and the inequality (B13)imply the existence of some function

Hyz) = (B16)

pA;s) such that

Didz) =14+ fdtp(“) (B17)
zZ—1
where
pliss) = iﬂ%ﬁ S (o-detlg, /, })ls. (BIS)

The second Fredholm’s series is defined by the formula

N (u,t;2) + 2 —/Hic (U, 52),

m=1

D(u,t;A;z) = (B19)

where N (u,t;z) is the kernel (B4) and the functions ¢,, (1,t;2)
take the following form:

o (tiz) = 12/ (u)g,(t)cn(2)

z—1

w m)
o L (8] ]g,,'(t ) (B20)

_m_zf( )[ nre

zZ—1

The functions ¢ {7 in the second part of Eq. (B20) are defined
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as follows:

(8. 8.f,. .8 n, )
&S &S, BT,
ﬁ gn,.f;l' gn"fn2 '"gnkpfnm

tols) =

20.

Ny My,

s) -
(B21)

Lgn",/‘n'gn,,fn:.ngnwf;,m J
The extended Hadamard’s lemma [see (A22)] when it is ap-
plied to the second part of (B21) gives the following
inequality:

[t || <(m + 2)m™2(F-D (a,p))"G™ (g,
where F and G are defined by the restrictions (B2) and (B3).
The above inequality and Egs. (B20) and (B21) imply the
following relation:

D(u,t;A;z) = N (u,t,2)D (4;2)
Ly [_decMgAy
77' ] z—s lz—1¢
(B22)

where D (4;2) is the first Fredholm’s series given by Eq. (B17)
and

Tt = § L2l m,
m=1{m — 1)!
The bounds of this function are given by

(Al < |4 [F-D (@,p)H;(|4 |[F-G-D (a,p))-| I8, ||Lip»
(B24)

(B23)

T an,
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where the function H,(z) is an entire function in the z plane
such that

Hy(z) = H {(2). (B25)

The convergence of the second Fredholm'’s series im-
plies that Fredholm’s alternative is applicable to the case of
theintegral equation (B1), when the restrictions (B2) and (B3)
are satisfied.
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We present a closed form stability criterion for the periodic orbits of two-dimensional
conservative as well as “‘dissipative’ mappings which are analogous to the Poincaré maps of
dynamical systems. Our stability criterion has a particularly simple form involving a finite,
symmetric, nearly tridiagonal determinant. Its derivation is based on an extension of the stability
analysis of Hill’s differential equation to difference equations. We apply our criterion and derive a
sufficient stability condition for a large class of periodic orbits of the widely studied “‘standard
mapping” describing a periodically “‘kicked” free rotator. As another example we also obtain
explicitly and in closed form the intervals of bounded (and unbounded) solutions of a discrete
“Schridinger equation” for the Kronig and Penney crystal model.

PACS numbers: 02.30.Sa

I. INTRODUCTION

In the study of dynamical systems mappings of the
plane onto itself play a significant role'™®: several properties
of two-degree-of-freedom Hamiltonian systems have been
determined by considering only the intersection points of the
orbits with a two-dimensional “‘section” of the {three-dimen-
sional) energy surface, often called a “‘surface of section” or a
Poincaré map'® (cf. Fig. 1).

In this paper we present analytical results on the stabil-
ity of periodic orbits of two dimensional mapppings 7~

{xw  =fxp,)
Vi =g(x,,y,)

Such mappings can model conservative or dissipative dyna-
mical systems depending on whether T'is “area-preserving”
or “area-contracting” respectively.”'? As usual, in dynami-
cal systems the most innocent-looking nonlinear functions
/g le.g., x1, y}, etc.) may render (1.1) “nonintegrable”, i.e., its
general solution cannot be obtained in closed form or as con-
vergent series.'

Our main result is a closed form stability criterion for
periodic orbits of mappings of the type (1.1). Periodic orbits
of arbitrary (integer) period m are repeating sequences of
points (x,,,) in the x,p plane, i.e.,

(xt+m!yl+m)=Tm(xzvyr)z(‘xnyt)i (1'2)

t=0,1,2,--. We consider the variational equations about a

given m-periodic solution of {1.1) and ask whether the solu-
tions of these variational equations are bounded or not {for
all 7). This identifies the given periodic solution as stable or
unstable. Since the variational equations are linear, the (un)-
boundedness of their solutions is decided by the value of the
determinant of an m X m matrix H{0), which depends on the
coordinates of the given m-periodic orbit, cf. Sec. IIA. For

every such orbit we derive

], 1=0,1,2,-. (1.1)
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(1.3)

2: ilit
|2+detl;l(0)|{ <2: stability }’

>2: instability
in the area-preserving case, cf. Sec. IIB. A similar resutt is
derived in Sec. IV for area-contracting mappings, which
model dissipative systems.'¢

The main advantage of the closed expression (1.3) over
the usual procedures’™ is that it can yield more globar stabil-
ity results of which there is great need. Examples of such
results are given in Sec. III and Appendix A.
y

e -

(a)

FIG. 1. Surfaces of section for the 2-D-system of Ref. 2. {a] £ = 1/24. (b}
E = 1/8. Note the “dotted” chaotic regions in (b) where solutions depend
very sensitively on initial conditions.
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The study of “nonintegrable” systems has revealed that
there are large classes of orbits which depend singularly on
their initial conditions and exhibit a highly “chaotic” and
“irregular” behavior.'~*!! In fact, this dependence on initial
conditions is so sensitive that some properties of certain solu-
tions can be proven to be truly random.®'? The situation is
not unlike a throw of dice where the outcome depends criti-
cally on how the sharp (“singular”) edges of the dice hit the
table, etc.—a deterministic process resulting in a “‘random”’
sequence of outcomes.

Numerical investigations and a number of rigorous re-
sults indicate that there exist two distinct types of motion'®:
Regular or ordered motion, represented in Fig. 1(a) and 2(a)
by the concentric “curves” or “islands” and irregular or cha-
otic motion, represented by regions where the intersections
of many orbits “scatter” about in a seemingly random and
area-filling fashion as in Figs. 1(b) and 2(b).

These regions of chaotic behavior are of interest to a
number of problems in physics: They may be useful in estab-
lishing the ergodic hypothesis'>~'* at least for some noninte-
grable systems, i.e., that almost all orbits cover the energy
surface densely and uniformly. The presence (or absence) of
large chaotic regions is also crucial to long-term stability of
planetary orbits in celestial mechanics,!~> the confinement of
charged particles in fusion devices'>-'” and high energy ac-
celerators,'®!® the dynamics of molecular dissociation2®?'
and other areas of current research.

The onset of large scale chaotic behavior is associated
with more and more stable periodic orbits turning unstable
as one varies the values of the parameters of the prob-
lem." ' Thus, it is important to determine analytically all

(=]

=38
$O
>
's)
csT
)
L
- . LRI
(a) 7 y s
-10 -05 00 05 10
—

0175

0.150

Y—>
0125

(b)

0.100

0525 N 0 5";0 YT T
X—-

FIG. 2. Iterates of the mapping (2.1) for cosa = 0.24. (a) Observe the twg 5-

periodic orbits, a stable one (S ) and an unstable one (U ). (b) A magnification

of the chaotic region about the point U’ of (a}, cf. Ref. 7.

1868 J. Math. Phys., Vol. 22, No. 9, September 1981

ranges of parameter values corresponding to stable vs. unsta-
ble behavior. As we demonstrate in Sec. III on the so-called
standard mapping,®?* we can now begin to do this with the
aid of criterion (1.3).

We have extended these results to dissipative, or area-
contracting mappings, cf. Ref. 1 (1981). Large scale chaotic
behavior in such mappings is related to the presence of so-
called “strange attractors” and the onset of ““turbulent”” mo-
tion.'%1%23 In Sec. IV we derive a stability criterion analo-
gous to (1.3) for dissipative mappings and discuss its depen-
dence on a “damping” parameter b (|b | < 1). Finally,
following the approach of Sec. I11, we apply this criterion to
a dissipative form of the standard mapping and obtain a suf-
ficient stability criterion for its periodic orbits.

1. STABILITY CRITERIA FOR AREA-PRESERVING
MAPPINGS
A. Earlier methods
We consider here the quadratic mapping
X, =x,cosa — {y, — xDsina,

T _ } (2.1)
Vg =Xsina + (y, — x;)cosa

t=0,1,2,-, due to Hénon.” Using this example we first re-

view the usual stability analysis’~ of periodic orbits and

point out its limitations. A new stability criterion is derived

in Sec. IIB.

The quadratic mapping (2.1) is the simplest nontrivial
mapping’ which exhibits many of the interesting features of
a nonintegrable Hamiltonian system, cf. Fig. 1 and 2. Elimi-
nating y, between Egs. (2.1), we obtain the single second-
difference equation

X, .1 +x,_, — 2x,cosa — x’sina = 0. (2.2)
Orbits are obtained in the x,, x, | plane by substituting
X,,X,_, in (2.2) starting with some x,, x, and solving for
X, 4 1 €tc.

We consider small variations 4x, about a given m-peri-
odic orbit {£, =X, ,, } setting in (2.2) x, = X, + 4x, and
keep only first order terms in Ax, to find

Ax, | +4x,_ | —2(cosa + X,sina)dx, = 0. 2.3)

In vector form this variational equation becomes
A £,si — 1/ 4x,
( X4 ,) _ (2(cosa + %,sina) )(A )’ (2.42)
Ax, 1 0 X, 4

Ax, ., = M, Ax,. (2.4b)
Note that detM, = 1, i.e., (2.1) is area-preserving indeed.”
Choosing some Ax, = (4x,, 4x,) and iterating (2.1) m times
one calculates upon return near (£,, £,) the resulting
variation

or

Ax,, ., = IYIAXU (2.5)
where M is the product of m 2X2 matrices:
M= [[M.. (2.6)
T

In this analysis one computes the eigenvalues 4, 4, of
the matrix M and distinguishes two cases:
(a) |Tr M| <2, whence 4, = 4 ; complex with
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|4, = |4,| = 1; therefore, AX, , ,,, Totates with every mth
return {remaining bounded) and %, is stable or “elliptic”,
e.g., the orbit marked S in Fig. 2(a).

(b) |TrM| > 2 whence 4,, 4, real with, say, |4,| < 1and
|42l = |4,] "> 1. For almost all Ax,, Ax, , ,,, becomes un-
bounded and X, is unstable or “hyperbolic”, e.g., the orbit
marked u in Fig. 2(a}. [The highly exceptional case [Tr M|

= 2implies A, =4, = + 1 and X, is referted to as margzin-
ally (un)stable or “parabolic™.]

The familiar method outlined above requires cumber-
some algebraic or numerical computations. Furthermore, its
results are often not transparent and cannot be easily gener-
alized to families of orbits. It amounts, in fact, to an expan-
sion of the determinant in our criterion [see (2.19) and the
comments below it] and does not offer as easily new analytic
insight.

B. A closed form stability criterion

Our result has an analog in differential equations with
which the reader may be more familiar: Consider a 7-period-
ic solution of the differential equation

d’x

dr?
l.e., an £(¢ ) with X(¢ ) = X(t 4+ =), whose stability type we wish
to determine. Lettingx = £ + £in (2.7), we find to first order

in&

+ F(x)=0. 2.7)

d2§ _
SN =0, (2.8)
where
Q(t)=——ZF|x:f=Q(t+7r). (2.9)
X

Clearly the boundedness properties of the solutions & (¢) of
{2.8) will determine whether nor not £{t } is (linearly) stable
under small perturbations.?**
Similarly, for our mapping {2.2), we obtained the second
order linear difference equation (2.5),
—dx,,, —4x, | +d,4x, =0,
with

(2.10)

d,=2(cosa + £sina) =d

in analogy with (2.8} and (2.9).
Floquet’s theorem”*?* establishes that Hill’s equation
{2.10-2.11) possesses two linearly independent solutions of;

|

d, —1 0 -
( —1 d, 0

(2.11)

t+m

det]

\——e“’"ﬁ 0

Expanding this determinant with respect to its first and last
columns yields the Floquet exponent explicitly:

2cos(mfB) =2 + detH(0),

-1

(2.18a)
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the form
Ey=e®Pt), E_(t)=e PP*t) {2.12)

in general, where P (t ) is also 7-periodic (and hence bounded)
asisQ (¢ ),i.e.,, P(t) = P(t + ), cf.(2.9). Theso-called Floquet
characteristic exponent 3 is the important quantity here
since, as we see from Eq. {2.12), it is the value of B real versus
complex which determines whether the solutions of (2.10)
are bounded or not. ‘ »

The extension of the Floquet theory to difference equa-
tions® establishes that Eq. (2.10) similarly has two linearly
independent solutions of the form

Axi*I = PP, Ax{7)=e~PP], (2.13)
with P, = P, .. Again the stability type of the periodic or-

bit £, depends on the value of the Floquet exponent 3.
Inserting Ax! "' from (2.13) in (2.10), we find

—et®P,,  —e PP _, +dP =0, (2.14)
or in vector form,
H(3 )P =0, (2.15)
where:
d, —e? 0 0 e B
( —e # d, —e? \
0 —e ® 4,
0
. o
\ e’ w 0 —e ¥ 4, /
(2.16)

and P=col(P,,P,,,P,,). In order for (2.15) to have a nontri-
vial solution,

detH(3) = 0. (2.17a)

From this we can explicitly solve for 5: Multiplying the
first row of H{ ) by exp(if8 ) and the first column by exp( — i3
leaves detH|8 ) invariant. Similarly, multiplying the second
row by exp(2i8 ) and the second column by exp( — 2i8), etc.,
finally gives

(2.17b)

I .
where H(0) is particularly simple, cf. (2.16).

Equation (2.18a) allows us to determine whether the £
in (2.13) is real or imaginary. Hence, from (2.13) and the
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discussion below (2.6) we conclude that the periodic orbit £, is

<2:
(2 + detH(0}[{ >2

unstable or “hyperbolic,”

stable or “elliptic,”
(2.18b)

=2: marginally (un)stable, “parabolic.”

Our stability cirtierion (2.18) is in closed form and thus lends
itself more easily to analytic manipulations: It was recently
used by Greene” to obtain results for the so-called standard
mapping.?? Applying (2.18) to this same mapping, we derive
additional results in the next section. In Appendix A we use
(2.18) to obtain the stability intervals for a Hill’s difference
equation driven by a pulse-shaped periodic function.

The connection between our criterion and that of Sec.
IIA is given by the simple equation

2 + detH(0) = Tr(M), (2.19)

where M was defined in (2.6). Equation (2.19) was derived in
Appendix B of Ref. 9 cf. also Ref. 7 (1978). Since the detH(0)
can be written as the difference of two tridiagonal determi-
nants [see Appendix A, Eq. (A1)] its expansion in terms of
the elements of H(0) can be written down, cf. Eq. (4.13). This
provides us with an expansion for the trace of a product of
2 X 2 matrices which is of interest to various important prob-
lems of physics, notably the 2-D Ising model in the presence
of magnetic field. Recently,”” in that connection, the trace of
such a product was given as the integral

S » ‘
Tr(M) = lim dsTJ(—ie”* +d,,, —ie® "),
= S e S o) =1
(2.20)
where g, = logP,, P, being the ¢ th prime number.

11l. SUFFICIENT STABILITY CONDITION

With the aid of (2.18) we obtain below a sufficient stabil-
ity condition for periodic orbits of the so-called standard
mappingzz'”‘"’

T .{r,ﬂ =r, — (K /27) sin276,

« 61+l=91+r1+1
which models the motion of charged particles in toroidal
magnetic fields'® and is also used in the study of nonlinear
resonances.?? Our result is: If an m-periodic orbit of (3.1)

exists over a K interval including K = O, we find a range of K
values

0<K<K,,

over which this periodic orbit is stable.

For 0 < K«1 “most” orbits of (3.1) exhibit regular be-
havior and the system appears integrable; see Fig. 3(b). Near
K =1, however, large regions of irregular or chaotic behav-
ior exist, where “most”’ orbits are unstable {see the discussion
in Sec. I and Fig. 3 below).

The mapping (3.1) is invariant under translations of r or
@ by an integer. We therefore, restrict ourselves to the torus
0<r<1,0<6<1. Inaddition, (3.1) also preserves area in the 7,
0 plane (its Jacobian is equal to 1). Note that, for K =0, T
reduces to the *“twist mapping”®'

], t=0,1,2,, (3.1)
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|
T, { L =r (=),

o =60+, (=08 i+ A

t =0,1,2,., which generates straight lines #® = const. ev-

erywhere in the 7, 6 plane, cf. Fig. 3(a). All lines correspond-
ing to rational ¥

(3.2)

' =n/m (3.3)

consist entirely of m-periodic orbits of (3.2). According to a
theorem by Poincaré and Birkhoff,'>*"' for.any given period
m there exists a K = K (m) such that for 0 <K <K (m) the
continuous lines (3.3) break up into an even number of m:-
periodic orbits, half of which are stable and half unstable. In
Appendix B we show in greater detail how the Poincaré—
Birkhoff theorem applies here, and compute explicitly the
first periodic orbits near X = 0.

As X increases the stable periodic orbits turn unstable
and larger regions appear where nearby orbits separate ex-
ponentially and successive mappings ‘“‘scatter” about in an
apparently erratic and chaotic manner,"?>° cf. Fig. 3(c).

Iy

(a)

o

(b)

@
je)
&

(c)

0

8 — 1

FIG. 3. Phase plane behavior of the standard mapping (3.1). (a) K = 0, (l:))
0<K«l, and (c) K = 0.97 (taken from Ref. 9). Note the chaotic regions in

(c).
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Here we derive an explicit, closed form expression for
K-intervals (0,K,,) over which a stable m-periodic orbit will
not yet have turned unstable. This provides us with an esti-
mate of the range of K values over which one would not
expect widespread irregular or chaotic behavior.

We first write (3.1) in the form of a second-difference
equation, eliminating r,:

2 — Kcos2m, -1 0
( -1 2— Kcos21rt9A2 —~1
0 -1
H=|
0 .
-1 0--- 0

: —1
-1 2-KcosZ#ém/

8,1 +6, | —20, + (K /2m)sin276, = 0, (3.4)

cf. Eq. (2.2). Its variational equation about an m-periodic
orbit g, is

— 46, ., + (2 — Kcos2n6,)A0, — A6, , =0, (3.5)

cf. {2.9). According to criterion (2.18) the orbit é, is stable
(resp. unstable) iff |2 + detH| <2 (resp. > 2), where

0 —1
0 \

0

(3.6)

In the remainder of this section we derive upper and lower bounds for the eigenvalues of Hand use them to obtain information

about its determinant.
We define the m X m matrices A, B by

H=A+KB,
where
2 -1 0] 0 -1
0
-1 2 -1
0
A=
i 0
—1
0
-1 0 0 -1 2

I being the m X m identity matrix and denote the ei igenvalues
ofA by 4,(0) and those ofH by A;(K),j=1,2,..m. Since A is
symmetric, the following Tnequalities hold?®

|4,(K ) = 4,(0)| <K B, j=1,2..m, (3.9
where

IBll= gup IBXI, |xi=( ¥ 1x1)2 @10

= i=1

Hence (3.9) immediately gives

|4,(K') — 4;(0)] < Kmax|cos2m0, | <K

K

or

~K<A;(K)—-A,(00<K, j=12.,m. (3.11)

Since A is a “circulant” matrix,?®
known,

A,{0) = 2 — 2cos(27j/m),
whence (3.11) becomes

its eigenvalues are well

(3.12)
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(3.7)

gE(COSZ??Gl,-",COSZWGm I (3.8)

2 — 2cos(2mj/m) — K <A;(K) <2 — 2cos(2mj/m) + K.

(3.13)
For 1<j<m — 1, we make all three parts of (3.13) positive by
restricting the values of K:
0<K<2 — 2co08(2m/m)<2 — 2cos(2mj/m), (3.14)
Jj=12,.,m — 1. With this restriction (3.13) are preserved
upon taking the products
m—1 27/7
0< ( — 2cos—=
H m

i=1

)< T a)

i=1

m— 1
<1 ( — 208%™ +K>. (3.15)
i=1 m
With the aid of the formulas®®
II (2 - 2cos2 ) + K) = 4sinh2(£),
i=n m 2
I (2 ~ 2c0s2” K) — 4sin (’"‘S), (3.16)
=1 m 2
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where 2,0 are defined by

2coshz =2+ K, 2cosd =2 —K, (3.17)
we find that (3.15) gives

4 2(m6) 2( )

—sin A,(K —-smh 3.18

K 2 ,l__[l &)< 2 (3-18)

It remains to use inequality (3. 13) for the lowest eigenvalue
A.,K) e,

—K<A,(K)<K. (3.19)

For the stable m-periodic orbits which exist down to K =0
we must have

—K<4,(K)<0 (3.20)
since, otherwise, all 4;(K ) would be positive, detH(O) >0and
the orbit would be unstable Combining (3.20) with (3. 18), we

conclude that these m-periodic orbits remain stable with in-
creasing K at least as long as

0> detH(0 = [[A4&)> - 4sinh2(i"21)> —4, (3.21)
j=1

cf. (2.18b), or as long as sinh? (mz/2)< 1, which is equivalent
to

1<cosh(mz)<3, (3.22)

with z as defined in (3.17). This inequality is satisfied by the
range of K values

0<K <K, =2cosh[{1/m) cosh™'3] — 2. (3.23)

Thus (3.23) constitutes a sufficient condition for the sta-
bility of m-periodic orbits [one should take the intersection
between (3.23) and (3.14); (3.23) however, is contained in
(3.14)].

It easily follows from (3.23) that X, > K,,, . ;, which
indicates that the longer the period of the orbit the sooner it
may turn unstable, as K increases. This is indeed observed to
be true not only for the mapping (3.1) but for many other
Hamiltonian systems. However, the estimates of X,, ob-
tained from {3.23) are significantly lower than the actual K
values at which the corresponding orbit turns unstable. For
instance, for the period 3 orbit, (3.23) yields K;=0.355 while
the actual orbit turns unstable at K= 1.52.

IV. STABILITY CRITERION FOR DISSIPATIVE
MAPPINGS

Here the stability results of the previous sections are
extended to area-contracting or dissipative mappings. Con-
sider for example the quadratic mapping

Xepr =0+ 1 _’axxz’

Yoo1= —bx,, (4.1)

studied by Hénon'? (with b— — b ), which “destroys” area if
|6 | < 1. Eliminating y, in (4.1), we obtain

1 +bx,_ —1+ax;=0. (4.2)
The variational equation of an m-periodic orbit of (4.2) is
—4x, ., —bdx,_, +dAx, =0, (4.3)
where
1872 J. Math. Phys., Vol. 22, No. 9, September 1981

d=2a%, =d,,, (4.4)
t=0,1,2,.-. When b > 0, we define a new real variable z,:

Ax,=b"'"z,. (4.5)
[The case b <0 is more complicated: Instead of (4.5) one
writes 4x, = |b |'*explimt /2)z, + c.c., with z, complex,
and solves two equations of the type (4.6) for
Re(z,) and Im(z,).] Since b < 1, (4.5) is a contracting ¢-depen-
dent transformation . Inserting (4.5) in (4.3), we find that z,
satisfies the Hill’s difference equation

—Z,41 — 2, +b _l/zd,z, =0. (46)

As before, in (2.13) the two linearly independent Flo-
quet solutions of (4.6) are

2t =ePPz " =e PP} (P, =P,

for two linearly independent solutions of (4.3) are obtained

A\ =B8NP | Axl=) = B Blpx, 4.7)
where

=1Inb<0 (126>0) (4.8)

The Floquet exponent 8 may be solved from the stability
relation (2.18)

+m)v

2cosmf =2 + detIZ{(O), (4.9)
where
b —1/2d1 —1 0 0 — 1
-1 b4, 1 0
Ho=| °
0
0 —1
-1 0. 0 -1 & *”zd,,,’
(4.10)

cf. (2.16), (2.11). Clearly B can be either real or imaginary. As
before, 3 real implies stability and %, is a so-called “periodic
attractor,” cf. Ref. 1 (1981). However,  imaginary does not
necessarily imply instability since this requires, in addition,
|B| > |B |, cf. (4.7), (4.8). Thus our stability criterion (2.18) is
generalized to

|2 + detH(0)| < 2cosh(mB ):
[2 + detI;I(0)| > 2cosh(mB ):

X, stable or “attracting,”

X,unstable or “repelling.”
(4.11)

Near a stable periodic orbit %, of the dissipative equa-
tion (4.3) solutions are attracted to X,, whereas in the conser-
vative case [e.g., |o | = 1 in (4.3)] nearby solutions forever
“circle” around %,.

In the remainder of this section we examine this result
and point out its usefulness in a number of cases. Factoring
b ~'"? out of all the elements of H(0) and multiplying by 4 ™",
we rewrite (4.11) in the more convenient form:
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2 <1+b™ stability (attractor)) a2
|2b + detl;lb |(> 14+b™ instabi]ity (repellor) A )
where
rd, —vb 0O . 0 — Vb
—vb  d - 0
0 .
H,= 0
—vb
0 .
kr‘ \/b O e O - \/b dm )
(4.127)

In the large dissipation limit 5—0, detH,— [I4.; Ea.

t=1
(4.2) becomes a first difference equation and (4.12) reduces to

the well-known stability condition for such equations*':

I]4.
t
For b > 0, but small, our criterion (4.12) offers a number
of computational advantages: First, the matrix H,, for
|b | €1, becomes diagonally dominant, which is a highly at-
tractive feature from the point of view calculating its eigen-
values (and hence its determinant) using a variety of iterative
algorithms.?> We may also approximate detH, by expand-
ing it in powers of b i

detH, = — 4 sin’(mn/4) + S, + bS, + b2, + -,

<1 {resp. > 1) implies stability (resp. instability).

(4.13)
where
So= ﬁ d,,
t=1
and S,=( — 1)"Z [all terms obtained by deleting any pair of

consecutive d,’s—including the pair of first and last d—
from all the terms of S, _ ;,] cf. (2.19) and Ref. 33. Of course,
the number of terms required in (4.13) to achieve a certain
accuracy depends on the magnitude of b and the “length” of
orbit, i.e., the value of m.

Another example where (4.12) can be applied is Chiri-
kov’s dissipative mapping>*

reoy =br, — (K /27)sin276,

0t+l =6t+rl+l
cf. (3.1), where, as before, b (with |b | < 1) is the rate at which
(4.14) “destroys” area in the r,, 6, plane. Combining equa-
tions (4.14) into a single second difference equation and lin-

earizing about an m-periodic orbit, we obtain the variational
equation

—A46,,, —bA6, | + (1 + b — Kcos2mf,)46, = 0,
(4.15)
cf. (2.10) and (3.5). Following the same approach as in Sec.

IIT and using criterion (4.12), we derive a sufficient stability
condition for 8, analogous to (3.21):

]’ t= 0,1,2,"', (4'14)
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[K — (1 — v/b)*]sinh*(mz/2)

(4.16)
<[K 4 (1 — vVB)*]cosh’(mB /2),
where z is now defined by
2coshz=(1 + b+ K)/vVD (4.17)

cf. (3.17) and B is given in (4.8).

The above result guarantees that an m-periodic orbit of
{4.14) which is stable near K = 0, remains stable at least over
the range

(1 —vbD)P<K<K,, (4.18)
where K, 1s the K value at which (4.16) becomes an equality.
Such orbits exist in the area preserving case b = 1 (see Sec.
IIT and Appendix B} and are expected to exist for b < 1 also.
The condition (4.16)—(4.18) reduces, of course, to (3.21)-

(3.23)at b = 1 and yields best estimates K, in the small dissi-
pation limit 5 5 1.
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APPENDIX A: AN APPLICATION OF THE STABILITY
CRITERION (2.18)

As we have seen in Sec. II, the criterion (2.18) can be
used to determine the (un)boundedness of the solutions of
second difference equations of the form

Xy +X_y + (A +Qt)xt =0,
where @, is periodic with period m,i.e., @, =0, ..,
t=0,1,2,, and 4 is a parameter independent of ¢ [clearly
(2.10) with —d, = A + Q, is of this type].
We obtain in this appendix analytic stability results for
(A1) with Q, a periodic pulse
- V<0, t=1.2,..,r,
Q.= _ .
0 t=7v+4+1,..m
Thus, (A1)-(A2) may be viewed as the analog of Hill’s
equation

(A1)

(A2)

2
‘;tf +A+Qt)x=0 (A3)
with
=V O<it<r
Q(t)=[ 0, 7<t<T (a4)

Q(t + T) = Q(t), whichis Schrodinger’s equation for a peri-
odic potential in the Kronig—Penney crystal model. Here we
use our stability criterion to derive analytically the A-inter-
vals for which (A 1}~(A2) has bounded solutions. The result is
similar to the corresponding one?* for (A3)-(A4). More sta-
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bility results on mappings (A 1) as well as on thier applicabil- bounded iff
ity t 1 i i
; g' o problems of accelerator physics can be found in Ref. 12 + detH(0)| <2, (AS)
In Sec. IIB it was derived that the solutions of (A 1) are where, in the present case,
|
A +V -1 0 0 —1
—1 —A+V —1 0
0 -1
0
—1
-1 —A4+V -1
detH(0) = det 6
0 0 -1 A (A8)
0
0 . —1
—1 0 0 -1 -4
\
[ 7columns m-7columns. ]
Expanding this determinant about its upper right and lower left corner elements gives
detH(O) ={— 1)K, — K, _\n_2)—2, (A7)
where the K ; d(;terminants are defined by
A=V -1 }
1 A—-V
0
1
K, ,=det 1 A=V (A8)
0 1 A
1
\ 1A
[ i columns {j-i) columns ]
M
. ) . . A1 0
Equation (A7) combined with (AS5) gives L )
‘K'r,m _K‘rfl,m)Zl<2 (Ag)
as the boundedness criterion for the solutions of (A1).
To evaluate the determinant K_,,, we proceed by induc- K;=det (A11)
tion. Let 7 = 1; expanding K, ,, with respect to its first row,
we find
Kl,m=(/1—V)Km—l_Km72s (AIO) 0 1
where K is defined by j columns
T. Bountis and R. H. G. Helleman 1874
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Similarly, for 7 = 2 we get

K2,m =(/1_ V)Kl,m—l “Km—z
=A-V)P—-11K,_, —K,_s.

Repeating this process for 7 = 3,4 finally yields

Kop=UK, .—U _ K, .y, (A12)
where U, satisfies

U =A-VU,_, —-U,_, (A13)
with U, = 1, U, = A — V. Defining 0 by

2cosf=A -V, (A14)
we can write the general solution of (A13) as

U, = sin{r + 1)8 /sin8. (A15)

These are trigonometric sines if |4 — ¥ |<2 and hyperbolic
sines if |4 — V| <2.
It is also easy to show that K, _ in (A11) satisfies

K, ,=4K,_._,—K,_. 5 (Al6)
with K, = A and K, = 1. Defining again an angle ¢ by

A =2 cosd, (A17)
we write the solution of (A 16) in the form

K, _ =sinm — 7+ 1)¢ /sing, (A18)

where cos, sin—cosh, sinhif |4 | > 2. Putting (A18)and (A 15)
in (A 12) and then substituting back in (A9) finally gives the
stability condition

cosd cosg — 1

sin7d si —
78 sinfm — 7)¢ sind sing

+ cos78 cos(m — T)p ) ’ <1,

(A19)

The final result, therefore, is that the solutions of (A1)

and (A2) are bounded if A is such that (A 19) is satisfied and
are unbounded otherwise. These intervals can be determined

numerically or graphically, while analytic estimates are also
easily obtained from (A19), cf. Ref. 35.

APPENDIX B: PERIODIC ORBITS OF THE MAPPING (3.1)

The existence of stable periodic orbits of the standard
mapping (3.1) down to K = O1is guaranteed by a theorem due
to Poincaré and Birkhoff, cf. Ref. 15, p. 39. As stated there,
the theorem applies directly to “sufficiently smooth” pertur-
bations of the *“twist” mapping

L =
00, =0 + ot?)
where o’ (r'®) 0, cf. Ref. 1 (1981). Such is the case with the
mapping (3.1):
ro. =r —I(K/2m)sin2n6,
K[9:+1 =9: +rr+l

]) t= 0,1,2,"‘, (Bl)

}: t= 0,1,2,"', (B2)

where o{r'”) = #%, cf. (B1). The Poincaré-Birkhoff theorem
states that given any invariant circle of the corresponding
“twist” mapping (B1) with rational radius #° = n/m, there
is a range of K values, K € [0,K (m)], over which this circle
breaks up into an equal number of stable and unstable m-
periodic orbits.
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Thus the existence of stable periodic orbits of the map-
ping (B2) in a neighborhood of X = 0 is established. In par-
ticular, for any m = m*, we have the K interval for which
stable m-periodic orbits with m<m* exist asul _ , [0,K (m)],
i.e., as the intersection of all intervals of the Poincaré-Birk-
hoff theorem with 1 <m<m*. Finally, we note that in the
proof of these statements one needs to restrict », to some
annulus, e.g., 1<7, <2, whereas in this paper we take 0<r,
< 1. This is not an important difference since the mapping
(B2) is invariant under r,—r, + 1.

We now demonstrate below how one may explicitly
compute the periodic orbits predicted by the Poincaré-Birk-
hoff theorem, near K = 0. We present results for m = 1,2,
and 3, for which, in fact, the theorem need not apply."®
Clearly, as m increases the calculations, although
straightfoward, become quite cumbersome.

According to the symmetry arguments of Greene,” the
initial conditions for periodic orbits of T, cf. (B2), fall in
either one of two classes:

Class A:

Class B: r,arbitrary, 6, =lroori{r,+ 1)

ry arbitrary, 6,=0or4,

(B3)
There are two m = 1 periodic “orbits” satisfying
ro=ro— (K/2m)sin2mb,, 6,=0,+ r,

(ro,65) = (0,0) and (0,1), see Fig. 3(b). Their stability is imme-
diately obtained from the variational equations

AQ,) (2 +K - 1)(:190 )
= 4
(AGO 1 0 o_J (B4)
cf. (3.5), (2.4) the ( + ) sign corresponding to (0,4) and the ( — )
to (0,0). From (B4)

trM) =2+ K, (BS)

and hence, according to the discussion at th end of Sec. IIA,
(0,0} is a stable m = 1 periodic “orbit” for 0 < K <4, while
(0,) is unstable for all K> 0.

Consider now the case m = 2. Applying T once to
{r0,6,) yields

r,=ry— (K /2m) sin2mb, = r,, (B6)

6, =0,+r =r

for the class A, 6, = O solutions, cf, (B3). Closing the orbit
upon itself after one more application of Ty, we write

r,=r, — (K /2m) sin2nf, = ry — (K /2m)sin2zmr, = r,, (B7)
0,=0,+r,=2r=0,=1,

since on the unit torus 8, = 1 is equivalent to 6, = 0. From
{B7), we find 7, = 8, = ] and we thus obtain the 2-periodic
orbit

(30—, 1) -3, 1). (B8)
This periodic orbit is also stable for 0 < K < 4 since a
calculation of the tr (M) gives tr (M) =2 — K as in (B5).
Furthermore, note that the above m = 1 and 2 periodic or-
bits obviously exist down to K = 0 since they are indepen-
dent of K. The corresponding unstable 2-periodic solution
predicted by the Poincaré-Birkhoff theorem is obtained
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starting with class B initial conditions [the class A, 8, = 1
initial conditions lead to the same orbit (B8)].

These ;esults from the m = 2 case are, in fact, common
to all periodic orbits with even period m = 2k: Le., class A
initial conditions yield one and the same stable orbit, while
class B conditions yield the corresponding unstable one.

The situation is different for m odd. It turns out that
m =2k + 1 periodic orbits are all given either by class A or
class B initial conditions. In the case of the class A solutions
6, = Oyields the stable orbits while 8, = { yields the unstable
ones.

Consider, for example, the case m = 3. With 6, =0we
find, as in (B6) and (B7):

(0s80) = (ro,0),(71,6,) = (Fosro),

(r2s02) = (ro — (K /27) sin2erry,2r, — (K / 2m)sin2r,).
To get a periodic orbit of period 3, we require

ra=r, — (K/27)sin2u0, = r,,

0y =0, + r; = 3r, — (K /2m)sin2wry = n,
where n is a positive integer, prime relative to m and
1<n <m, cf. {3.3).

In the case of the (m = 3)-periodic orbit we fine that (B9)
is satisfied if

(B9)

3ro — (K /2m) sin2ery=n {B10)

with #n = 1,2. Solving (B10) numerically we list below several
values of 7, corresponding to different K-values for the case

n/m=146,=0:
K= 0.0 0.01 0.2 0.5 1.0
Po== 0.3333 0.33379 0.34222 0.35436 0.37164

The stability of the resulting 3-periodic orbit is deter-
mined using our stability criterion of Sec. II. Thus we
evaluate

2 — K cos2mr, —1 -1
detH = det -1 2 — K cos2r, —-11
-1 -1 2—-K

whence
detH = K {3 — K cos2zr,)
(K cos2mry — 2 cos2mry — 1). (B11)
As K—0r;—1[cf. (B10) and the numerical solution below it]
and to lowest order in X, (B11) yields

detH= — K* <0, (B12)

Thus the §, = 0, 3-periodic orbits are stable, cf. (2.18), for
sufficiently small K.

For 8, = 1, all the above expressions are preserved, with
one change only: K— — K [since letting §,—6, + 1 simply
switches the sign of the sine term in (B12})}. Hence (B11)
becomes

detH = K (3 + K cos2mr,)

(K cos2mry + 2 cos2mry + 1),
which, as K—0, and ry—, gives to lowest order in K

detH= + K*>0.

(B13)

(B14)
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Hence, these 8, = | orbits are unstable near K = 0, cf. (3.6b).

Similar results are obtained for m = 4,5, etc. As m in-
creases, we find that we have to solve 7, from more and more
complicated transcendental equations of the type (B10}. For
example, for m = 5 the stable periodic orbits (6, = 0) are
obtained solving r, from

5rg + (3K /27) sin2mry — (K /27)
Xsin2w[2r, — (K /27) sin2zwry] = n,

n = 1,2,3,4. However complicated this equation may ap-
pear, it is easy to solve it numerically and obtain r, (for suffi-
ciently small XK'} with r,—n/5 as K—0.

We have thus demonstrated how to construct periodic
orbits of (B2) existing down to K = 0. Qur results indicate
that pairs of stable and unstable periodic orbits with any
period p exist for K >0 as predicted by the Poincaré-Birkhoff
theorem.
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In a Riemannian space V, general formulas are obtained for geodesic first integrals which are mth
order polynomials in the tangent vector and which are assumed to depend explicitly on the path:
parameter s. It is found that such first integrals must also be polynomials in s. Necessary and
sufficient conditions are found for the existence of these first integrals. The existence of many
well-known symmetries such as homothetic motions (scale change), affine collineations,
conformal motions, projective collineations, conformal collineations, or special curvature
collineations are shown to be sufficient for the existence of such first integrals with explicit path-
parameter dependence. To illustrate the theory, geodesic first integrals of this type have been
calculated for four Riemannian space~times of general relativity.

PACS numbers: 02.40.Ky, 04.20.Me

I. INTRODUCTION
The second order differential equations'

Du'/ds=du'/ds + I Wu* =0, u'=dx'/ds (1.1)

which determine the geodesics of a Riemannian space V,,
admit 2# functionally independent first integrals of which at
least one must depend explicitly on the path-parameters.” In
this paper we consider for such differential equations the
problem of determining mth-order (in the tangent vector ')
first integrals 7™, m = 1, 2, -, of the form

TI=pfimo Mi{":”u“ e MR gyt

LR

ey

— i My (1.2)
1=0

where the functions M (7{) = M {™!)(x,5) are completely sym-
metric on all indices i ,---,. Such first integrals will in general
be inhomogeneous in the tangent vector u' and have explicit
dependence on the path parameter s.

For indefinite space-times of general relativity the geo-
desics may be separated into two types—those of the null
type and those of the nonnull type, as characterized by the
value of € in the relation’

g uw =e. (1.3)

Accordingly, the formulation of the necessary and sufficient
conditions for the existence of an mth-order geodesic first
integral with explicit path-parameter dependence will de-
pend upon the assumed type of geodesic. The procedure for
formulating the conditions which determine such first inte-
grals for geodesics of a specific type involves the use of con-
straints and is generally more complicated than the proce-
dure for formulating first integrals for arbitrary (both types
of) goedesics. Therefore, in this paper we shall primarily con-
sider the simpler case of arbitrary geodesics and postpone to
a later paper a systematic investigation of restricted type
geodesic mth-order first integrals with explicit path-param-
eter dependence. Thus, throughout this paper unless other-
wise stated the term geodesic shall mean arbitrary geodesic.
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For generality in our analysis, unless indicated other-
wise, we shall assume an n-dimensional indefinite Rieman-
nian space V,,. However, for illustrative purposes we shall
draw our examples from the V, space—~times of general
relativity.

For geodesics certain homogeneous first integrals with
no explicit path-parameter dependence are known to be con-
comitant with the existence in the ¥, of specific infinitesimal
point mappings of the type*’

X'=x'+ £(x)ba. (1.4)

The vectors £ * which define these mappings are determined
by “symmetry equations” which involve conditions on the
Lie deformation of the metric tensor of the V, . Since certain
of the new first integrals and their associated conditions de-
rived in this paper will be related to some of these known
cases, we summarize for later reference the pertinent above-
mentioned known “‘symmetry equations” and associated ho-
mogeneous first integrals in Table L

In Sec. Il it is shown that every geodesic first integral
which is an mth-order (in general inhomogeneous) polyno-
mial in the tangent vector #' and has explicit dependence on
the path-parameter s must be a polynomial in 5. Necessary
and sufficient conditions for the existence of such integrals
are given. Detailed formulas for these explicit path-param-
eter dependent first integrals through third order are listed
in tables in Sec. II.

In Sec. II1 it is shown that if there exists one mth-order
first integral with explicit path-parameter dependence, then
in general there will exist several such integrals of the same
order. Tables are given which list such related integrals
through the third order.

In Sec. IV it is shown that the existence of a parallel
vector field is necessary and sufficient for the geodesics in a
V. to admit a linear first integral with explicit path-param-
eter dependence.

In Sec. V quadratic first integrals with explicit depen-
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TABLE I. Well-known symmetry conditions and concomitant geodesic homogeneous first integrals with no explicit path-parameter dependence. *

Defining Concomitant first
Symmetry Notation equation integral(s)
(a) Motion M h; =0 gt
(b) Homothetic HM hy = 2048, o8, u't
motion o, = const &,u' (null geodesic only)
[t} Affine
collineation AC hiuw =0 hyu'v
(d) Projective _
collineation PC hiy = 28,0 +8ud. (h, — 4dg u's
+ 8
(e) Special
projective SPC hij =28;04 + 8P (h, —4¢g,u'e
collineation +gud,, ¢,=0 o u
(0 Conformal
motion CM h; =208, &, u' (null geodesics only)
(g Special
conformal SCM h; =208, &,u' (null geodesics only)
motion g,;=0 o.u'
(h} Conformal N
collineation CONFC how =27,8; (h; — 27g '/
(1) Special ‘
conformal SCONFC hyy = 27,8y (h; — 2rg '
collineation ;=0 T
(1)) Special
curvature SCC By =0 't
collineation hou*, h=g"h,

*h; = #'.g;. Thesymbol ¥ indicates Lie differentiation with respect to vector £,

dence on the path-parameter are shown to be of two basic
types—those based on scalar fields and those based on vec-
tors fields. For each type certain conditions must be satisfied
by the field. It is shown that the vector condition is satisfied
by an affine collineation or homothetic motion (scale
change). Hence the existence of an affine collineation implies
the existence of an inhomogeneous quadratic first integral
with explicit dependence on the path-parameter, in addition
to the well-known homogeneous quadratic first integral with
no explicit path-parameter dependence. For the case of a
homothetic motion (which is a subcase of an affine collinea-
tion) the above-mentioned quadratic first integral with ex-
plicit dependence on the path-parameter reduces by means
of the metrical quadratic integral to an inhomogeneous lin-
ear first integral with explicit path-parameter dependence.
For the case of a null geodesic this linear integral further
reduces to the well-known homogeneous linear integral with
no explicit path-parameter dependence.

If vectors which define projective collineations or con-
formal collineations are assumed to be solutions of the con-
dition which is necessary and sufficient for the existence of
the above-mentioned vector-based quadratic first integral
with explicit path-parameter dependence, we find that both
types of collineations necessarily reduce to affine collinea-
tions. By a similar analysis conformal motion vectors are
shown to be limited to homothetic motions.

For a nonempty space-time of general relativity it is
shown that if there exists a quadratic first integral with ex-
plicit path-parameter dependence of the vector-based type
mentioned above, then there will also exist a conserved 4-
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current which is dependent upon the energy-momentum
tensor and the vector.

In Sec. VI cubic first integrals with explicit path-param-
eter dependence are shown to be of three basic types—those
based on scalar fields, vector fields, or second rank tensor
fields. It is found that a vector which defines a special curva-
ture collineation will satisfy the condition for the vector-
based type cubic first integral. Such cubic integrals reduce to
quadratic first integrals with explicit path-parameter depen-
dence for the cases in which the vector field is either a special
projective collineation or a special conformal collineation
(both collineations being subcases of special curvature col-
lineations). In a like manner the cubic integrals associated
with a special conformal motion reduce to linear first inte-
grals with explicit dependence on the path-parameter.

In Sec. VII it is shown that a null geodesic inhomoge-
neous quadratic first integral with explicit path-parameter
dependence (which was derived in Sec. VI as a degenerate
cubic first integral concomitant with the existence of either
special projective or special conformal collineations) will ex-
ist whenever the space—time admits any (i.e., not necessarily
special) projective collineation, conformal collineation, or
seminull geodesic collineation. It is of particular interest to
note that this new type of quadratic integral will exist in
addition to the well-known homogeneous quadratic first in-
tegrals associated with these symmetries.

Toillustrate several of the theorems, we obtain geodesic
first integrals with explicit path-parameter dependence for
the following space-times: gravitational plane wave, Ein-
stein static, a perfect fluid, and a Friedmann-Lemaitre.
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il. TYPES OF MTH-ORDER FIRST INTEGRALS WITH
EXPLICIT PATH-PARAMETER DEPENDENCE

In this section we determine the types of mth-order first
integrals with explicit dependence on the path-parameter s
which could possibly be admitted by the geodesics in a Rie-
mannian space ¥, and then obtain necessary and sufficient
conditions for the existence of such integrals.

We thus assume the geodesics admit an mth-order first
integral of the form I ™ given by (1.2) and proceed to deter-
mine what restrictions must be placed on the coefficients
M7, 1= 0,1,-,m, by requiring that along the geodesics®

D=y, (2.1)

ds

By substituting (1.2) into (2.1) and carrying out the indi-
cated differentiation [with use of (1.1}] we obtain

m .
2 [MS‘T-:-f',l;iH,u“" i +Mzm£,lsut‘ uu] ° 0. (22)

=0
In (2.2) the terms may be regrouped to give
Moy 2 [Mimi=n o M Tyt

R

+ M w0, (2.3)

Since (2.3) must hold for arbitrary geodesics, we require
that (2.3) be identically zero in the tangent vectors ' and
obtain (after symmetrization’) the following necessary con-
ditions on the functions M ! for the existence of an mth-
order integral (1.2):

M7 =0, (2.4)
M M =0, I=1,..,m, (2.5)
Mimm 0, (2.6)

(fr sy 4 1)

Equations (2.4)—(2.6) are to be regarded as differential equa-
tions in the # + 1 independent variables x',s.

The set of m 4 1 equations given by (2.4) and (2.5) may
be integrated in sequence with respect to s to yield

mi— 3 =9 e sy (2.7)
' 1 = (l—_a)! 1 @t + 1 1
where the a-rank tensors (@ = 0,1,---,m) C{"?) = C ™),
which arise from the process of integration, are completely
symmetric on all indices 7,--+/,.
By use of (2.7 in (2.6) we obtain

=" “cpm =0 2.8)
=y (m —a)! s 17
From (2.8} it follows that
C(mal y =0, a=01,.,m. (2.9)

(i liier 4 1°*im 4 1)

Hence a necessary condition that I of the form (1.2)
be a first integral of the geodesics is that the coefficients
M ix,s) of (1. 2) be expressible in the form (2.7), where the
coefficients C{'¥)(x) occurring in (2.7) satisfy (2.9).
Substltutlon of (2.7) into (1.2) shows that 7 “" must have
the form®

m { —a R i
I7= 3 3 g o, ety 210)
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[where the C 7% satisfy (2.9)].
By regroupmg the terms in (2.10) we may express the
mth-order first integral 7™ in the form

7 = if‘"“’” (2.11)
a=0
where
I(m:a)E - ( - S) C(m ) ) ui,“.ui( Dt
“~ I Aegiboy 1l 40 ’
a=01,..,m (2.12)

Each set of Egs. (2.9) determined by a given a (say
a = a’)does not involve C’s defined by other choices of . It
follows that (2.9) may be satisfied by choosing all the C-ten-
sors equal to zero except the one defined by a = a'. In this
case I reduces to I = 1“1, which implies 7“7 is a
first integral fora' =0,1,2,...,m. It also follows that a neces-
sary condition for I""* to be a mth-order first integral is
that (2.9) be satisfied for a = '.

To show that for a given m and ¢ that (2.9) is sufficient
for I of (2.12) to be a first integral, one may calculate
DI "™ /ds and observe that all terms cancel in pairs except a
term associated with / = m — a, which vanishes by use of
(2.9). It thus follows that (2.9) is also sufficient for 7™ of
{2.10) to be a first integral,

We summarize the above in the following theorems and
corollary.

Theorem 2.1: In a Riemannian space V', a necessary
and sufficient condition for the geodesic equations

Du'/ds =0, u'=dx'/ds (1.17)
to admit an mth-order first integral of the form
I = ZME’" xs)utted, (1.2)

(which in general is inhomogeneous in the tangent vectors u'
and has explicit dependence on the path parameter s) is that
the coefficients M {™}) must be polynomials in s which have
the form

__S)I—a

(ml) ( C (m _
Z —al Cima iy 1=01.m

(2.7")

where the a-rank symmetric tensors C ""?(x) are functions
of x' which satisfy

sz’:lrt) oy 1 s 1) _‘0’ azOylﬂ'-',m (29/)
Theorem 2.2: For a given 7 the expression
i _ ST {— s {rmin) i
I = 2 TC" ey el Iu eu” . (O<r<m)’
=0 H
(2.12%)
TABLE IL Case m = 1. Linear first integrals. 7/ = J " 4 [0,
Jl MU AUy Condition
Juo cuo — sCMoyh C',!‘?’:O
Ill:l) C:_.l:l)u:, C:,l,l,)! — 0
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TABLE III. Case m = 2. Quadratic first integrals.
1|2)=1(2m+112:|;+112‘2)I

% M M Myt Condition
JrEo C(z:on _ SC‘_,Z,:OIM" (52/2!)C':f‘:,(z'u"'u” C(;f,-:(::.,, -0
2:n [PEYPEN {2:0),,1 (2:1) —

I Ci¥hy —sCutu cil, =0

2:2 2:, Fog st 2:
yat Cillzz)ul.up, C(’Z)‘n =0

Uyizidy

will be an mth-order first integral of the goedesics if and only
if the r-rank symmetric tensor C ) (x) satisfies
C(m:r) — 0

(fgeedpsdy ) yoeedy )

(2.13)

Corollary 2.4: The integral I "™ of Theorem 2.1 can be
represented in the form

I(m) — i[[m:r),
r=0

(2.11)

where 1" are mth-order first integrals as defined in Theo-
rem 2.2. ’

For illustration purposes and later reference we give in
Tables II, III, and IV for the cases m = 1,2,3 respectively the
detailed expansions of the formulas occurring in Theorems
2.1, 2.2, and Corollary 2.A.

Remarks concerning Tables II, I11, I'V: In each table the
sum of the terms in the row (excluding the entry in the “con-
dition” column) marked I " corresponds to (2.12) of Theo-
rem 2.2. For example, from Table III we read (for m = 2,
r=1j

[51) = CRy  sC Ry (2.14)
1 LT " *

Also in each table the sum of terms in the column headed

M "y (for a given m and /) corresponds to a term in

{1.2') of Theorem 2.1. For example, from Table III we read

shis

2
M ¥y — (f_C@;p) —sCE) 4 C(_zfz))ui,uiz. (2.15)
2 2! 5 it ’I’z *

An entry in the last column marked “condition” corre-
sponds to (2.13) of Theorem 2.2. For example, in Table III
the equation

cEi, =0 (2.16)

represents the necessary and sufficient condition that 7 %" be
a quadratic first integral.

(2.12') of Theorem 2.2 implies the existence of additional
mth-order first integrals which we shall call special mth-
order first integrals.

Assume then that for some 7 (0<r<m — 1) there exists
an r-rank symmetric tensor C {7 such that (2.13) of Theo-
rem 2.2 is satisfied and hence an mth-order first integral
17(2.12) exists. Based upon this C "7 we define a sym-
metric tensor *C {7 * %! of rank r + k (1<k<m — r} by the
relationship

*Cgrn:f+k)EC(m=f! (3.1)

ey k (LI P AT PO
From (3.1) we observe that covariant differentiation of
*C ™7+ followed by symmetrization yields

=cp (3.2)

oy iy ey ide ke U 1)

*C(m=r.+ k)

(LA SO P b )
By the above assumption that C {77 satisfies (2.13) it
follows the right-hand side of (3.2) is zero and hence so also is
the left-hand side, i.e.,

¥ mr + k) =0. (3.3)

(iyerip 4 tobr w4 12 Em 1)
By comparison of (3.3) with (2.13) it is observed that the
(r + k )-rank symmetric tensor *C "', * ) defined by (3.1) will
satisfy (2.13) with r replaced by  + k. By Theorem 2.2 Eq.
(3.3)is a necessary and sufficient condition for the expression
*J e+ k) defined by

apimr " iy g
=% I" 1 r+ktr g k41 r+ k1
(1<ksm —r, O<r<m —1), (3.4)

to be an mth-order first integral. By use of (3.1) this integral
can be rewritten in the form

i 2" e
~ l' LR P A e P N L]
(I<k<m —r), O<r<m — 1}, (3.5)
which we refer to as a special mth-order first integral of type

(r+k).

The above discussion leads to the following theorem
and corollaries.

Theorem 3.1: In a Riemannian space ¥, the condition

C(m:r]

Gty voima g = O O<r<m — 1,
on the symmetric r-rank tensor C{7(x) is necessary and
sufficient for the existence of each of the N=m —r + 1

mth-order geodesic first integrals

l1i. SPECIAL MTH-ORDER FIRST INTEGRALS I1m:r)Em2’( - S)IC(_m;r) . C uheegg (O<r<m — 1)
We now shall show how the existence of an mth-order P L ’
first integral " (0<r<m — 1) of the type described by (3.6)
TABLE IV. Case m = 3. Cubic first integrals. [ = J'¥ 4 J31 4 p&31 4 Jrsdi
I M M Myt M3 ' Condition
[um Cﬂ:m _ sCf;“‘"u" (52/2!)C:‘J:glui,uiz _ (51/3|)C(1\l0} u"'u"'u" Cl{ll:?l‘ , — 0
0 C\ — 5C i yinyn (s2/20C 3N yigyioggi ciFl. =0
ros Cuu s Clis =0
e Chwuu €l =0
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TABLE V. Linear first integrals concomitant with 7.

TABLE VII. Quadratic first integrals concomitant with 7'

Type First int’elgorals with nec. and suff. Type First integrals with nec. and suff.

cond. C}' =0 = cond. C> =0 =
Jakd Ccio __SC\Jl‘muy, PR & b CE‘ZI\ul, —nYCE‘z‘,’:‘L("u': k\zl,
o Ct’l‘mu,, o *[\JI - C(Zl‘ul.ul! Lo

ity

— k !
*I(m:r+k)Em i+ )(-S) C(m:r)

il'“ir ;ir + l"'irb kot
o !

Ogr<m — 1, k=1,.m —r).

u. e
(3.5)

Corollary 3.4: If the geodesics in a ¥, admit at least one
of the set

(mer) :F), (m:r + 1) 42 i+ (m -
S rz{I(mr,*Imr ,*I(mr )y”.,*l(mr+ m r))}

of N = m — r + | mth-order first integrals (described in
Theorem 3.1), then the geodesics will admit all ¥ of the inte-
grals in the set S ™",

We illustrate Theorem 3.1 and Corollary 3.A for the
values m = 1,2,3 and all applicable values of k and r by
means of Tables V-X.

Remarks concerning Tables V-X: In each of the Tables
V-X the row I ™", which represents an integral ™",

r =0,..m — 1, has been selected from either Table II, III, or
IV, depending upon the vaue of m. The remaining rows in
Tables V-X are special first integrals and are designated by
#[Umr+ k) e = 1,...,m — r, as described in Theorem 3.1. For
each row the entry in the column headed *“ = " represents
the numerical value which the integral in that row assumes
along a geodesic. Note that all the integrals in a given table
have the same necessary and sufficient condition as de-
scribed in Theorem 3.1. This implies that if any row of a
given table is known to be a first integral then all rows in that
table will be first integrals as set forth in Corollaries 3.A and
3.B.

With reference to Tables V-X we shall now show how
each set of mth-order first integrals associated with a par-
ticular necessary and sufficient condition may be expressed
in a simplified alternative form. We shall illustrate this pro-
cedure for the set of integrals in Table VIIIL.

From Table VIII by means of the integral */ ¥ * ¥ the
integral *7°+ % may be expressed in the form A0+ 3
where

*1'13:0 + Z)ch?:l_())ui,uiz — sk (30+3) & k {3:0 + 2|_

(3.7)

By means of */ *°* ¥ and (3.7) the integral */*** ! may be
expressed in the form *J*° * ", where
*ilJ:O + ”EC!?‘:O)ui' _ Sk (3:04+ 2} __ (52/2‘)1( {3:04 3) = k (3:0 4 l).

(3.8)
TABLE VI. Quadratic first integrals concomitant with /%",
Type First integrals with nec. and suff.
cond. C%0 =0 =
IVZUV C(Z”l _SC(Z‘O\ul‘ (S:/z!)cfl.ﬂjui,“r‘ kVZ:(H
*pi20 4 b Cf.(l.uy, _ SC[if:‘ui‘u“ Lo
*]12:(7 2 Cl::(‘\ullulz ’/\ 24y 4 20
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Finally by means of 7% % (3.7),and (3.8) the integral 1 "’
may be expressed in the form *J ), where

*i(}:O)Ec(J:()I gk B3O+ (52/2!)]( 13:0 +2) __ (3_3/3!)/{ (3:0 + 3
= kB9 {3.9

By a similar procedure the set of integrals in each of the
Tables V-X may be rewritten to obtain Tables VA-XA,
respectively.

With reference to the integrals in Tables VA-XA we
next point out an alternative interpretation, which is sug-
gested as a consequence of transposing to the right-hand side
of the equal marks all terms in which s appears explicitly.
For example, if in (3.8) (refer to Table VIII A) the terms
involving s are transposed to the right-hand side, the result-
ing equation has the form

C OOyt 2 kO g O+ (272 B0+ 9 (3.10)

The left-hand side of (3.10) may be regarded as a **pseudolin-
ear first integral”” in the sense that, although it is not constant
along the geodesic, its variation along the geodesic is ex-
pressible as a (quadratic) polynomial (with constant coeffi-
cients) in the path parameter s. Similarly the leading term of
each *J or I type first integral in Tables VA-XA may be
expressed as a pseudofirst integral. For example, from Table
IXA we obtain from */ ! + ! the pseudoquadratic first inte-
gral C %'y u" in that

Cllylut = k¥l 4 sk Bl 2 (3.11

(We note this pseudoquadratic first integral varies linearly
with s along a geodesic.)

It is of interest to observe that the derivative D /ds
(along a geodesic) of a pseudofirst integral associated with
row r of an A Table will give a pseudofirst {or first) integral
associated with row 4 1 of the table. For example, from the
pseudo-integral (3.10) which is associated with row two of
Table VIITA we obtain by differentiation the pseudo-
integral

C‘;?,:i(jlur'ul: = k {3:0 +2) + Sk {3:0 + 3) (3 12)

associated with row three.

It is clear how the Tables in Secs. 2 and 3 based on
m = 1,2,3 and the above remarks concerning pseudofirst in-
tegrals can be extended to general values of m.

IV. LINEAR FIRST INTEGRALS WITH EXPLICIT PATH-
PARAMETER DEPENDENCE

In this section we shall elaborate on linear first integrals
of the type "® (m = 1, r = 0) which appear in Table V.
Such integrals are based on ascalar C""(x). A necessary and
sufficient condition for the existence of these integrals is
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TABLE VIII. Cubic first integrals concomitant with 7%,

Type First integrals with nec. and suff. cond. C9, . =0 -
1‘1 0) CU 0 . SCF,“"'u" (.YZ/Z!)Cf;‘jf:'u"u’z _ (51/3')(:” 4] ui,u;,ui. k (3:0}
*[30 00 Ct;“o'u" _ SCQ;‘.S’M"M“ (s* /ZV)CF,‘,S:. PR PECRAY
*[H() B} C‘_;‘"f:'u"u” _ XC'],,(Z,‘“ wiy' /‘ {20+ 20
*[U() BT} Ci;‘lvl(:l,ul‘u,zll[‘ kl]-() 4

C“:O'(x).,»j=0 (4.1) du3+25f 3 _ af u! 4+2 f W

’ ds ox! Ix!

Equation (4.1) is recognized as the condition that the vector
C'1"9 defines a parallel field. Hence we may state the _ za_quZu“ + iuhﬁ
theorem. dx oz

Theorem 4.1: A necessary and sufficient condition that of of

. . o . 1 2Dt oo (4.6)
the geodesic equation (1.1) of a ¥, admit a linear first integra 57 37 \
with explicit dependence on the path parameter s is that the
V., admit a field of parallel vectors C ;. Such integrals have
the form ‘
u+2afl|3 qu'u4+28f23

JUO—C 0 _ g (10,0 = g (1:0) (4.2) ds dx Ix! ox?

As is well known, every parallel vector field defines a 2. s n R
motion (Killing vector) and hence the term C '} ”u’ appearing ox? oz
in (4.2)is also a linear first integral [refer to (a), Table I]. (This
integral is denoted in Tables V and VA by~*I“:° + 1) Hence Ziu%{‘ + if—u“u“ _0 @)
1" of (4.2) can be expressed in the form 7" of Table VA. V4 EVA o :

We illustrate the above by means of the following exam-
ple from general relativity. Consider the gravitational plane-
wave space-time V, defined by the line element®

dp? = — (@x) + (dx*P

_ (dxl)Z _ (dx2)2

+ 2f (x'X%,Z) (dx® — dx*), 4.3)
where Z =x* — x* and the function fsatisfies f,, + f,, =0.
Based on the scalar C"%=x* — x> a (null) parallel vector
field with components C /' = (0,0, — 1,1) exists in this
space-time.

The geodesic equations (1.1) in this ¥/, take the form

For the plane-wave space-time being considered the
linear first integral with explicit path-parameter dependence
(4.2) takes the form

I = x* — x3 — s(u* — ), (4.8)

and the first integral *7°* ! of Table V takes the form

X0+ 1) _ 4 3 (4.9)
Direct verification that (4.8) and (4.9) are first mtegrals

follows immediately by use of the relation

du' 7] e
P i 9 w a_a
x .
ds x ——=—w'—-u)=0 (4.10)
ds ds ds
du 4 . . .
du’ _ of Wt + 22 af wut — iu“u“ =0, (4.5) obtained from the geodesic equations (4.6) and (4.7).
ds  ox? ax? Ix?
TABLE IX. Cubic first integrals concomitant with 7',
Type First integrals with nec. and suff. cond. C{}}),,, =0 =
1{31» Ct}l»u:, sC"‘,”u u: (S /2|)C111| iy :u: ku:I)
LY Rl CHy — SCIN yhygiagis ke
i[dl 2 CHI[ u"'u’ u' kl3‘1+2|
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TABLE X. Cubic first integrals concomitant with 7 '%%,

TABLE VIA. Combined quadratic first integrals concomitant with 72,

Type First integrals with nec. and suff. Type Combined first integrals with nec.
3
cond. CJ7L., =0 = and suff. cond. C,, =0 =
113 2 Clllxz)u: u® SC(,‘IZ), u' u:,u k 3:2) 11.2:0| C(Z:O) . Sk (204 1) _ (52/2')]( 2:0 + 2) k 2:40
i[(Z:() + h C(Z.())ul. k {220+ 2) 12:0 4 1)
. . . — 5 k
*1[12 " C‘;‘;le " l‘u k“l o *1(2:0 +2) " (2:0),,4,,,1+ §2:0 + 2}
Chiuu k

V. QUADRATIC FIRST INTEGRALS WITH EXPLICIT
PATH-PARAMETER DEPENDENCE

In this section we shall first examine more closely the
explicit path-parameter dependent quadratic first integrals
of the geodesics of a V,,. We observe from Tables VI and VII
that the existence of such integrals depends upon the exis-
tence of certain scalar or vector fields.

With reference to Table VII we first consider the neces-
sary and sufficient condition

CiEiy =0 (5.1)
which the vector field C > must satisfy in order that the
geodesics admit the quadratic first integrals 7*" and
*J 21+ 1 of the above-stated type.

When the indicated symmetrization in (5.1) is carried
out, the six terms which result may be grouped into three

pairs in such a way that (5.1) is expressible in the equivalent
form'?

hij;k + hjk;i + hki;j - OyhijE"gCW”gij’ (52)
Alternatively, by use of the identity"'
C(21)+C211+C121)_C121b+cl21)+ckljll)’ (5‘3)
Eq. (5.1) [and hence (5.2)] can be given the equivalent form
CEN+CED L CEY=0. (5.4)
1]

r_[l\ Jiki

We combine in the theorem to follow the above results
related to the vector-based quadratic first integrals of Table
VII with the information related to scalar-based quadratic
first integrals of Table VI.

Theorem 5.1: If the geodesics {1.1) in a V,, admit qua-
dratic first integrals with explicit dependence on the path
parameter s, then such integrals may be divided into two
classes:

(i) those based upon the existence of a scalar C*%(x)
which satisfies a necessary and sufficient condition

c =0, (5.5)
in which case the integrals are of the form
IP0=C*® _ sC 7% + (s*/2)C 5’4, (5.6)

* {20+ 1)ch'?~0u — SCE?j’O)u*u’; (5.7)

TABLE VA. Combined linear first integrals concomitant with 7'

(i) those based upon the existence of a vector C*''(x)
which satisfies either of the equivalent necessary and suffi-
cient conditions

how + Py +hi; =0, hy=5 a0gy, (5.2
or
ClL+CRI+ CEy = (5.4)
in which case the integrals are of the form
TP == @Dyl _ o€ BNy iy (5.8)
{ I * N

We now consider two important special solutions of
(5.2') for vectors C *! which define well-known geometric
symmetries mentioned in Table I. By inspection of (b} and (c)
of Table I it is seen that a proper homothetic motion or a
proper affine collineation vector will satisfy (5.2°) in that for
such vectors 4, = 0. Hence by Theorem 5.1 (i) each of
these vectors will define a quadratic first integral with explic-
it path-parameter dependence in addition to the well-known
concomitant first integral with no explicit path-parameter
dependence given in Table I. We may therefore state the
theorem which follows:

Theorem 5.2: If a ¥, admits either

(i) a proper affine collineation in that there exists a vec-
tor £ (AC) such that 4, =0, A, gg,,\c,g,.,;eo, or

(i1) a proper homothetlc motlon in that there exists a
vector £ {HM) such that 4, = 20,8, oy=const#0,
hy=% . um 8y, then the geodesics (1.1) of the ¥, will admit
an inhomogeneous quadratic first integral with explicit de-
pendence on the path parameter s. In either case (i) or {ii) this
integral is expressible in the form

IV =Eu' —s& u', (5.9)
where in case (i) £ '=£{AC), and in case (i} £ ‘=& {HM).

By use of the relation .¥¢’, g, =&, + §,; Eq. (5.9) is ex-
pressible in the form

TPV = gl — I5(& g, Jud. (5.10)

It then follows for case (i}, in which £ ‘ defines a proper
homothetic motion, that (5.10) can be written in the form

T30 = E(HM ju' — so g u'td. {5.11)

TABLE VIIA. Combined quadratic first integrals concomitant with 7",

Type Combined first integrals with nec. and Type Combined first integrals with nec. and
suff. con. C'[, =0 = suff. cond. €T, =0 =
irlvn) Cu(n —Sk(”)' 1 k(l:()| I’|2:1| C(z:uur‘, _Sk(Z:l +1) k(z-n
*[”(“ m C‘!"Ju" k“_() vl t1(2:1+l| C(llz‘-iljux,u:, klZ,! + 1}
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TABLE VIIIA. Combined cubic first integrals concomitant with I,

(3:0)

Type Combined first integrals with nec. and suff. cond. C1}?,,, =0 =
1'13;()} C(}o] _ Sk 30+ 1) _ (52/2‘)1( (3:0+2) _ (S‘/3‘)k (30 + 3) k (3:0)
7 (3 (3:0),,i, (30 +2) 2 {30+ Y {30+ 1)
W Al C% —sk (s°/24k k“ .
= (30) iy i k3O 30+
t[(\0+2> C;i.,_,ul u' Sk k ‘
#II,\:() + CE;’::llz)lilul,ul:un k 13:0 + 3)

By use of (1.3) in (5.11) we are led to the following corollary
to Theorem 5.2 (i1).

Corollary 5.4: If a V,, admits a homothetic motion
[£7 = £ (HM), defined by (b) Table I] the expression

L (HM) = £,(HM)u' — €05 (5.12)
will be a linear first integral of nonnull geodesics when
€ = + | (in which case the parameter s is the arclength, or a
linear first integral of null geodesics when € = 0. The inte-
gral L (HM) is a degenerate form of the quadratic first inte-
gral 1Y of Theorem 5.2.'°

Toillustrate Theorem 5.2(ii) and Corollary 5.A we con-
sider the space-time with line element'?
d¢ 2 _ (x4)2“"[(dx‘)2 + (dx2)2 + (dx3)2]

— (dx%)?, (5.13)

This space-time admits a homothetic motion defined by the
vector & {HM) with components

EHM) = (1 —a,)x”, v =123, £{HM)=x*(5.14)
and scale factor o, = 1. For this space—time the geodesic
equations (1.1) take the form

du*/ds + 2a,(x*)" 'utut = 0, {5.15)

du®/ds + ag(x*?~ 'u'u’ = 0. (5.16)

Based on the homothetic motion vector (5.14) and scale
factor o, given above, we have from (5.12) that the geodesic
equations (5.15) and (5.16) admit the first integral

ay,=const.

v =123,

T80 = (1 — q,) (x)**x"u” — x*u* — es. {5.17)

It is easily verified that / { is a first integral by showing
dI 'yl /ds = O with the aid of {5.15), (5.16) and the metrical
first integral (x*)?*u"u" — u*u® = €.

Another illustration of parameter-dependent quadratic
first integrals is contained in the example given at the end of
Sec. VI.

We now continue the investigation which led to Theo-
rem 5.2 to determine if vectors & ‘ which define certain sym-
metries (refer to Table I) other than the above discussed af-
fine collineation and homothetic motions could also satisfy

TABLE IXA. Combined cubic first integrals concomitant with 7 o,

(5.2} [or equivalently (5.4')] of Theorem 5.1.

First we consider whether or not (5.2') could be satisfied
by a vector C #"'==¢£,(PC) which defines a projective collin-
eation [refer to (d), Table I]. For this case it would be neces-
sary that (5.2') and the projective collineation condition

h,»j;k = 2g,j¢_k +gjk¢.i +g1k¢,p hingg(PC)gq"(S-lg)

be satisfied by the same vector £ . When 4, as determined
by (5.18] is used in {5.2'), we find that ¢ ; = 0, which implies
that 4, = 0, and hence the assumed projective collineation
is reduced to an affine collineation.

In a similar fashion it can be shown that if a conformal
collineation [refer to (h), Table I] vector £ (CONFC) is to
satisfy (5.2'), the conformal collineation is reduced to an af-
fine collineation.

It is also easily shown that if (5.2') is to be satisfied by a
conformal motion vector £ {CM) [refer to (f), Table I, then
the conformal motion reduces to a homothetic motion
{which is a subcase of an affine collineation).

As discussed above every affine collineation vector will
satisfy condition (5.2'). Hence we may state the following
theorems:

Theorem 5.3: In a ¥, a vector £ {PC) which defines a
projective collineation (refer to Table I} will also be a solution
to (5.2') of Theorem 5.1 if and only if the projective collinea-
tion is an affine collineation.

Theorem 5.4: In a ¥V, a vector £ (CONFC) which de-
fines a conformal collineation (refer to Table I) will also be a
solution to (5.2) of Theorem 5.1 if and only if the conformal
collineation is an affine collineation.

Theorem 5.5: In a V, a vector £ (CM) which defines a
conformal motion (refer to Table I} will also be a solution to
(5.2) of Theorem 5.1 if and only if the conformal motion is a
homothetic motion.

To conclude our discussion of the relationships of cer-
tain well-known symmetries to those vectors which satisfy
(5.2), we now determine a necessary condition which must
be satisfied by a curvature collineation vector in order for it
to satisfy (5.2').

Type Combined first integrals with nec. and suff. cond. C{}1)), . =0 =

Fi3: : i H 3

1(~li C(,-?”ll" —Sk(3'1+” _ (32/2!)k13.l+2b k(J:l)

QIIJ:I + 1) C‘,}f,-"u"'u‘l . Sk (3:1 4+ 2) k(};l + b

* 70 4 2) " 1) i iy iy B2
I CPN ulutu’ ke
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TABLE XA. Combined cubic first integrals concomitant with 7 '*%,

Type Combined first integrals with nec. and suff. cond. C{}?,, =0 =

1[3:2] C([.?;)Z)ui,uiz — sk(3:2+ 1) k13:2|

.I[J:Z + 1) C(}:Z]_ ui.u11 iy k(}:z + 1)
s

3y

A curvature collineation is defined by a vector £ {CC)
which satisfies the condition®

FRy=(& ), — (£ Ti),; =0 (5.19)

It can be shown that a necessary condition for a curvature
collineation is

By — by =0, h;=%.g,. (5.20)
We first use the identity’*

gé'r;:kz%g”(hjl;k + hkl;f - jk;l) (5'21)
to express (5.2) in the equivalent form

L= —g'hy,. (5.22)

By use of (5.22) in (5.19) we find that if a vector & ‘is to define
a curvature collineation and also satisfy (5.2'), then it must
satisfy

P — P = 0. (5.23)
By covariant differentiation of (5.2’) we obtain
i + it + Priy = 0. (5.24)

From (5.24) by use of (5.20), (5.23), and the fact that 4; = A,
we find the curvature collineation must satisfy

Ry =0, (5.25)

which [refer to (j) of Table I] is the condition for a special
curvature collineation. We may thus state the following
theorem:

Theorem 5.6: In a ¥, a necessary condition for a curva-
ture collineation vector & {CC) to be a solution of (5.2) of
Theorem 5.1 is that the vector £ {CC) define a special curva-
ture collineation (refer to Table I).

We continue our analysis of {5.2') by showing how the
existence in Riemannian space~time of a vector £ * which
satisfies (5.2") implies the existence of a concomitant con-
served 4-current.

It follows by use of (5.22) [the above-derived equivalent
form of (5.2)] in the identity given in (5.19) that a necessary
condition for a vector £ to satisfy (5.2) is

ggR le =gim(hlk;mj ~ Bitmt ) (5.26)
Contraction of i and j in {5.26) gives
gngz =g[m(h1k;mi - hik;ml)' (5~27)

By use of (5.24) with a suitable change of indices we may
rewrite (5.27) in the form

gngl = _gim(hkm,li + Aprni + Ries)- {5.28)
From (5.28) we obtain the equation
gklgng[ = - 3h ;kk][. (5.29)

By use of (5.29) in the known identity '

1886 J. Math. Phys., Vol. 22, No. 9, September 1981

(RiE" Yo — %gklgngEO, {5.30)

we obtain as a necessary condition for a vector £ to satisfy
{5.2")

[Ri£“+3n%], =0 (5.31)
By means of the Einstein field equations in the form'®
R} =T} —\T6, (5.32)

condition (5.31) is expressible in the form of conserved 4-
current

J, =0, (5.33)
where the current vector J ' is defined by
J'=(T) =T )E +3h Y. (5.34)

An alternative form for J ' will now be obtained. From
the ldentlty h ki Egkiglmhim and the deﬁnition hyggi;j + §j:1’
we obtain the identity

hi=g"(O%, +&5uw) (O, =g%.;)  (539)

By of contraction of (5.4') with g’ [and the notational
change C %" = £,] we obtain

0%, + &b +8hm =0 (5.36)
Use of (5.36) in (5.35) gives
hil= —g"& k. (5.37)

By means of (5.37) and (5.34) we obtain the above-mentioned
alternative form of J "
J'= (T} — T8 )E* — "™E bion- (5.38)
We summarize the above in the theorem to follow:
Theorem 5.7: If the geodesics (1.1) in a Riemannian
space-time of general relativity admit a quadratic first inte-

gral (with explicit dependence on the path parameter s) of the
form

IPN=¢£u — s&, u't,

as described in Theorem 5.1(ii), then the space~time will ad-
mit a conserved 4-current J (x) in that J/, = 0, where J 'is
defined in terms of the energy—momentum tensor 7' and the
vector £ ' by (5.38) [or equivalently (5.34)].

Remark: We note that for the case in which the vector
£, of Theorem 5.7 defines an affine collineation (A, = 0}
then the current vector J ' reduces to a form discussed
elsewhere.””

Remark: By use of the Ricci identity the necessary con-
dition (5.36) for the existence of a solution to (5.4') may be
expressed in the form'’

OPE,, + 265, — E*Ryn = 0. (5.39)
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Vi. CUBIC FIRST INTEGRALS WITH EXPLICIT PATH-
PARAMETER DEPENDENCE

In this section we examine in detail the explicit path-
parameter dependent cubic first integrals of the geodesics
which are given in Tables VIII, IX, and X. From these tables
it is observed that the existence of such cubic integrals de-
pends on the existence of certain scalar, vector, or second
order tensor fields.

With reference to Table IX we first consider the neces-
sary and sufficient condition

Ciily =0 (6.1)
which the vector field C ¥ must satisfy in order that the
geodesics admit the cubic first integrals 7" and *7 5+ 7

The 24 terms in the expansion of (6.1) can be grouped
into 12 pairs which may be written in the form
Rysr + R + st + Py + Page + Risy + B
+ P + i + P + gy + Ry =0, hy=Fngy

(6.2)

By use of the identity "'

C (13/;\)1 + Cj kil C(:J}ZC ‘3’\]1/) + Cyu\l/) + C ; j]l)l (63)
Eq. (6.1) [and hence (6.2)] can be expressed in the equivalent
form
il + CEJ + €Il + O3l O + )+ )
+CL +COl + CHl + Clal + Clil = (6.4)

The above results relating to the vector-based cubic first
integrals of Table IX may be combined with information
obtained from Tables VIII and X (relating respectively to
scalar-based and tensor-based cubic first integrals) into the
following theorem.

Theorem 6.1: If the geodesics (1.1) in a V,, admit cubic
first integrals with explicit dependence on the path param-
eter s, then such integrals may be divided into three classes:

(i) those based upon the existence of a scalar C *%(x)
which satisfies a necessary and sufficient condition

Clin =0, (6.5)
in which case the integrals are of the forms
1[3:()|_C 13:00 SC IJ:O]ui + (s2/2)c(;;_lj:0)uiuj
— (s*/6)C S Ouut, (6.6)

£[0+ D= C By _ 5O 4 (2/2)C BOuu,
’ (6.7)

sCSuuk (6.8)
(ii) those based upon the existence of a vector C *'"(x)

which satisfies either of the equivalent necessary and suffi-
cient conditions

hij;kl + htj:lk + hyq + hik;[j + hil:jk + hil:l\j + hjk;h‘
+ hjk;i[ + hj,;,\.,» + hj,;,.k + h,\,,;ij + hkl;ji =0, hingcU W8

*I(]:O + Z)Ec(:?i:())uiuj .

(6.2)
or
(3 3:1) (3:1) (3:1 (3:1) 31 3
Chmi + Cil + Cl + C + Ci) + Cla) + Cii
(31 31 31 3
+ CI_/”\ + Cn + C /k)/ + C};k:l) + C(A.,/) =0, (6.4)

in which case the integrals are of the forms
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IP=C My — sCPMu' + (2/2)C T Quwu*,  (6.9)
* [ N=C My — sC Pu'wuk; (6.10)
(iii) those based upon the existence of a symmetric ten-

sor C {"¥(x) which satisfies a necessary and sufficient
condition

ci, =0, (6.11)
in which case the integral is of the form
IP3=C ' — sCPuut, (6.12)

By inspection of Table I we observe that any vector
£ {SCC) which defines a (proper) special curvature collinea-
tion will be a solution to (6.2'} in that £ (SCC) vectors satisfy
;. = 0. Hence by Theorem 6.1(ii) such vectors will define
cubic first integrals with explicit path-parameter depen-
dence. These integrals are in addition to the known concomi-
tant first integrals with no explicit path parameter depen-
dence given in Table I. We may therefore state the theorem
which follows.

Theorem 6.2: If a ¥, admits a proper special curvature
collineation in that there exists a vector £ {SCC) such that
R =0, Ay #0, =% ¢ 5cc 8, then the geodesics (1.1)
of the ¥, will admit the inhomogeneous cubic first integrals
(with explicit dependence on the path parameter s) of the
types

IW=¢ 0 — & u' + (5°/2)€, o u'wiid,

*1|3:l + Ii_z_é-i:juiuj _ ng,jk uiu/uk’
where in each integral £,=¢£.(SCC).

We now investigate whether vectors & {PC),
£ {CONFC], or £ {CM) which define projective collineation,
conformal collineations, or conformal motions, respectively,
(refer to Table I) could be solutions to (6.2’), and thus deter-
mine cubic first integrals with explicit path-parameter
dependence.

We start with the assumption that the ¥, admits a pro-
jective collineation determined by a vector & (PC) which
hence satisfies the defining relation (5.18). Use of (5.18) in
(6.2") leads to
8ibu + 8P + 8t + 81 +8ubs + 8y =0

(6.15)
By contraction of (6.15) it follows that ¢, = O; hence the
projective collineation must be a specia/ projective collinea-
tion® [(e}, Table I]. With ¢, = 0, it follows from (5.18) that
h;. = 0. Thus a sufficient condition for (6.2’) to be satisfied
is for the vector & ' to define a special projective collineation.
We state this in the form of a theorem.

Theorem 6.3: In a ¥V, a necessary and sufficient condi-
tion that a (proper) projective collineation vector [(d), Table
I} satisfy (6.2') of Theorem 6.1 is that the vector be a special
projective collineation vector [(e), Table IJ.

By referring to [(j), Table I it is seen from the discussion
preceeding Theorem 6.3 that every special projective collin-
eation vector [(e), Table I} is a special curvature collineation
vector. Theorem 6.2 is therefore applicable for associating
cubic first integrals which have explicit path-parameter de-
pendence with the existence of special projective
collineations.

(6.13)
(6.14)
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By means of (5.18) the cubic expression &, ;, u'u’u* oc-
curring in the last term of both cubic integrals (6.13) and
(6.14) may be expressed in the form 2¢ , u*g,;u't/. With use of
the metrical first integral® g, u‘% = € this cubic expression
reduces to 2e¢ , u*. This leads us to the theorem:

Theorem 6.4: If a Riemannian space—time admits a spe-
cial projective collineation [£€ ‘=& {SPC) defined by (e), Table
I] the functions

Q(SPC) = (&, + es°¢ ,Ju' — s&,; ju't, (6.16)
*Q(SPC) = — 2esp u' + £, ,u'td, (6.17)

will be quadratic first integrals of nonnull geodesics when
€ = =+ | (in which case the parameter s is the arc length) or
quadratic first integrals of null geodesics when € = 0. The
integrals Q (SPC) and *Q (SPC) are degenerate forms of the
cubic first integrals 7 ¥ and *I *'", respectively, of Theorem
6.2.

Remark: Note that *Q (SPC) reduces toan integral with
no explicit path-parameter dependence when € = 0 [refer to
the quadratic integral obtained from (e), Table I for null
geodesics].

In a like manner results similar to those obtained above
for projective collineations which satisfy {6.2') may be shown
to hold for conformal collineations [(h}, Table I] or confor-
mal motions [(f}, Table I] which satisfy (6.2). These results
are given in the theorems below.

Theorem 6.5: In a ¥, a necessary and sufficient condi-
tion that a (proper) conformal collineation vector [(h), Table
I] satisfy (6.2') of Theorem 6.1 is that the vector be a special
conformal collineation vector [(i}, Table I].

Theorem 6.6: If a Riemannian space—time admits a spe-
cial conformal collineation [£ '=¢ (SCONFC) defined by (i)
of Table 1], the functions

Q(SCONFC) = [£,(€/2)s’r, |u' — s&, ju'se, (6.18)

*Q(SCONFC) = — es7,u' + &, ,u'w, (6.19)

will be quadratic first integrals of nonnull geodesics when

€ = =+ 1 {in which case the parameter s is the arc length} or
quadratic first integrals of null geodesics when € = 0. The
integrals Q (SCONFC) and *Q (SCONFC) are degenerate
forms of the cubic first integrals I **" and *I *'"), respectively,
of Theorem 6.2.

Remark: It is noted that *Q (SCONFC) reduces to an
integral with no explicit path-parameter dependence when
€ = 0 [refer to the quadratic integral obtained from [{i), Ta-
ble I] for null geodesics.

Since every conformal motion is a conformal collinea-
tion [in which case 7==0; refer to (f) and (h) of Table I] we
have the following theorem.

Theorem 6.7: In a V, a necessary and sufficient condi-
tion that a (proper) conformal motion vector [(f), Table I]
satisfy (6.2') of Theorem 6.1 is that the vector be a special
conformal motion vector [(g), Table I].

By use of the conformal motion condition [(f), Table I]
the quadratic expression £, ,u'%’ occurring in (6.18) and
(6.19) may be expressed in the form og,u'%’. We may thus
state the theorem to follow.

Theorem 6.8: If a Riemannian space—time admits a spe-
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cial conformal motion [£ ‘=¢£ {SMC) defined by (g) of Table
I], the functions

L (SCM)= —eso + [£; + €(s*/2)0, |u,
*L (SCM)=¢{o — so 1),

will be linear first integrals of nonnull geodesics when

€ = + 1 (in which case the parameter s is the arc length) or
linear first integrals of null geodesics when € = 0. The inte-
grals L (SCM) and *L (SCM) are degenerate forms of the cu-
bic first integrals 7" and *I'*", respectively, of Theorem
6.2.

Remark: For the case in which o = 0, = const (i.e., the
special conformal motion is taken to be a homothetic mo-
tion) the integral L (SCM) [(6.20)] reduces to L (HM) [(5.12)].

Remark: For the case € = 0 it is noted that *L (SCM) is
trivial and L (SCM) reduces to the well-known integral with
no explicit path-parameter dependence [refer to (g), Table I].

Remark: With reference to Theorems 6.4, 6.6, and 6.8
the existence of a special projective collineation, a special
conformal collineation, or a special conformal motion im-
plies the existence of the respective parallel vector fields
¢, T;0ra,. Hence by Theorem 4.1 there will exist in each
case a concomitant linear first integral of the form (4.2),
which for the case of the special conformal motion is equiv-
alent to the integral (6.21), *L (SCM), of Theorem 6.8 (with
€= £ 1)

We conclude this section with an example that illus-
trates Theorems 6.1 and 6.2 of this section in addition to
several of the theorems contained in preceeding sections.
Consider then the Einstein cosomological space—time

dg?= — ¢~ [(dx'] + [@dx) + (dx’V'] + (dx*),(6.22)
where

Y=1+(Ky/9[(x') + () + (7],

The geodesics in this space-time take the form

(6.20)
(6.21)

(6.23)

“ o
‘{di‘ + %(xz—“uvuv + 'zcz_u#u# _ vaxvuu) =0, u,v= 1,2,3,
s
(6.24)
4
a’ _ o (6.25)
ds

In order to formulate the various first integrals with
explicit dependence on the path parameter s that illustrates
the above-mentioned theorems, we first summarize the re-
quired prerequisite symmetries which are admitted by the
space—time (6.22).

In addition to the Killing vector

C% = p§i, b= const, (6.26)
which is a parallel vector field based on the scalar C"*,
C"0==pyx* Cfiljzﬂ) =0, 6.27)

this space—time admits a six-parameter group of motions de-
fined by the vectors

£ M)=[7n"7"7"01, (6.28)
where the three-dimensional vectors 77* (parameters
W= — WA Y= 1,2,3)
P=wtx" —a, [(2x"x* — & )Ky/4 — 8] (6.29)
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define a six-parameter group of motions in the constant cur-
vature subspace K, with line element

di* = ¢~ ?[(dx')? + (dx?)* + (dx*)’). (6.30)

It can also be shown'® that the ¥, (6.22) admits a (prop-
er) special curvature collineation based on the vector

gi(SCC)E[ﬂ#»al(Xd)z + ﬁl'x4 + ¥l

a,#0, a,,B,y; = const, {6.31)
in that
hij;f(f = O’kij;k = M;é?&?&z ,hq Egg(scng. {6.32}

It is also easily verified that the ¥ (6.22) admits a (proper)
affine collineation based on the vector

EAC)=[n"ax® + B,),a,7#0, a,B, = const, (6.33)
in that

hyw =0, h; =2a,8!8], h;=X;ac8;- (6.34)
In both (6.31) and (6.33) * is the motion vector (6.29) of the
subspace K.

The space-time {6.22) admits scalars C*® and C 9,
where

C(2:0]Ea3(x4)2 + ﬁ3x4 + Y3 as #01

Ci =0, C§%=2a;5!5}; (6.35)
CPO=q x*) + Bx*Y + yux* + 8, @, #0,
C =0, CU0=6a,85%, (6.36)

where a,, B, 75 and a,, B, 74, 8, are constants.

With reference to the above symmetries we may now
formulate certain integrals with explicit path-parameter de-
pendence which exemplify the various theorems.

Based on the existence of the parallel field given by
{6.26), (6.27) we obtain by means of Theorem 4.1 the linear
first integral

T00 = b (x* — su). (6.37)

As a consequence of the existence of the scalar C*?
given in (6.35) we obtain the quadratic integrals 7 *% and
#7120+ 1 described by Theorem 5.1. These can be expressed
in the forms

I = ay(x* — su®)? — Bylx* — su) + 4, (6.38)

O = 2g,(x* — sutjut + But. (6.39)

Concomitant with the existence of the affine collinea-
tion vector (6.33} we obtain by Theorem 5.2(i) [by use of
(6.28), (6.29), (6.34)] the quadratic integral*®

I = a(x* — sublu® + Bou* + &, (Mu*,  a,#0.

(6.40)

As a result of the existence of the scalar C*¥ given by
(6.36) we may obtain the cubic integrals 7>, *I3°+1 and
#7850+ 2 described in Theorem 6.1(i). These integrals can be
expressed in the forms :

1(3:0) = (Z4(X4 _ Sud)} +ﬁ4(x4 _ 534)2
+ yalx* —sut) + 8, (6.41)

174 (3:0 + 1) _ [3a4(x4 — SU4)2 + 2ﬁ4(x4 — Su4) -+ 741144’ :
(6.42)

*1(3;0 +2) — {6a4(x4 . su“) + 2/34]34144. (643)
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From the existence of the special curvature collineation
vector (6.31) we evaluate [with use of (6.32)] the cubic inte-
grals 7Y and *I%! + ! given by Theorem 6.1. (ii). These
integrals may be expressed in the forms'®

I(J:l) — [ar(x‘t . Su4)2 +/31(X4 _ SU“) + }’y]u4 + é},(M)u“,
(6.44)
[N = g (x* — sut) +[J’,]u“u4. (6.45)

Associated with the seven Killing vectors (6.26} and
(6.28) it is easily shown [refer to (a), Table I] that the well-
known concomitant linear first integrals without explicit
path-parameter dependence take the form

Ib)=u" (6.46)
Ieta,)=£ (Mu”. {6.47)
Inspection of the explicit path-parameter dependent in-
tegrals (6.38)—(6.45) obtained above shows that they are func-

tions of the linear integrals (6.46), (6.47), and (6.37). In gener-
al such a functional dependence will not occur.

VIl. NULL GEODESIC QUADRATIC FIRST INTEGRALS
WITH EXPLICIT DEPENDENCE ON THE PATH-
PARAMETER

In this section we shall examine in more detail the null-
geodesic quadratic first integrals of the form

ngiui_sgi;juiujv gizgi(x)v (71)
which were shown to arise [refer to (6.16) of Theorem 6.4 and
{6.18) of Theorem 6.6] as degenerate cubic first integrals
(based on special curvature collineations) whenever the
space-time admits special projective collineations [(e), Table
I] or special conformal collineations [(i), Table I}.

By forming the absolute derivative of Q along a null
geodesic we immediately obtain

Z—sgé %h,j:ku'zt’u", hijsg_gg,’j =§i;j +§j;." (72)
Since on null geodesics g,u't’ = 0, it follows that h,;, u's/u*
vanishes for those 4, based upon either projective collinea-
tion vectors &,==£,(PC) [refer to (d), Table I] or conformal
collineation vectors &,=¢,(CONFC], [see (h), Table I]. It.is
noted that these collineations are more general than the spe-
cial projective collineations or special/ conformal collinea-
tions which lead to Theorems 6.4 or 6.6, respectively.

In a similar manner (7.2) will vanish if the space-time
admits a seminull geodesic collineation. Such collineation
map null geodesics into nonnull geodesic and are defined by
vectors which satisfy the condition?

hij;k zgjk¢,i + 8 ¢Ja h!‘ng;‘(SNGC]gij' (7.3}

We summiarize the above in the theorem to follow.

Theorem 7.1: The null geodesics (1.1) in a Riemannian
space-time will admit a quadratic first integral (with explicit
dependence on the path parameter s) of the form

Q=¢u' —s&, u (1.1
if the space-time admits

(i) a projective collineation [defined by the vector
£:(PC), (d), Table I] in which case £, =&,(PC)in(7.1), or
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(ii) a conformal collineation [defined by the vector
£,(CONEC), (h), Table I] in which case £, =£&,(CONFC]} in
(7.1), or

(iii) a seminull geodesic collineation [defined by the vec-
tor £,(SNGC), (7.3)] in which case §,=¢&,(SNGC}) in (7.1').

Asanillustration of Theorem 7.1 we shall formulate the
null geodesic quadratic first integral with explicit depen-
dence on the path parameter (7.1°) for a Friedmann-Le-
maitre cosmological space—time which admits a projective
collineation.

Consider the space—time with fundamental form

— x/a,

— e

dé? = _Wﬁ_'.ndx')z + (dx*)? + (dxP] + (dx*,
(7.4)
where
W=1+Ky, r=(xV+(x)+(x, (7.5)

and K, and g, are constant, a,7#0.
The null geodesics for this space-time are given by

14 ¥
gl_l__ + 2K()x wu — 4K()xvuvu,u _ iuuunt — O, (76)

ds w w a,

4 — x*/a,
ey o, (7.7)
ds  2a,W?

where the tangent vector to the null geodesic u' = dx'/ds
satisfies the null vector condition g;u's’ = 0, which by (7.4)
takes the form

— x*/a,

—e
WZ
By use of {7.8) the geodesics equation {7.7) may be re-
duced to
4
a1 o, (7.9)
ds 2a,
It is a straightforward calculation to verify that this
space-time admits a (proper) projective collineation defined

by the vector?®?!

£'(PC) = (0,0,0,a0 e~ *"™), (7.10)
and that this projective collineation is not a special projective
collineation, in that ¢ ; # 0 [with reference to (5.18) it may be
shown by contraction with g; that ¢ , = 1£ 1, (PC)].

Based on the vector (7.10), the quadratic integral (7.1')
for the null geodesics of the space—time (7.4) takes the form

wu’ + uw'u* =0. (7.8)

Q PC . 4 s e~ 2x*/a,
=ape” U - — ———u'u"
( ) 0 2 W2
+ se /oty (7.11)
With use of the null-vector condition (7.8) this integral

is reducible to the form

Q'(PC) = e~ */%[a, + (s/2u*]u*. (7.12)

Vill. CONCLUSION

For arbitrary geodesics in Riemannian spaces V, we
have found the basic forms of a// mth-order (in general inho-
mogeneous in the tangent vector) first integrals with explicit
dependence on the path parameter and obtained necessary
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and sufficient conditions for the existence of such integrals.
It was shown that these integrals must have polynomial
structure in the path parameter. If one mth-order first inte-
gral with explicit dependence on the path parameter existed,
then it was shown in general there would exist a whole family
of these mth-order integrals, all associated with the same
“symmetry condition.”

It was observed that the existence of some well-known
symmetries such as homothetic motions (scale change), af-
fine collineations, conformal motions, projective collinea-
tions, special curvature collineations, etc. was sufficient for
the existence of certain of the first integrals of the above-
mentioned type. We find this result to be of particular inter-
est in that previously it was only known that such geometric
symmetries led to homogeneous first integrals without ex-
plicit path-parameter dependence.

Aside from the four given examples of space~times
which were known to admit some of the above well-known
symmetries, we have made no systematic attempt to solve
(for a particular space-time) any of the necessary and suffi-
cient conditions for the existence of mth-order first integrals
with explicit dependence on the path parameter. There is
thus the possibility that general solutions to some of the nec-
essary and sufficient conditions exist and can be obtained for
those space—times we considered, as well as for other space-
times of physical interest—possibly even for those space—
times which do not admit any of the well-known geometric
symumetries.

As yet, we have made no attempt to interpret physically
those integrals with explicit path-parameter dependence
which we derived for illustration purposes. However, such
interpretations appear to be possible particularly for the ex-
amples based upon the cosmological space-times.

In this paper we considered the problem of obtaining
integrals with explicit path-parameter dependence primarily
for arbitrary geodesics. With reference to Riemannian
space~times this led to integrals for both null and nonnull
geodesics. However, in certain portions of our analysis some
immediate results were obtained concerning the existence of
first integrals with explicit dependence on the path param-
eter for restricted type geodesics (i.e., either null or nonull).
Of particular interest is the result that null geodesics admit a
quadratic first integral with explicit path-parameter depen-
dence whenever the space-time admits a projective collinea-
tion. At the present time we are making a detailed analysis of
the restricted geodesic case.

An additional investigation of interest would be to ap-
ply the Noether theoretical approach to the problem of ob-
taining geodesic first integrals with explicit path-parameter
dependence. By means of this approach we have analyzed (in
a separate investigation) the related problem of determining
explicit path-parameter (time-) dependent quadratic and lin-
ear first integrals of dynamical systems with simple velocity-
dependent potentials in Riemannian configuration space,
and have derived necessary and sufficient conditions for the
existence of such integrals along with the form of the associ-
ated Noether symmetry mappings. It is clear that the geode-
sic case for linear and quadratic integrals is included in the
above-mentioned Noether analysis.
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{m)
[T e
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The (nonlinear) sigma model is defined as a field theory whose configurations are sections of a
nontrivial fiber bundle over space-time. The action functional is a generalization of the “energy”’
used in the theory of harmonic maps. This definition requires minimal coupling to a Yang-Mills
field, and the solutions of the coupled equations exhibit spontaneous symmetry breaking. It is
shown that in a Higgs phenomenon making use of a sigma model instead of the Higgs fields, no

scalars would survive symmetry breaking,

PACS numbers: 02.40.Ma, 11.10.Lm

1. INTRODUCTION

The main motivation for this paper was the belief that at
least at the classical level, nature should be described in geo-
metrical terms. This philosophy' is substantiated by the ob-
servation that the two most successful physical theories, gen-
eral relativity (describing the spin-2 sector) and gauge
theories (describing the spin-1 sector), are both of essentially
geometric character. Thus it would seem natural to try to
construct a realistic theory in which the bosonic sector is
totally geometrized; this is the case if the scalars in the theory
are sigma fields, whose self-interaction is due to the Rieman-
nian structure of the internal space.

In the first part of the paper, I give a global definition of
sigma model, which allows the existence of so-called “twist-
ed”? field configurations. The logical necessity of introduc-
ing twisted fields can be made clear by means of the follow-
ing simple argument. Let us take a very general attitude and
regard a field configuration simply as a mapping ¢:X—Y
where X is space-time and Y some ““internal” space (the field
space). To any such mapping there is associated another
mapping (the “graph” of @) o: X—X X Y defined by

alx) = (x,@ (x)) VxeX, (1.1)

which is a cross section of the trivial bundle X x Y. If we
focus our attention on the graph o instead of ¢, it becomes
natural to generalize the definition of field configuration in
order to include sections of nontrivial bundles: these are the
so-called twisted fields.

Another motivation comes from the fiber bundle for-
mulation of gauge theories: if we regard a Yang-Mills field
as a connection in a principal fiber bundle over space-time,
the minimally coupled matter fields are naturally interpret-
ed as sections of associated fiber bundles.

Twisted scalar (¥ = R or C) and spinor (¥ = C?) fields
have been studied in some detail both from the classical and
the quantum viewpoints*; besides their intrinsic simplicity,
this choice was motivated by two facts: (1) vector bundles
always admit sections and (2) in the case of the scalars, the
structure group is Z, and thus there is no need of introducing
connections. While these special features allowed to perform
explicit computations, it might be of some interest to begin
studying the properties of more complicated or more general
models which do not share them; it is precisely the purpose
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of this paper to examine the case when Y is a Riemannian
homogeneous space. The possibility of doing this has already
been noticed [Refs. (1) and (2)]; although the procedure to be
followed proves fairly straightforward, there are some inter-
esting facts which I believe are worth being spelled out in
detail. As a by-product, I obtain the recipe for coupling mini-
mally a G /H-valued sigma model to a G Yang—Mills field.
This might be of some interest in itself as is shown by the
sigma-model-induced Higgs phenomenon, mentioned in
Sec. 4; the fact that there are no scalar fields in the theory
when the symmetry has been broken might be of some use in
bringing order in the jungle of grand-unified theories.

Throughout this paper, I will use the following termin-
ology: by ‘“‘sigma model” I mean a nonlinear sigma model,
and by a “linear theory” I mean a theory for which Yisa
linear vector space, irrespective of any interaction term in
the Lagrangian.

2. PRELIMINARIES

I will collect here the terminology and some facts on
fiber bundles; the reader is referred to the classical texts® for
more information. A differentiable fiber bundle with total
space B, base space X, projection 5:B—X, fiber Y, and struc-
ture group G will be denoted (B,5,X;Y,G ) or simply B; the
associated principal bundle is (P,7,X;G ). The principal map
is y:P X Y—B,; fixing the first entery we have a map y
Y—f ~ !(m(p)) defined by y,( y) = x (p.y) and fixing the sec-
ond entry we have a bundle homomorphism y,:P—B de-
fined by v, (p) = y (p.y). If {U,} is a family of coordinate
neighborhoods for Pand ¢ ,:U, X G—7 ~ (U ) are local tri-
vializations of P, the principal map can be used to induce
local trivializations of B ¢, :U, X Y—B ~'(U,) in the fol-
lowing way: if p = ¢, (x,8)eP and b = y (p,y)eB, then
b = 9 ,(x,gy). A local trivialization of P (a local gauge) can be
fixed giving a local section s, :U,—7 ~ '(U,) and requiring
that it has the form s, (x) = ¥, (x,e), where xeU, and e is the
identity of G. A gauge transformation is a change of triviali-
zation, i.e., a change of local section

$4(X)—54(X) = Ry (8.4 {x))- (2.1)
If  is a connection form in P, the YM potential in the gauge
defined by S, is®

B, =B,'e, =s%w. (2.2)
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Similarly, if 2 = Yo is the curvature form of the
connection,

F, =F e, = s%2, (2.3)
is the YM field strength. Under (2.1) they transform in the
well-known way

B, =g 'B,g+g 'dg,

(2.4)

F,=g 'Fg
The sections o:X— B are in one-to-one correspondence with

G-equivariant mappings 5:P—Y (Husemoller in Ref. 5, p.
46):

GoR, =L ; '9G. (2.5)
Given &, o is defined by
olmip)) = x b,5p)), (2.6)

The local representativeof Gon U, is @, :U,—Y defined by
@4 =009s,. (2.7)
Choosing p = s, (x) in (2.6} we find
o1x) = P (x.p4 (¥)), 2.8)

and thus @, is also a local representative for ¢. Under (2.1)
@, transforms as

ph=L;"op,. (2.9)

The left action L:G X Y— Y is represented in coordinates® by
functions’

(L (p)* = Lg'y").
The generators of G realized on Y have components

Loy = 2Ly

i

(2.10)

(2.11)

dg' g=e.

3. TWISTED SIGMA MODELS

Let Y = G /H, be a homogeneous space with a left-G
invariant Riemannian structure 4, and X be space-time,
with a Riemannian structure g. A field configuration for a
locally G /H-valued sigma model is a section o:X—B of a
fiber bundle (B,3,X;G /H,G ). When B is trivial, the energy of
the configuration o is given by®

1
Elo] = 7L(d¢,d¢>)-n, (3.1)

where ¢:X—G /H is related to o by (1.1), 7 is the volume

element ,/detgdx' A dx* A dx* A dx* canonically defined by g
and (do,dp) = g3, ¢ “3, ¢ °h, ;.5 In order to generalize this
to the case when B is nontrivial, we have to define in a sensi-
ble way the derivative of a cross section; this is well known in
the case of vector bundles but not for general fiber bundles,
so I will outline the procedure. If I'" is a connection in the
principal bundle (P,7,X;G ) associated to B, the vertical and
horizontal subspaces ¥, and H, of T,(B) are defined as the
images of the vertical and horizontal subspaces V, and H, of
T,(P) under the map o, :7,(P)—T,(B), where b = y,(p)
and 0 is the “origin” of G /H, i.e., the distinct point whose
isotropy group is H. Thus I" defines a parallelism in B: if (),
0<#<1lis a curve in X with ¢(0) = 7(p) = B (b) = x and

¢(l) = x" we can define the horizontal lift of ¢(¢ ) in B, &(z),
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0<t< 1 with é0) = b and the point &(1)e8 ~ '(x') will be called
the parallel translate of b along ¢(t ). Varying b we obtain thus
a diffeomorphism between fibers: 7, (x,x'):3 ~ '(x}—>8 ~'(x').
Let o:X—B be a cross section and v be the vector

v =(d /dt)c(t)|,_, tangent to c(t ) at x. Varying ¢, olc(t)) is a
curve in B and 7_{c(t ),c(0))-o{c(?)) is a curve in the fiber

B ~'(x); we define the covariant derivative of o at x along v to
be the vertical vector

D o= 4 7.(c(t )x)olc(t)) . (3.2)
dt =0

It is clear how this definition at a point x has to be general-
ized to all of X: if v is a vector field on X, & 0|, = Z 0
and & o is a section of the vertical bundle V=u, ¥V,
C T (B). If B were a vector bundle, ¥ would be canonically
isomorphic to B and thus & ,o would be another section of
B.

Formula (3.2) is not very practical in order to obtain an
explicit form, so we turn to the equivariant mapping
6:P—G /H associated to o. The covariant differential of G is
defined by

96 =horde:H,—T;,(G/H), (3.3)
and the covariant derivative of & along veT, (p)

D ;6 = D 6(0) = dathord)eT,, (G /H). (3.4)
The definitions (3.4) and (3.2) are related by

D 0= Ype D 56, (3.5)

where Y, : 75, (G /H )=V, (55 = Vg and v = mu0. The
proof of this is the direct generalization of the proof of the
lemma on p. 116, Vol. I of Kobayashi and Nomizu.® From
(3.4) one obtains an explicit formula; defining & ¢,
=9,,.,0,9,=2,,andB,’, =B,'e,) we have

@uwi = u¢j +BAI;LL 7(¢A}1 (36)
where ¢ § are the coordinates of the image of ¢, . The explic-
it computation is given elsewhere.® Since @, is also a repre-
sentative for o, we may regard (3.6) as the explicit form of
Yo.

In the familiar case when Yis a vector space supporting
a representation p:G-—~GL (Y),

L =(T 594, (3.7)
where T; = (d /dt |p(expte;)|, _ , are the images of the gener-
ators ¢; under p.

The transformation law of & o under (2.1) is easily
found from Eq. (3.3); from the differential of (2.5) and Hgg(p)

=R, H, we have Z3°R,, =L . '0% 5, and thus

Z.94i=L D¢, (3.8)
as expected. This could also be checked directly using (2.4)
and the properties of the auxiliary functions L ¢.

Having done this, it is now simple to find the generaliza-
tion of (3.1}. Let ¢, and ¢, be local representatives of o on
U, and Uy respectively: o(x){,, = V4 (6,04 (%)), olx)|y,

= 5 (x,@5(x)) where @, (x) = g, (x)p4 (x) VxeU,nUp.
Then the transformation law (3.8) and the fact that G is an
isometry group for ¥ imply

(D, Dps) =L @p, D pp).
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Therefore, if { £, } is a partition of unity subordinate to the
covering { U, }, we define

1
Elol= 53 | fuDp.DpIn. (3.9)
24 Ju,
Symbolically, we will also write

Elo]l = L J(Da,Da]-n. (3.10)

2

The minima of E [o] in the space of sections for a given con-
nection ["in Pwill be called harmonic sections of B. Physical-
ly, it is natural to suppose that the Yang—Mills field is also
dynamically active, so we can add to (3.10) the term

1 . .
Elol= — + [¢"¢"FL,Fly,m (3.11)
X
Following de Witt,® the YM coupling constant has been ab-
sorbed into the scalar product ¥ in the Lie algebra .

4. SYMMETRY BREAKING

In the previous sections we assumed implicitly that the
fiber bundle B admits cross sections; indeed, it is obvious
from physical considerations that B must admit continuous,
global cross sections if it has to be physically interesting. But
not all fiber bundles do admit global cross sections; the key
theorem is the following (in Ref. 5 see Husemoller, p. 71;
Kobayashi and Nomizu Vol. 1, p. 57):

Theorem: The bundle (B,3,X;G /H,G ) admits a cross
section if and only if the associated principal bundle
(P,7,X;G ) admits a reduction to a principal bundle
(P',7' X;H ); in this case, B is associated to P'. Furthermore,
there is a one-to-one correspondence between cross sections
of B and reduced bundles.

Let us see how P’ is defined. First of all we have the
commutative diagram

P B

\ K 4.1
”Xﬁ 4.1

where 7:P—B = PmodH is the natural projection (Huse-
moller p. 70; Kobayashi and Nomizu p. 57).° P’ is the inverse
image of the section ¢ under 7

P =1 '(o{X)) = [peP |7(p) = olm(p))}, (4.2)

and 7' is the restriction of 7 to P’. (P,7,B;H ) is a principal H-
bundleand P’ can be regarded as the pull-back of this bundle
to X induced by o. In fact

o*(P—B) = {(x,p)eX X P |o(x) = 7{p)}, (4.3)

and the projection of o*{P—B ) maps (x,p) —>x. But
o(x) = 7{p) implies x = 7{p) and therefore (4.3) coincides
with {4.2).

Since homotopic maps X— B induce X-isomorphic bun-
dles, the topology of the reduced bundle P’ depends only on
the topology of P and on the homotopy class of the section 0.
The classification of principal H-bundles over four dimen-
sional manifolds is dealt with in Ref. 10. In physical terms,
the theorem above asserts that every solution (indeed, every
configuration) of the sigma model leads to a spontaneous
breaking of the symmetry (gauge) group from G to H.
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When solving the equations of motion deriving from
(3.10)and (3.11) one can think from the outset that the Yang—
Mills potential B is a connection in the reduced bundle P’.

Let us now consider two special cases in which a con-
nection in the bundle P plays a role.

Let w be a connection form in P, by a well-known theo-
rem (Kobayashi and Nomizu Vol. 1, p. 88)° the restriction '
of w to P’ defines a connection in P’ if and only if the section
0:X—B related to the reduction from P to P’ is covariantly
constant with respect to the connection o, i.e.,

Do =0.

In this case o is a minimum for (3.10); if @ is a solution of the
YM field equations, so is @’ and thus (@',o) is a solution of the
coupled YM-sigma field equations. An explicit example of
these solutions is given elsewhere.''

The second example is a sigma-model version of the
Higgs phenomenon. Start with a G-YM field and suppose we
want to break down the gauge symmetry to H. To this end,
couple minimally the YM field to a G /H-valued sigma mod-
el as in Egs. (3.10) and (3.11).

We require G /H to be a (weakly) reductive homogen-
eous space;'” that is to say, there exists an Ad., (H ) invariant
linear subspace % C & such that ¥ = % @ . Then, we
can identify & with 7,{G /H ) (O being the coset H jand if v is
an inner product in %, we can take A to be the unique left-
invariant metric in G /H that coincides with the restriction of
yto 7 at 0. L ¢ is then the ath component of the ith Killing
vector of G /H in the metric 4. Let {e; } be a basis for ¥ such
thate,,i = 1,...,d form a basis for # and e,,i =d + 1,...,n
form a basis for ##". The first d Killing vectors form a field of
bases on G /H:

hyL?L? =y, i, j=12,..4d.

We are now ready to break the symmetry. Choose the *‘con-
stant” global section ¢, = 0 V4, then

Elo]l= -;—z fffg‘“’B Bl L HO)L £(0)h,5(0)7y.
4 Ju,

It is always possible to perform local gauge transformations
by elements of H, such that B, has vanishing components on
the subspace . (this is the “‘unitary” gauge); then, by the
discussion above

1 v d i j
Elo]l = 7 Z fa 8 Zi,jBA,LBJAvVijU
A Jo, 1

has become a pure mass term for the & -components of the
YM field. The remarkable fact here is that unlike in the usual
case there are no scalar fields surviving the symmetry break-
ing. The condition of (weak) reductivity holds in any one of
the following cases: H is discrete, H is compact, f is semi-
simple and connected.

'C. W. Misner, Phys. Rev. D 18, 4510 (1978). Of course, the idea is much
older and goes back at least to Riemann.

2C. J. Isham, Proc. R. Soc. London Ser. A 362, 383 {1978).

*W. Drechsler and M. E. Mayer, *‘Fiber bundle techniques in Gauge The-
ories,” Lecture Notes in Physics (Springer-Verlag, Berlin 1977}, Vol. 67; A.
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On the inverse problem of the calculus of variations
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We consider the inverse problem of the calculus of variations for any system by writing its
differential equations of motion in first-order form. We provide a way of constructing infinitely
many Lagrangians for such a system in terms of its constants of motion using a covariant
geometrical approach. We present examples of first-order Lagrangians for systems for which no
second-order Lagrangians exist. The Hamiltonian theory for first-order (degenerate) Lagrangians
is constructed using Dirac’s method for singular Lagrangians.

PACS numbers: 03.20. + i

1. INTRODUCTION

Even though in classical mechanics the dynamical evo-
lution of a system is completely characterized by Newton’s
equations, the idea of formulating the theory in terms of a
variational principle {(Lagrangian or Hamiltonian approach)
has proved to be very useful in suggesting very effective simi-
lar constructions in other areas of physics like quantum me-
chanics or field theory. It is also well known that the stan-
dard prescription L = T — V for constructing the
Lagrangian only works either for conservative systems
{(where the potential energy ¥V is a function of position only)
or for some very special velocity-dependent forces like the
Lorentz force in electromagnetism. There still remains a
great many classical systems which do not correspond to the
above-mentioned cases and which are consequently lacking
a variational formulation.'

Having in mind possible extensions to systems possess-
ing some kind of gauge freedom like the classical relativistic
particle (or the electromagnetic field), for example, where it
is impossible to solve for the acceleration in the equations of
motion and recover a Newton-like equation of the form
X = F(x,x,t), onerealizes that it is also convenient to enlarge
the class of dynamical differential equations under discus-
sion. To this end, we will pursue the idea that a mechanical
system is characterized by a complete set of trajectories in
configuration space and we will consider as perfectly admis-
sible any dynamical set of differential equations which re-
produces the given orbits as the complete set of their solu-
tions. Let us remark that this point of view defines a class of
equivalent Lagrange functions which 1s broader than the
usual one where its elements differ only by the total time
derivative of an arbitrary function. These are the so-called s-
equivalent Lagrangians and they have been studied recently
by several authors.”™®

It is worth reminding the reader that two Lagrangians
which are related by a total time derivative yield the same set
of differential equations. On the other hand, s-equivalent La-
grangians®*® give rise to families of differential equations,
which in general are not the same, but their complete set of
solutions coincide.

A closely related (although wider) subject is that of the
inverse problem of the calculus of variations, which consists
essentially in trying to find all Lagrangians that under vari-
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ation will give rise to a system of differential equations with a
given complete set of solutions. Much work along this line
has been published lately.>*""!

In this note we consider the inverse problem of the cal-
culus of variations for any system of differential equations in
which the highest derivatives can be algebraically solved for.
In other words, we restrict ourselves to regular [i.e., non-
gauge, nonconstrained) systems only,'> and we look for La-
grangians which reproduce such systems of equations when
written in first-order form.

The inverse problem of the calculus of variations was
solved for the one-dimensional case by Darboux in 1894'*
and the extension to two dimensions was carried on by
Douglas in 1941." They both considered a second-order for-
mulation of the differential equations and Douglas exhibited
some examples of them for which the Lagrangian simply did
not exist.

Recently Havas,'* Santilli,* Sarlet,® and others started
looking at this problem using a first-order formalism for the
differential equations which, of course, leads to first-order
(degenerate) Lagrangians.

We emphasize that the use of first-order Lagrangians is
widespread in physics, even though they are degenerate. Asa
matter of fact, in some cases they are more convenient than
the corresponding second-order versions. One of these in-
stances is found in the success and simplicity of the first-
order version of supergravity.'® Some other well-known ex-
amples of their use are the description of fermionic degrees
of freedom, the so called Palatini variational principle, and
Schwinger’s action principle in quantum mechanics. It is
also worth mentioning the fact that even for such degenerate
Lagrangians it is possible to construct a Hamiltonian theory
by using Dirac’s method for singular Lagrangians.'®"’

As is well known, any system of differential equations
can always be equivalently written in first-order form by
introducing an adequate number of new variables, which are
functions of the first derivatives of the initial variables.® A
familiar example of this procedure is the Hamiltonian for-
mulation of classical mechanics where the momenta are the
new variables needed. Another possible choice of new varia-
bles is the velocities themselves.

Havas'® has shown that when a given system of differ-
ential equations is written in first-order form it is possible to
find more than one Lagrangian which reproduces the corre-

®© 1981 American Institute of Physics 1896



sponding set of solutions. Our work can be regarded as a
continuation and further elaboration of Havas’s paper.

The work contained in Refs. 3 and 6 is restricted to the
so-called self-adjoint systems and for such cases an algo-
rithm to construct the Lagrangian is provided. Only for
some particular cases is it shown how to write a system in
self-adjoint form and a general prescription to perform this
transformation is not given.

In Sec. 2 we discuss different variational principles used
in physics and we justify the adoption of the so-called
Weiss’s principle for first-order Lagrangians.

Section 3 of this paper is devoted to the construction of
a first-order formulation for second-order dynamical sys-
tems. There we establish our notation and also make contact
with some previous work along this line done by other
authors.

In Sec. 4 we present a different approach to the inverse
problem of the calculus of variations in its first-order form.
The central objects of our formulation are the constants of
motion associated with the differential equations together
with a (covariant ) geometrical interpretation related to the
fact that the dynamics for a given system is uniquely deter-
mined by a given vector which corresponds to the direction
of the tangent to the solution curve in some specified space.
In terms of the constants of motion, whose existence is guar-
anteed by some very general assumptions (but whose explicit
construction might usually prove difficult in practice), we
provide an explicit local method for constructing infinitely
many first-order Lagrangians for a given system of curves.

Section 5 contains two examples of first-order Lagran-
gians for systems for which no second-order Lagrangian
exists. '

Section 6 is a summary of the work together with some
comments related to the further use of these ideas and
methods.

Finally, the Appendix deals with the construction of the
Hamiltonian theory for first-order Lagrangians using Dir-
ac’s method.'®!”

2. VARIATIONAL PRINCIPLES

To describe a physical system one may define different
variational principles. Two of them are the so-called Hamil-
ton’s and Weiss’s principles, the latter being also known as
Schwinger’s action principle in its quantum-mechanical
version.

Hamilton’s (or fixed end points) principle establishes
that the desired equations of motion are obtained from a
given action S,

1

S=| Lig'.g't)d:, 2.1)
f

by requiring

8S=0 (2.2)
for arbitrary

S5qt), t,<t<t, (2.3)
and

dq'(t) =0, (2.4)

for t = ¢, and r = 1,. The equations of motion have the well-
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known form

4 (5_‘3 ) _9L _,
dt\ag /) o¢
and conditions (2.4) agree with the boundary conditions
needed for the integration of system (2.5) for a nondegener-
ate Lagrangian det(d”L /3¢'d¢)#0.

On the other hand, Weiss’s principle requires S tobe a
function of the end points only and identifies the coefficients
of 5¢' and 6¢, at the end points, with the momenta (p,) conju-
gated to ¢ and (minus) the Hamiltonian { — H ), respectively.
The equations of motion obtained are the same as before, i.e.,
system (2.5). The definitions of p; and H coincide with the
ones usually adopted for the transition from the Lagrangian
to the Hamiltonian theory.'”

Consider now the first-order action principle which is
used for defining the usual Hamiltonian theory, i.e.,

(2.5)

p, = 3L /g, (2.6)
H=H(q'p;t)=p.g'— L (q'4't), (2.7)
L=L(d'd'\ppt) =pid' — H (o). (2.8)

The new action principle defined by L is now based on 2x
independent variables ¢' and p; and the equations of motion
are obtained by requiring

85=0 (2.9)
for arbitrary
8qt), 8p;lr), ty<t<t, (2.10)

and

8q't) =0, (2.11)
for t =t, and ¢ = r,. This variational principle yields the
well-known Hamilton’s equations

p;= —0H /3¢, ¢ =3H /3p,. (2.12)
Nevertheless it is worth noting that, strictly speaking, Ham-
ilton’s principle is not wide enough to allow canonical trans-
formations in the Hamiltonian theory. In fact, a canonical
transformation to variables Q',P,,

Q'=Q(gpt), P;=P(qpt), (2.13)
implies the definition of a new Hamiltonian H ' and a new
Lagrangian L',

L'=QP, —H'(Q,Pr)

=¢p. —H (qp,t) +dF (gp,t)/dr (2.14)
It is clear that in order to get the equations of motion for Q'
and P; we must require

65'=0 (2.15)
for arbitrary

8Q1t), bP(t), t <t<ty {2.16)
and

8Qt) =0, (2.17)

for t = ¢, and r = r,. If we consider a nontrivial transforma-
tion, the conditions (2.11) and (2.17) are not equivalent, ac-
cording to Eq. (2.13). Therefore, using Hamilton’s principle
in a strict sense does not allow for nontrivial canonical trans-
formations (i.e., those for which 3Q //dp, #0).
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In order to be able to perform canonical transforma-
tions it is more convenient to adopt Weiss’s principle. Due to
the fact that Lagrangians (2.8) and (2.14) are first order (the
same kind we are going to be dealing with in this work) we
prefer to choose Weiss’s principle to get the equations of
motion.

In the appendix we prove that the definitions of the
momenta and Hamiltonian obtained from this first-order
principle can be used to construct a sound Hamiltonian the-
ory based on Dirac’s method for degenerate Lagrangians. In
this way we will prove that Weiss’s variational principle pro-
vides a starting point for constructing infinitely many La-
grangians (and Hamiltonian theories) for any system of dif-
ferential equations.

3. FIRST-ORDER FORMULATION FOR DYNAMICAL
SYSTEMS

Any system of differential equations in which the high-
est derivatives can be solved for algebraically may be written
in a first-order form.'®'® For purposes of exposition we con-
sider a general system of # coupled second-order differential
equations

F.(%¢"q"t) =0, ik=1,.,n, (3.1)

with g* being generalized coordinates and the dots denoting
total derivatives with respect to the time . We assume that
Eq. (3.1) can be solved for §*. It is always possible to define n
new variables g" * * in such a way that the system {3.1) re-
duces to the first-order form

¢ =a'(g5q" 5 1), (3.2
q
F(g"  g" g "+ 1) =0. (3.3)

We require now that Eq. (3.2) is such that we can solve for the
generalized coordinates g" * * and therefore Eqs. (3.2) and
(3.3) can be written in compact form

@ =fg"t), ab=1,.2n (3.4)

which is equivalent to Eq. (3.1). We note in passing that a
Newtonian system with arbitrary velocity-dependent forces
can be brought to form (3.4). One can always choose the
function 4’ in such a way that ¢" * * = ¢*. We adopt this
choice from now on.

It is worth noticing that any curve ¢’ = ¢'{¢) in configu-
ration space can be naturally mapped in a curve of the form
g“=h"(t), where hi{t) =g(t)fora=i=1,..n and
h"t{t)=glt)fora=n+i=n+ 1,..,2n. With this pre-
scription the state of a given physical system at time ¢ is
characterized by a point ¢°(¢ ) and its time evolution will gen-
erate a one-parameter family of trajectories in this 2n-dimen-
sional space. In other words, the dynamics is defined by the
tangent vector f“(¢”¢ }, which in some sense plays the role of
the generator of time displacements. Any two trajectories
having the same dynamics but different initial conditions
will never intersect in this space and thus the set of all possi-
ble solutions to a given problem can be imagined as an infi-
nite collection of curves filling the whole space.

From now on, we restrict ourselves to equations of mo-
tion which can be written in the form (3.4). In order to have a
Lagrangian system equivalent to that represented by Eq.
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(3.4), it is necessary that

PL /3¢°9§° =0, Va,b,q 4" t. (3.5)
In fact, the left-hand side of the Euler-Lagrangian equations
for a Lagrangian L = L (g%t ) is

d { 3L aL
L=" ( . ) — (3.6)
dl aqa aqa
oL ., L ., L JL
= ragsb q 2a b q ra B a’ (37)
94¢°dq 34¢°dq 3¢°dt g

which in general contains accelerations. Therefore, Eq. (3.5)
has to be fulfilled n order to reproduce Eq. {3.4). That is to
say, L must be at most linear in the velocities having the form

L=1,(g"t)g +1,(g"). (3.8)
The corresponding Euler-Lagrange equations are
(a1,/3¢" — a1, /3q°)g* = 3l /dq" — A1, /It (3.9)

and if we require systems (3.9) and (3.4) to be equivalent it is
necessary to assume that (3, /dq” — dl, /34") is invertible
and to find the solutions /, and /, to the following system of
partial differential equations:

(31,/3q" — 31, /3g°)f*(g,t ) = G, /3g® — I, /1.(3.10)

Using Koenig’s theorem '**°it can proved that, for any given

l,, a solution for /, exists. As a matter of fact, Havas consid-
ered a system closely related to Eqs. (3.10) [see Egs. (B12) of
this paper] and he proved the existence of solutions. In other
words, the inverse problem of the calculus of variations al-
ways has a solution when formulated using first-order differ-
ential equations for the time evolution. Nevertheless, there is
no general prescription on how to solve system (3.10) and one
does not know of any possible relationship among the differ-
ent Lagrangians that will arise. We remind the reader that
when using a second-order formulation for the dynamics.
the existence of a Lagrange function is not guaranteed at all.
In particular, there are explicit examples in which the La-
grangian simply does not exist."'

In the next section we present a different approach
which solves the inverse problem of the calculus of vari-
ations in its first-order form for an arbitrary set of complete
trajectories characterized by a given dynamics. We give a
definite prescription on how to construct all possible La-
grangians that arise and we also show that they are infinite in
number.

4. THE INVERSE PROBLEM OF THE CALCULUS OF
VARIATION IN FIRST-ORDER FORM

It will be convenient for our purposes to consider the
time as another coordinate by enlarging our space to 2 + 1
dimensions with the notation x" = ¢ (7),x* = ¢“(7). The com-
plete set of trajectories corresponding to a given dynamics is
characterized now by the tangent

dx*/dr = f*(x), u=0,1,.2n, (4.1)

where the ratios f“/f* are given functions and /¥ = dr /dr is
arbitrary. The action is written in general as

n
S= JIH ) 2 ar, (4.2)
dr
where the freedom in the 7-parametrization is self-evident.
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We can always choose our parameter 7as the time ¢ and this
is equivalent to the normalization f%(x) = 1. The equations of
motion obtained from (4.2) are then written as

(91, /9x" — dl, /ox*)dx"/dr=M,, dx"/dr = 0. (4.3)
Due to the antisymmetry of M, (= — M, ) together

with the odd dimensionality of the space considered, the de-
terminant of M, vanishes. We assumed in Sec. 3 that

detM,, £0; (4.4)

therefore the rank of M,,, is 2n. Thus, Eq. (4.3) implies that
dx”/dr is the only eigenvector of M,,, with zero eigenvalue.
The eigenvector with zero eigenvalue of an antisymmetric

matrix M, in a space with an odd number of dimensions is

proportional to the vector

,v}t — eﬂa“lﬂ:‘"ﬂzn lﬂz»xM

s

M, {4.5)

#rz”
If two Lagrangians are s-equivalent {i.e., their complete set of
solutions coincides), the eigenvectors with zero eigenvalues
associated with them are then parallel (not necessarily equal)
to each other in order to define the same solution. Further-
more, the freedom of 7-parametrization does not allow us to
compute dx*/dr from the Lagrangian only; therefore, this
vector is parallel to v,

dx*/dr = A (1)1 (x)*, (4.6)

where A (7) is related to the 7-parametrization and / (x) de-
pends on which s-equivalent Lagrangian is chosen. Never-
theless, the physical velocity is well defined,

dx" _ dx" _ dx"/dr _ e MM 47)
dt dx"  dx°/dr & M-M '
Using this notation, the inverse problem of the calculus
of variations reduces to finding all the possible functions
[, {x) such that the extremal requirement S = O reproduces
Eqgs. (4.3) with the given direction defined by the vector f*(x).
In order to construct the most general Lagrangian we con-
sider /, to be a covariant vector in this (2n + 1)-dimensional
space, where the only explicitly defined direction is that of
the tangent vector /#*(x). The problem thus arises of con-
structing a suitable basis in this space. In particular, it is
necessary to define the subspace orthogonal to the given tan-
gent to the solution curve. A very natural basis for this sub-
space is the one generated by the 2n constants of motion
associated with Eq.(4.1). Let us remark that system (4.1) pos-
sesses 27 independent functions C ', which depend upon the
coordinates x* and that correspond to the initial values x%(7,)
which completely specify the curves for a given dynamics.??
These constants of motion can be obtained by inverting the
solutions x = x“(C®),7) of the system (4.1) and they satisfy
the conservation equations.

OCY pug = 9CT dX"_ dCT

0. (4.8)
Ixt Ixt* dr dr

In other words, we have generated 2n vectors C'¥,
= dC'“//3x*, which are orthogonal to f*(x).

We choose C*“'(x*) to be 2n independent functions so
that the determinant of the matrix C'“, is different from
zero, implying that the 27 vectors C ), are linearly indepen-
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dent. Thus, the set {C' ] constitutes a basis for the sub-
space orthogonal to /*(x). The vector C” , where C° = t,is
such that

det €9, ) = det(C', ) 0. (4.9)

This means that the 27 + 1 vectors C'“ , are linearly inde-
pendent and constitute a basis for the 2n + 1 dimensional
space considered.

The most general vector l_y (x) can be written as a linear
combination of the basis vectors C'“ ,. For our purposes, it
is more convenient to consider the coefficients of this linear
combination to be functions of the 2# + 1 functionally inde-
pendent *“new coordinates” C ““(x). Therefore, we write

[_“ = l_w) (ceene, + I,(c® L,CNC? . (4.10)
Among all s-equivalent Lagrangians there are some which
are trivially related by a total time derivative which, in terms

of l_y , means the gradient of an arbitrary function A. Without
losing generality, we can then consider

- F o - oA “
L, =1,-9,A4=1,C¥ +1,C°, — o cY,
_ A co (4.11)
ac® "
and choose
—a‘g‘(m (C¥,C) =, (C*,C), (4.12)
which implies that
- (3/1 () {a)
lﬂ — (%(C“’),C(m) _ ,a_C_(;)_ (C“’],C( l))c L (4_13)
=/, (c*,cNnHCce (4.14)

where [, still depends on the 2n + 1 variables C '@

The next step in the construction is to require that the
Euler-Lagrange equations arising from (4.2} are satisfied by
virtue of the equations of motion (4.1). That is to say, we
require

_d (@) J @ y9x”
Lu - ; (llu) C m ) - a_x’: (l(a) C RS ) E (4 15)
_ ale o dc' al., co ) dco
ac'® dr ace " dr
dx” al(a) dCc' dx’
(@) ot 1b) _ (@) -
+ !(a) C N73Y dT 8(] 5 C Wt dT lia) viL d
(4.16)

to be zero. In Eq. (4.16) the third and fifth terms cancel each
other and the first and fourth terms vanish due to Eqs. (4.8).
Then we are left with

Fa_ corcoycw 4C°0

ocwo ’ *odr '
The factor dC ”/dr can never be zero for any proper parame-
trization (dC”/dr = dt /dr). The matrix C*“' , has rank 2n;
therefore, we have 2# equations.

al
8(,?1110) (C(b)’ C(O)) =0,

which imply that /,, are arbitrary functions of the constants

(4.17)

(4.18)
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of motion C ! only. Thus the most general Lagrangian can
be written as

dx*

L=1,(C*"hC"“, - (4.19)

It is worth mentioning that L vanishes when the equations of
motion hold.

There is still one more condition on the components /,,
which is derived by examining the converse problem of ob-
taining the equations of motion (4.1) from the stationary con-
dition on the action {4.2). In other words, we demand that

dl,, 9y, ce cw 94X 0

ac®  ac@ “ Y dr
implies dC'?/dr = 0 [which is equivalent to Eqs. (4.1)]. Be-
cause the vectors C'¥ | are linearly independent, Eq. (4.20)
tells us that

( dl, dly, ) dc®
ac® ace/) dr
In order to recover the equations of motion (4.1} we must

construct the functions /,, in such a way that the determi-
nant of the 2rn X 2n antisymmetrical matrix

(4.20)

=0. (4.21)

Nas) = 81(0,/8C"” —dl,,/aC fal (4.22)
is different from zero. Then we can deduce
(b) L
dC7 _cw, g (4.23)
dr ©odr

from Eq. (4.21). Recalling that the vectors C*’, satisfy
Cc ),‘,f"(x) =0 (4.24]

and that the rank of C", is 2n, we finally conclude from
(4.23) and (4.24) that
dx*/dx° = f*/f°,
which is equivalent to Eq. (4.1).
The condition upon det %,,,, can be implemented in an
infinite number of ways. We can see this by considering a
subclass of all possible ways of constructing the functions
l.)- Let us first remind the reader that the determinant of an
antisymmetric matrix 7 in a space of even dimensionality is
proportional to the square of its Pfaffian,

(4.25)

d

a,\8s..45, 147
an =€ 1” "17“|a:“'17“2u 4an”

Therefore, it is enough to require that Pfy is different from
zero to ensure det 7=0. Equation {4.26) suggests the follow-
ing construction for the functions /,:
1
Ly = 2
p+ 1

(4.26)

1)y2, 1 1
(C(u+ )) P+ +p(a'c(a+ );

a=13,..2n—1,
[,=0, a=24,.,2n, (4.27)

where p is an arbitrary integer and p,, are positive numbers.
The only matrix elements different from zero are then

Mok + 2k s 2 = (CHTNP 4 po 1, >0,
k=01,.,n—1,  (4.28)

which ensure that expression (4.26) is strictly positive. In this
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way we have provided a prescription to construct an infinite-
ly denumerable set of Lagrangians which reproduce the
equations of motion (4.1) and which obviously do not cover
all the possible ways of defining adequate functions /.

As can be seen from Eq. (4.19), our method is useful
whenever a system of differential equations can be equiv-
alently written as C'® = 0, where C'® are 21 functionally
independent constants of motion of the original system.
There may be cases (wWhen £ is singular) where the constants
of motion are not well defined everywhere and in such cases
our method will not be directly applicable. Although the
method is based on a local (i.e., nonglobal) approach its con-
tent is nontrivial, as shown by the fact that we are able to
present in the next section examples of first-order Lagran-
gians for two systems which do not possess second-order
Lagrangians.

Finally, a comment may be added regarding the matrix
A,° given by

Ea =A, bLb ,
which relates the equations of motion of two s-equivalent
Lagrangians L and L.’ The expressions for L, and L, are
defined by Eq. (3.6). Using Eqgs. (4.3), (4.19), and (4.20) it can
be proved directly that tr (A ) are constants of motion for
any integer k, with A, = M,_(M ~—')*. This theorem is the
first-order counterpart of the one for second-order Lagran-
gians presented in Ref. 5.

5. EXAMPLES

In this section we are going to construct first-order La-
grangians for two systems of second-order differential equa-
tions for which no second-order Lagrangian exists. The con-
struction is based on the method developed in Sec. 4.

Example 1: Consider the system of two differential
equations for the variables x = x(¢ ) and y = y(¢),

X4yp=0,

y+y=0. {5.1)

It may be easily proved that system (5.1) corresponds to the
case I1I-b of Douglas’s classification and therefore has no
second-order Lagrangian.?' Nevertheless, a first-order La-
grangian for such a set of equations can be found by writing it
in first-order form with the definitions

X, =X, X;=Y, X3=X, X,=J). (5.2)
In this notation system (5.1) becomes

X =X3 X=Xy
Xy= — Xy Xg= — Xy (5.3)
and its general solution is

x; = — Asint + B cost + Ct + D,
x, = A cost + B sint,

5.4)
X, = — A cost — Bsint 4+ C,

x, = — A sint + B cost.

The constants of motion 4, B, C, and D can be explicitly
written in terms of x,,x,,x,,x, and ¢
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A = x,cost — x,sint,

B = x,sint + x,cost,

C=x2 +x3, (55)
D=x, —x,— (x, + x3)t.

One possible Lagrangian for the system is
L =4A4B —BA + CD — DC), {5.6)

where we have used Eq. (4.27) withp,, =0and p = 0. The
Lagrangian (5.6) expressed in terms of x,x,,x5,x, and their
time derivatives becomes (up to a total time derivative)

L = (x; + x3)%, + X4%1 + %(xi — 2x,x;5 — x% ). (5.7)

In fact, varying x,,%,,x,, and x, we obtain the equations of
motion

X, +X,=0,
— X, 4+x;=0,
— X+ X+ x+x,=0,

— X, —x,=0,

(5.8)

which are equivalent to the system (5.3).

We have, therefore, found a first-order Lagrangian for
the set of equations (5.1) or (5.3) which cannot be obtained
from a usual (second-order) Lagrangian.

It is worth noting that in the Lagrangian (5.7) only half
of the time derivatives of the variables (i.e., X, and X;) occur.
This is exactly the same situation encountered in Lagrangian
{2.8), where only the time derivatives of the coordinates {and
not the ones of the momenta) appear.

Example 2: Now let us consider the system of differen-
tial equations

X+ 2y.%, + 03x, — &x, =0, 5.9
Xy + 2%, + w3x, — nx, =0, .

which describes two coupled damped oscillators with differ-
ent frequencies and friction coefficients. As mentioned in
Ref. 21 such a system is not derivable from a second-order
Lagrangian when the condition

Enly, — 7@t =71 + 03 —13)#0 (5.10)
is met. This last equation says that the system under consid-
eration is type IV in the Douglas classification.

In order to exhibit a relatively simple example of a first-
order Lagrangian that reproduces a set of equations like {5.9)
we have considered the case

X, —Ix, =0,
(5.11)
X, + 4, —ix, =0,

which corresponds to the choice of parameters
Vi =0, =w,=0,y, =237 =1 and £ = | that obviously
satisfy the condition {5.10}.

Writing the system (S5.11) in first-order form,
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X X3 X=Xy
X3 = Ix,, (5.12)
Xg= — ¥, + Ix,,

and using a procedure similar to that of Example 1, we ob-
tain the following first-order Lagrangian (up to a total time
derivative):
L =e'[(6x, — x,)%; + (2x5 + 12x4 — 3x )%,
+ (184 — 4x 5 + (6x5 + 3x, 0y + X7 + 163
— 2 — 323
+ €7 [(3x; + 2x )%, + (x; + 6x;3 — dx,)x,
+ (4x) + 2x4)%5 + (6x3 — 3x,)x,
+ b+ PG+ 2+ g

(5.13)

It is straightforward to show that upon variations we obtain
the equations of motion

e [6x, — x, — 2x, + 2%, + 6x%, + 4X;]

+ 61/3[ Xy + 3, — x, + 2%, — 4 + 2x4l =0,
e [2x; + 12x, — 3x, — lx, — 2%, + 9%, + 2X,]

+ €% 2%y — g + §x — Xy — 2%, — X + 6X%3] =0,
{5.14)

+ e’/3[ —4x; + x4 $x, + 4%, — 6x, — 4x,] =0,
e [6xy + 9x, + 3x, — 6x, — 9x, — 12x%,]

+ e [2xy —x, — x5 — 2%, + X, + 4x;] =0.
Now, in order to prove the equivalence of (5.14) with (5.12),
we have to solve for the time derivatives X, (@ = 1, 2, 3, 4).
This can be done because the matrix of the coefficients has a
nonvanishing determinant and the result is indeed system
(5.12).

With these examples we have shown that there are in-
stances where, in spite of the local nature of the method,
first-order Lagrangians can be found for systems which are
not derivable from usual second-order Lagrangians. We in-

terpret this fact as a clear indication of the advantages of
using a first-order formulation for the variational principle.

e [4x; + 18x, — 4x, — 4%, — 2%, + 12x,]

6. SUMMARY AND CONCLUSIONS

The main results of this paper are contained in Sec. 4,
where we show-how to construct infinitely many first-order
Lagrangians for any given system of differential equations
such that the highest derivatives can be algebraically solved
for. The construction is achieved by rewriting such a system,
introducing a suitable definition of new variables, in an
equivalent form which consists of first-order differential
equations only. The Lagrangian is then found using very
simple geometrical arguments.

The first step is to map the general solution to the origi-
nal system in the space defined by the original coordinates,
their velocities, and the time (in the case the original system
was second-order). In this space the solution is defined by the
direction of its tangent vector at each point.

When the constants of motion related to the original
system are globally well defined, this method guarantees
that the construction of the Lagrangian [Eq. (4.19)] may al-
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ways be achieved in infinitely many different ways. Howev-
er, the explicit construction can only be performed when all
the (functionally independent) constants of motion are
known. Therefore, the method presented here should not be
viewed only as a practical constructive procedure but rather
as an explicit existence theorem which clearly shows the re-
lationship among the infinitely many different first-order
Lagrangians of a system. This situation is in contrast with
the usual prescription (L = 7' — V')forsecond-order Lagran-
gians where the knowledge of the total energy (T + V') is
enough to construct L. Nevertheless, for the second-order
case, this prescription does not always work?' and, in any
case, provides only one of the many possible equivalent
Lagrangians.'™>'?

Section 5 illustrates one way of explicitly constructing
first-order Lagrangians for system for which no second-or-
der Lagrangian exists. This fact seems to indicate that a first-
order formulation of the variational principle has some ad-
vantages over the usual second-order one.

We should perhaps note in passing that Eq. (4.19) im-
plies that any set of differential equations may be regarded as
a variational problem. Furthermore, Eq. (4.2) constitutes a
geometrization of the problem in the sense that Eqs. (4.3) are
the geodesics equations of a degenerate Finsler space defined
by the metric vector /, (x).

It is also worth noting that the geometrical approach
developed in this paper is fully covariant under arbitrary
coordinate transformations of the form x* = x*(x").

We further remark that the whole family of Lagran-
gians represented by Eq. (4.19) does not depend on the choice
of the set of constants of motion. In fact, if one chooses a
different set D ' = D'“(C'*)), say,then

aD @ .
L, =l,(D*\D“, =1, ——C" =, C",

e (a) aC 15)
where
i(b) = l(a) (D lc))aD sac e ),

are still constants of motion and can be written in terms of
the original set C*,

The Hamiltonian theory associated with (degenerate)
first-order Lagrangians is constructed in the Appendix using
Dirac’s method.'®'” There we prove that the Euler-La-
grange and Hamiltonian equations of motion for those La-
grangians agree. Furthermore, the Hamiltonian theory of
one of the first-order Lagrangians agree with the usual one,
when a second-order Lagrangian exists for the system under
consideration.

Finally, a comment on the problem of quantization. In
the second-order formalism, the existence of a Lagrangian is
not guaranteed. On the other hand, in the first-order formu-
lation there are infinitely many of them. It is known'®* that
the usual quantization procedure gives rise to nonequivalent
quantum theories when using different (classically) s-equiv-
alent Lagrangians. Therefore, one needs either a criterion to
single out one among infinitely many Lagrangians (in the
first-order formalism) or a quantum theory which is not
based on the Lagrangians (which are not physically-measur-
able entities) but on other objects that remain invariant un-
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der the change of Lagrangians. One possible choice of such
objects is the set of all curves which satisfy Eq. (4.1) [and/or
Eq. (4.1} itself]. Such a quantum theory would be, by defini-
tion, invariant under the change of Lagrangians and would,
in principle, allow one to quantize systems whose equations
of motion cannot be derived from a (second-order)
Lagrangian.
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APPENDIX

We construct here the Hamiltonian theory for the (de-
generate) Lagrangian (3.8),

L=1,(¢"14"+ lg"), (A.1)
using Dirac’s method. For simplicity, we have dropped the
explicit time dependence of /, and /,.

From Weiss’s principle {or the usual definitions), it is
straightforward to obtain the canonical momenta 7. and
the Hamiltonian A,

7=, = 1,lg"), (A2)

h=—ly(g"). (A.3)

Due to the fact that Egs. (A.2) do not contain the veloci-
ties ¢“ at all, there are 2n primary constraints ¢,,

¢u =Ty — la (qb):o (A‘4)
The Hamiltonian A has to be modified in order to get the

right equations of motion with the usual Poisson brackets.
The modified Hamiltonian 4. is given by

hy=h+1%,, (A.5)
where A “ are Lagrange multipliers. The Poisson brackets are
lg“7, 1 =6;. (A.6)

The consistency requirement for the constraints is that their
time derivatives vanish,

¢y = [¢h’hT]:o' (A7)
Condition (A.7) implies

(01,/0q" — dl,/3¢°N ¢ + dl,/dg" =0, (A.8)
ie.,

A= (M ") —3dl,/39"), (A.9)

where M is the nonsingular antisymmetric matrix defined in
Eq. (4.3). There are no secondary constraints in the theory.
The Lagrange multipliers A ¢ are determined by Eq. (A.9),
which means that no arbitrary (gauge) functions appear in
the theory. The equations of motion for ¢” can be obtained in
the usual way

¢" = [g"h,]
= [¢* — (g} + A (7, — L,)g]
—2° (A.10)

and they agree with Egs. (3.9), obtained directly from the
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Lagrangian (A.1), when Egs. (A.9) are used. We now prove
that all the ¢, constraints are second class. In fact,

[¢a ’¢b] = [77(1 - la(q)’ﬂ'b - lb(q)]
=3d1,/3¢* — 3l,/3¢° =M,
= — (A1)

= b
Therefore, the matrix [@,,4, ] is invertible and no linear
combination of the @,’s is first class.

The Dirac bracket for any two functions f= f{g,?} and
q = q(g,t) is defined by

(fg1* = [fg]l — [fid. 1 — M ) [8s.9],

* __ — lyab i iq_
[fgl* =M~ 0 9
which agrees with the results found (in a different way) in
Ref. 17. Let us mention that it is enough to consider only
functions of ¢° and ¢ because the momenta 7, can be com-
pletely written in terms of the coordinates q® due to the fact
that the 2z Eqs. (A.4) now become strong equations with the
Dirac brackets. The equations of motion (A.10) remain the
same because 4, is first class, i.e.,

¢ = [g%h, ]* = l¢“hr ]
Of course the numerical values of /- and A coincide.
In this way we have proved that Weiss’s principle gives
rise to the desired equations of motion together with a rea-
sonable Hamiltonian theory.

(A.12)

(A.13)

(A.14)

The results obtained above can be used to prove that
when a second-order, nondegenerate, Lagrangian for a sys-
tem of » variables Q ‘ exists, then its usnal Hamiltonian the-
ory defined by

P, =3L /30",

H=H(Q'P,t)=(L/3QQ"'— L(Q"Q L), (A.15)
agrees with the one obtained (in the way we have just done)
from the first-order Lagrangian with 2» variables Q,P,; giv-
en by

L=L(Q.Q\P,t)

=Q'P, —H (Q'P,t). (A.16)
One has, for this case,
¢ =0° I,=pP, fora=1,2,..,n
¢ =P, I,=0 fora=n+1,...2n
{A.17)
ly=—H.
The canonical momenta conjugate to Q’ and P; are
T 2=T, =P, for a=1,2,..,n
Te=m,=0 for a=n+1,..2n (A.18)

The constraints are
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¢, =m, = P,=0 fora=12,..,n

¢, =m,~0 fora=n+1,.2n, {A.19)
and the nonsingular matrix [¢,,¢, ] is
0 -1
Botl= - Mo=(5 ') (.20
Therefore, the Dirac brackets for f= f(Q,P,t ) and
g =glQ,Pt)are
af 9 ar a
[fgl* = _f_g - _f_i, (A.21)
3Q' 9P, OP, Q'

the equations of motion are Hamilton’s, and 4, and H coin-
cide numerically. In this way, we have proved not only that
the Hamiltonian and Euler-Lagrange theories constructed
from first-order Lagrangians agree, but also that one of the
Hamiltonian theories obtained from first-order Lagrangians
coincide with the usual Hamiltonian theory when a second
order Lagrangian for the system exists.
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Dynamical Noether invariants for time-dependent nonlinear systems
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Dynamical invariants are derived for time-dependent systems with nonlinear equations of motion
including nonharmonic damped systems. The concept of a dynamical algebra is discussed and its
utility for the construction of dynamical invariants for nonharmonic systems is demonstrated.
Finally we show the existence of dynamical invariants for some nonlinear quantum systems.

PACS numbers: 03.20. + i, 03.65. — w

1. INTRODUCTION

The study of time-dependent oscillator systems has at-
tracted considerable interest in the literature, both in classi-
cal '~'* and quantum''~"* mechanics. The origin of this devel-
opment was no doubt the discovery of an exact invariant by
Lewis,>'! which was previously known as an approximate
adiabatic invariant.' The existence of a conserved quantity,
i.e., an invariant, is of importance in many physical prob-
lems. For example, its utility for the motion of charged parti-
cles in time varying electromagnetic fields has already been
known for a long time, and very recently the invariant has
been applied to some models for cosmological particle
production.'®

Since the basic work by Lewis>'' various derivations of
the dynamic invariant have been presented in the literature.
Giinther and Leach'® and Leach®® used time-dependent ca-
nonical transformations, Lutzky’ applied Noether’s theo-
rem, and Ray and Reid®® obtained the invariant by Erma-
kov’s technique. Very recently one of the present authors
constructed the invariant by means of the dynamical alge-
bra.'° This algebraic technique provides a direct and unso-
phisticated derivation of the dynamical invariant. Further-
more, it allows a straightforward transition from classical to
quantum systems, because in the algebraic treatment the for-
mulation of classical and quantum dynamics is almost iden-
tical."’?

The existence of invariants for nonharmonic systems™®
was recently demonstrated by Ray and Reid,*” who derived
a family of invariants for a special class of systems with non-
linear equations of motion. It is obvious, however, that the
study of invariants for nonharmonic time-dependent sys-
tems is only beginning and is far from being understood. In
Sec. 2 we give a short discussion of Ray and Reid’s®” results
for nonharmonic systems and extend them to the case of
time-dependent damped oscillators. In Sec. 3 an alternative
treatment of nonharmonic systems is presented, which is
based on the dynamical algebra.'® This approach allows —
contrary to Noether’s theorem — a direct extension to more
general systems of a type recently investigated by Ray and
Reid.*’ In Sec. 4 we show that dynamical invariants for non-
harmonic systems can also be constructed in quantum me-
chanics. Section 5 concludes with a short summary.

1A v. Humboldt foundation fellow on leave from Ramjas College, Univer-
sity of Delhi, Delhi-110007, India.
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2. NOETHER’S THEOREM FOR DAMPED, TIME-
DEPENDENT SYSTEMS

A formulation of Noether’s theorem in terms of one-
parameter Lie groups has been recently considered by
Lutzky.” This method, when applied to the time-dependent
harmonic oscillator, was not only found™® to be simpler for
obtaining the dynamical invariant,

I=1[k(g/p)* + (og — pq)’] (2.1)
for the system described by
G+ a?t)g=0, (2.2)

but has also offered a clue to solve the nonlinear differential
equations of the type

p+ it =k/p’ (2.3)
In fact, the invariant  plays the role of providing a link
between the solutions to (2.2) and (2.3).

The construction of the invariant for time-dependent
harmonic systems has a long history '~'* and almost all the
approaches used in the past deal with rather involved meth-
ods. More recently, Ray and Reid® have applied Lutzky's

method to the Lagrangian (note the change of notations from
that of Ray and Reid)

L =\lg* - a’(t)g* + 2(t)G (g)], (2.4)
and have shown that the invariant obtained in this way is a
special case of their earlier® results obtained by generalizing
Ermakov’s method. As a matter of fact, an account of the
damping term in the equation of motion may as well provide
the solution to a more general type of nonlinear equations in
terms of solutions to a linear system. In this section, we ac-
count for such a term and list more general results. In Sec. 3,
we shall return to a further, simpler method (dynamical alge-
bra approach) for the construction of the invariants, which
will also enable us to look into other general cases when (i) g-
and r-dependence in the third term of (2.4) is nonseparable or
(ii) this term contains p-dependence (p is the conjugate of g)
instead of g-dependence, however, again in a separate form.

In order to account for the damping we start with the
Lagrangian

L =1’ — o*(t)q” + 28(t)G (g)], (2.5)
which yields the equation of motion as

G+bit)g+’t)g=2g(t)G'lg), [b(t)=dB/dt].(2.6)
Note that the factor e”''in (2.5) leads to the damping term in
(2.6). Now, following the same steps as those of Ray and
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Reid,® the auxiliary equation in this case turns out to be

p+bith + ot =(k/pYe 220 (2.7)
Note that this nonlinear equation is independent of the term
g(t)G (g) in (2.5), which must be of the form

Glg) = Gog~ ", G, = const, (2.8)

(2.9)

m72. —2B(1)

glt) =gop™" e -
The invariant now becomes

1=1l(c/m)p/qf™ + k(q/p)* + (6g — p4)’e™™"], (2.10)
where ¢ = — 2mG,g, is an arbitrary constant. This result
reduces for B (t ) = Otothat of Ray and Reid” and forc = Oto
that of Eliezer and Gray.*

Alternatively, linear friction can be introduced into the
equations of motion by changing the independent variable
dt—e ~ BYdt and the invariant (2.10) and the auxiliary equa-
tion (2.7) can be derived from the nondamped case dealt with
by Ray and Reid® by means of the transformation

(02 2Bw2,

dt—e ™ 2d1,

d_ad

dt dt

g—e'g.
3. DYNAMICAL ALGEBRA

Recently one of the authors'® presented a simple and
straightforward derivation of the dynamical invariant for
the time-dependent forced and damped harmonic oscillator.
This approach makes use of an algebraic treatment, which is

generally more common in quantum mechanics.'*'> For the
Hamiltonian

H=Sh,(t)T,(pa)

a dynamical Lie algebra of phase-space functions I, is con-
structed which s closed with respect to the Poisson bracket,

{Fn’rm}=zC;mFr

[this may, of course, introduce new I, , which are originally
absent in the Hamiltonian; these new I, can be formally
included in (3.1) by setting #, (¢} = 0]. Now the invariant
dI /dt = O is written as a member of the dynamical algebra

(2.11)

(3.1)

(3.2)

I=YA()r,, (3.3)
and by means of
O=dl/dt={I,H} + 31 /3t (3.4)

and comparison of coefficients a system of first-order linear
differential equations for the unknown 4, in (3.3) is obtained

A, + ;[;C;mhm(t)]/ln =0,

where the structure constants C/,,, of the Lie algebra are
defined in (3.2).

For the damped harmonic oscillator

(3.5)

H=le ?Yp’ + " "e(t)g?) (3.6)
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this approach leads to a finite algebra'® containing only
I'= 5[72, I'y=pq, I's= %qz’ 3.7)

with the Poisson brackets
{Fnrz} = =20, {Fz’rﬁ = 2I;, {050} =1
(3.8}
The differential equations (3.5) read in this case
A= —2e PR,
Ay =o¥t)eP A, —e B WA,
Ay = 207t )e? 4,

which can be simplified by setting

(3.9)

A, =p? (3.10)
to give [b(t) =dB /dt]
p+bitl+a’p=(k/ple®

and

(3.11)

A= —ePpp, (3.12)
Ay =p2e*®.

The invariant can be written in the form (¢ = pe ™
=11k (g/pf + (pg — pgPe*” ].

%)

(3.13)

A. Application to nonharmonic systems

Here we apply the dynamical algebra approach de-
scribed above to the case discussed in Sec. 2.
Let us consider the nonharmonic system (2.9),

H=}[e™"")p* + 0?(t)e”g* — 2g(t)e” "G (q)]
=e P, 4+ ¥t )T, — g(t)eP"'T,, (3.14)
with
r',=Glg).
The Poisson brackets are in the first round,
(I} = —pG'lg),
{l) = —qG'(g),
{r_%rzt} = O’

so that pG '{g) and ¢G '(g) must be included in the dynamical
algebra. In the next step one obtains p’G " ,pgG ", ¢°G “,
G'? + ¢G'G " asadditional elements of thealgebra,andsoon.
With the exception of some rare cases the dynamical algebra
becomes infinite. As an example the infinite dynamical alge-
bra generated by G = ¢* (harmonic oscillator with quartic
anharmonicity) is discussed in some detail in Appendix A.
An exceptional example which leads to a finite dynamical
algebra is presented in Appendix B. In the general case the
system of linear differential equations (3.5), which deter-
mines the invariant J, is infinite and there are questions of
convergence and existence of solutions, which are related to
the existence or nonexistence of dynamical invariants. These
problems may be solved in the future, but for the moment we
confine ourselves to a more modest question: Are there spe-
cial choices of g( ) and G (g), which yield a closed finite set of
coupled differential equations (3.5) for the A, ? Assuming
that an invariant can be constructed in the subset

(3.15)

(3.16)
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(.55, ) of the dynamical algebra, i.e.,

4

I= S 4,0, (3.17)

we obtain
4 »
SAr, ={H1}
r = Q)

= —2e " PA, I + (w4, —e BA,)T,
+ 2074,y + (e A4 +ge8/ll){1"l,1"4}

+ gePA A, (3.18)
This equation can only be satisfied if
e Bl, +gefl, =0 (3.19)

and if the Poisson bracket {I",,7",} is a linear combination of
Iy,...I,. From (3.16) we see that {I,,I",} = —¢G'(g}isa
function of g only, so that we get {I",,[,} ~T, or
{I,,I',} ~I,. The first possibility leads to G’ ~q, i.e.,
G ~1g°, which is nothing new as it is already in the algebra.
The second possibility gives gG '{g) ~ G, a relation analogous
toEq. (2.8), which provides

Glg)=G,q ", G, = const {3.20)
for an arbitrary constant m. It may be emphasized that the
form (3.20) was obtained after several manipulations in the
approach of Ray and Reid” (cf.Sec.2), whereas here it ap-
pears in quite a natural way as a restricted closure property
of a dynamical algebra subset. Comparison of coeflicients in
(3.18) gives

A = —2¢ ¥4, (3.21a)
Iy = %P A, — e B, (3.21b)
A, = 2084, {3.21c)
Ay =2mg(t)e? A, {3.21d)

The last equation is decoupled from the other three equa-
tions, which are identical to {3.9) and lead again to the auxil-
iary differential equation (3.11) for p. Using (3.19) to elimi-
nate g from (3.21d) and expressing 1,,4, in terms of p by
(3.10) and (3.12) we obtain

Ao/Ay=2M p/p,
i.e,
Ay = (e/2m)p™",
with an arbitrary constant ¢ and the invariant
= i[lc/m)lo/q)™ + k (g/p + (pg — pa)’e*”"'],(3.24)

in agreement with (2.10). Finally, g can be obtained from
{3.21d)

(3.22)

(3.23)

glty= — (c/2m)e "B ? (3.25)
and the Hamiltonian (3.14) reads
H=1[e"?"p" + 0™t JeBlg?
+ {e/mje = 2 1/p% /9], {3.26)

in complete agreement with the result of Sec.2. Thus we see
that the dynamical invariant is obtained here using a simpler
and more straightforward approach of dynamical algebras,
which may perhaps provide more physical insight.

In the special case m = | the Hamiltonian becomes in-
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dependent of p and the invariant {3.24) agrees with the invar-
iant (B 6) derived for this case in a different manner in Ap-
pendix B.

The Hamiltonian (3.26) can, of course, be generalized to
include a sum of terms with different values of 7 and ¢,

H= %[e B+ 0B + —;—Z—C'—e “Bp/g)™| (3.27)
(see also Ray and Reid® and the discussion at the end of
Sec.2).

B. More general cases

In Subsec. 3A we considered the case when the time and
coordinate dependences in the nonharmonic term are sep-
arable. Here we extend the application of the dynamical al-
gebra approach to more general cases. For simplicity we re-
strict ourselves to the undamped case. Let us consider the
Hamiltonian

H=\lp* +ot)q° + ¢ (g.1))

= +oX )+ T, (3.28)
with Iy = i¢. The Poisson brackets now become
{r.r,}= —ipde¢ /g,
Ny = ~—1q9¢/dq,
{r.r,;y=0. (3.29)

Assuming that an invariant can be constructed in the subset
(I, [, )of the dynamical algebra, Eqgs. (3.3) and (3.4)
(in analogy with {3.17) and (3.18)] imply
4
ox_ SAT, + 12/14?5-‘3- ={H1}
a = ar
= — 24, + (@4, — A), + 2074,

+ A Oy + (A — AN ) (3.30)

This Equation can only be satisfied if 4, = 4,. Now,
when we equate the coefficients of I'; on either side of this
equation the results for i = 1,2,3 will lead to the auxiliary
equation § + w*(t Jo = k /p’, whereas for i = 4 we obtain

AuTe+ U %ii PRI oN!
or (3.34
A + A8 /3t = A,q0 /9q.

Now setting 4, = p” (as before) and using A = 2pp and
Ay = — pp, we are left with a partial differential equation

o206 + qod /3q) + pdd /0t =0, {3.32)
whose solution would provide ¢ as ¢ (¢,p0,0,¢ ). For the choice

& (g.1) = ¢ (g,p(t)), whichimpliesthat ¢ /3t = p d¢ /dp, Eq.
(3.32) becomes

2¢ + qod /3q + pdd /dp = 0. {3.33)

For an ansatz ¢ (q,p) = {1/p°)¢(q,p), this equation reduces to
the form

qdy/3q = — pdi/dp, (3.34)

which is satisfied by the functional form ¥{g/g). Thus for the
Hamiltonian
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H=1[p* + &’(t)q” + (1/p")lp/q)), (3.35)
the corresponding invariant becomes

I=\lk(g/p) + Ylp/q) + (op — pg)’) (3.36)
and the equation of motion is given by

§ + ’(t)g = (1/pg’W'(p/q). (3.37)

Another general case which can be outlined briefly here
is that in which the nonharmonic terms in (3.28) are momen-
tum dependent instead of ¢ dependent. We assume, however,
that they are separable in p and ¢, i.e., of the type

H =}[p* + o’(t)g’ + n(t)G (p)].
In this case, in order that an invariant can be constructed in
the subset of the dynamical algebra as before it turns out that

G {p)~p~ ", where m is an arbitrary constant. Finally, for
the Hamiltonian

H = [p* + @t )g* + Co{t)tk /p* + 44"~ 'p "), (3.38)
where Cis an integration constant, the invariant turns out to
be

I=\lklg/pf + Ck/p*+p)P "

+ k(g/p)* +lop — pg)]- (3.39)

For a specific choice of ¢ (i.e., power form), the results
obtained above for the first general case are similar to those
of Ray and Reid® obtained by using a different method.
However, it may be remarked that the present method pro-
vides some justification for this specific functional depen-
dence of ¥ on p/g, instead of choosing it in an ad hoc manner
as was done by Ray and Reid in their generalization of Egs.
(2.2) and (2.3). Further, for the second general case discussed
above, their method is not very transparent.

4. QUANTUM INVARIANTS

It is well known''~"’ that for the harmonic oscillator

dynamical invariants do also exist in quantum mechanics. In
fact they are identical to the classical invariants (2.1), where
p = ¢ and g are simply replaced by the corresponding quan-
tum operators p and § (we denote quantum operators by a
caret)

I=\[(k/p*¢* + (P — pg)*]. (4.1)
(To simplify the discussion we consider only the undamped
case in this section.} The origin of this correspondence is the
identity between the classical dynamical algebra (3.7) of
phase-space functions and the quantum mechanical opera-
tor algebra

Fi=y Fo=ypi+dp), Fi=14" (42)
where the Lie bracket is the commutator [, ]

(P[] = — 2#f,,

[F,1) = — 2,

(£ = il (4.3)

For the more general Hamiltonian corresponding to the
classical Ray and Reid ansatz (3.14),

A = [5* + 0*)8* — 2(t)G (4], (4.4)
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the one-to-one correspondence breaks down.
In this section the treatment of Sec. 3 will be carried
over to the quantum case. Introducing

F,=G@), (4.5)
we obtain the Hamiltonian
H=T, +o¥t)[, —git)l, (4.6)

and the commutators
([ = — (i#/2)(pG ') + G'(@)),
[P, F\ = — GG @),

A A ) @.7)
With

a 4 A

i=Saf,

r=1

and

0=dl/dt = (\/im(LA ] + o7 /3, (4.8)
one finds

SAF = — 2,1\ + Wk, — AF

r=20

+ 20,05 + (A + @A N/, TL)(49)
+ g (1) T,

Again identity (4.9) requires

Ao+ gh, =0 (4.10)
and

(1/i#)[Fy, 1)~ s (which again means G, = §?)
or

(L/if)[Fyy 1~ [y, which gives — 4G '(g)~ G (4),
and therefore

G(g)=God ™, (4.11)

exactly as in the classical case.

The system of differential equations for the A, obtained
in the quantum case is identical to the classical equations
(3.21) [with B = 0 in (3.21)] and the invariant of the
Hamiltonian

HA — %[p*z + (4)2([ )4\2 + (C/m)p2m~ Zq*— 2m]
is given by

F=tle/mp*§ " + (k /078" + lod — p4V’], (4.13)
where p is a solution of

pH+oftp=k/p. (4.14)
It has thus been shown that the Ray and Reid invariants® do
also exist in quantum mechanics and furthermore it has been
demonstrated that the dynamical algebra formalism pro-

vides a natural way for a transition from classical to quan-
tum mechanics.

(4.12)

5. CONCLUDING REMARKS

In this paper we have demonstrated the utility of the
dynamical algebra approach in constructing invariants for
harmonic and special cases of nonharmonic time-dependent
systems. This method is based on the Lie algebra of phase-
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space functions and can be carried over naturally to quan-
tum mechanics (cf.Sec.4). We hope that the algebra ap-
proach will provide more insight into the role of the dynami-
cal invariants both classically and quantum mechanically.
Futhermore, we would anticipate that the formalism devel-
oped here could also be successfully applied to higher-di-
mensional problems. Such work is in progress.

APPENDIX A

As an example of a dynamical algebra generated by p?,
¢*, and G (g) (see Sec.3) it is instructive to look at the case
G (g) = ¢* in more detail [a complementary discussion is giv-
en in Appendix B for G (g) = ¢ ?]. Trying to close the dyna-
mical algebra, one finds in the first round the new member
pq’, in the second round p’q® and ¢°, in the third round p’q,
pa’, p’q*, and so on. In the following we will show that the
dynamical algebra for this system is the set of all pq” (u,v
non-negative integers) with even degreed = 2 + v. To prove
this one observes that the Poisson bracket of two p*¢” with
even degree,

{U‘"‘IV"P/‘Zq%} =y + v, — vl T quI T 1’
(A1)

yields again a p“q” with even degree,
d=p,+p+vi+v,—2=d +d, -2

If, on the other hand, the algebra does not contain all p“g* of
even degree, there must be a p*q* with minimum even degree,
d = ji + v and 1#7, which is not in the algebra. (The case
& = v is trivial because {pg”,p7q} = i°p"¢"). Observing that
p"~'q” '(evendegree <d)and p’g}({p> [p*q*}} = 48p%¢?)
are in the algebra and calculating the Poisson bracket

Wil Wit =20 — 'y, (A2)
one finds the p“q” is in the algebra, in contradiction to the
assumption. The harmonic quartic oscillator algebra is
therefore infinite, which is expected to be typically the case.
An example which yields a finite algebra is discussed in Ap-
pendix B.

APPENDIX B

In Sec. 3 we discussed in some detail a Hamiltonian
which generates an infinite dynamical algebra. This is ex-
pected to be typical. There are, however, Hamiltonians
which have a finite dynamical algebra. One example is, of
course, the harmonic oscillator.

Another example is provided by

H=\p*+ot)g’ +k /¢ (B1)

with constant . The Hamiltonians (B1) can be interpreted as
the radial part of a three-dimensional harmonic oscillator,
where k is related to the angular momentum. Redefining
now I', = p?/2 of the harmonic oscillator [Eq.(3.7)] as

' =yp* +k /g%, (B2)
we obtain the Poisson brackets
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{r(1k]»rz}= —2r(1k),
(B3)

{1“3,1" llk)}=r2!

i.e.,, thealgebra (I, I",,I";)is identical to the oscillator alge-
bra (I'},[,,17).

The Hamiltonian (B1) reads

H=T" 4 oYt (B4)
and the invariant
I=ATY 4 A0 + A0 (B5)

can be evaluated in the same manner as for the simple har-
monic oscillator, which yields

I=\[k(q/3) + k(§/q + (g4 — 39)°), (B6)
where g is a solution of the “auxiliary” equation
g+o't)g=k/g (B7)

[compare Eq.(2.7)], which can be derived from the
Hamiltonian

H=p + ot)§* + k /3. (B8)

There is a complete symmetry between the Hamilto-
nians H and H. For k = 0 (or k = 0) we recover the well
known invariant (2.1) for the time-dependent harmonic os-
cillator. The invariant (B6) is a constant of motion with re-
spect to H and H, i.e., we have

{LH},, ={LH};;. {B9)

I generates a mapping between the Hamiltonians H and H,
which is, of course, canonical, because the equations of mo-
tion are conserved.
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For the dispersion of waves in a homogeneous medium there exist the Kramers—Kronig relations
for the wave number K (w) = @/c(w). The usual mathematical proof of such relations depends on
assumptions for the asymptotic behavior of c(w) at high frequency, which for electromagnetic
waves in dielectrics can be evaluated from the microphysical properties of the medium. In this
paper such assumptions are removed and the necessary asymptotic behavior is shown to follow
the representation of K (w) as a Herglotz function. From the linear, causal, and passive properties
of the media we thus establish the Kramers—Kronig relations for all linear wave disturbances
including acoustic, elastic, and electromagnetic waves in inhomogeneous as well as homogeneous
media without any reference to the microphysical structure of the medium.

PACS numbers: 03.40.Kf

I. INTRODUCTION

The Kramers—Kronig relations have been established
for the dispersion of electromagnetic waves in dielectrics
since 1927.12 If the wave in the medium is represented by
expi[zK (w) — wt ] for a real circular frequency w and a com-
plexwave number X (), theimaginary part of K (), ImK (w),
defines the attenuation coefficient of the wave along the spa-
tial axis z, and the real part of K (w), ReKX (@), when divided by
w, equals the reciprocal of the phase velocity. The Kramers—
Kronig relations state that the real and imaginary parts of
K {w) are related by a pair of Hilbert transforms.

Similar relations have been applied for sound-wave
propagation. Recently Horton? and O’Donnell ez al.* have
employed the equations derived by Ginzberg® and Gold-
berger® to investigate the applicability of similar relations in
acoustics. In the literature, Ginzberg is credited with estab-
lishing the Kramers-Kronig relations for sound waves in ho-
mogeneous fluid media. Upon a close reexamination, we
found that the proof given in Ref. 5, and in several other
sources, depends on assumed asymptotic behavior of the
phase velocity ¢ as w approaches infinity.

While the asymptotic behavior of the phase velocity can
be determined for electromagnetic waves from the dynamics
of electrons in dielectrics, this cannot be done rigorously for
a sound wave. Furthermore, it is difficult to ascertain the
behavior of ¢ for stress waves in solids, especially in inho-
mogeneous media. The purpose of this paper is to derive the
dispersion equations (Kramers—Kronig relations) valid for a
general class of linear homogeneous or inhomogeneous me-
dia. The proof proceeds without a priori knowledge of ¢, of
the medium that supports the wave.

Our investigation is motivated by the search for an al-
ternative method to determine the attenuation coefficients of
stress waves in solids. Measurements of the attenuation coef-
ficients in solids are known to be very difficult whereas the
determination of the dispersion (ReK as a function of ) is
comparatively easy even for waves in inhomogeneous media
such as fiber-reinforced composite materials.” If a Kramers—
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Kronig type equation can be rigorously established for the
inhomogeneous solids, one could then calculate the attenu-
ation coefficient from a measurement of the dispersion.

The inhomogeneous media considered in this paper
must support a plane wave of the form expi[zK (v) — wt].
Thus it includes a random medium which is statistically ho-
mogeneous, K (w) being the wave number of the averaged
field, and a periodic medium for which X (w) is the Floquet
wave number. Other than that, the derivation is general for a
medium which is linear and causal, homogeneous or
inhomogeneous.

In the next section, Sec. I, we review the existing proofs
of a dispersion relation, which proceed along the lines used
by Titchmarsh® appropriate to the real and imaginary parts
of a generalized system function. A somewhat stronger re-
sult has been obtained by Toll.? In Sec. ITI we discuss the
usual derivation of Kramers-Kronig relations for the wave
number K (w) for wave propagation in three types of linear
homogeneous media, electromagnetic waves in dielectrics,
acoustic waves in fluids, and stress waves in solids. These
proofs will be seen to have certain unsatisfying aspects,
amongst them being difficulties in making generalizations to
inhomogeneous media. Section IV discusses the phase prob-
lem as it has appeared in the literature, and relates its contri-
bution to our problem. Section V will present the newly-
constructed proof for the dispersion equations in a general
class of linear inhomogeneous media.

Il. CAUSALITY AND DISPERSION

The literature on dispersion relations and causality is
extensive. An excellent introduction and review of the sub-
ject and its applications is provided by Nussenzveig.'® Some
of his results which are related to the subsequent discussions
are repeated in this section. A more thorough treatment of
the logical foundations of causality and dispersion relations
is given by Toll.?

Consider a general linear system with an output w(t ), a
function of time, which is a linear causal functional of the
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input /(1)
wt)= [ gi—7)f(r)ar i

The system is assumed invariant under translations in time.
Hence the system function g(t — 7) depends only on the dif-
ference, t — 7, and not on ¢ and 7 separately. Equation (1)
states that the output at time # depends only on the input at
times 7<¢. Hence the system is termed causal.

Equation (1) may be rewritten in terms of the Fourier
transforms of the input and output functions if they are
square-integrable functions of time,

W (w)= Jw w(t Je™* dt,

Fo)= Jjo fle)e™ dt. (2)
Thus,

Wiw) = G (@)F (0), 3)
where

G (a))EJO00 glT)e™ dr. (4)

In the previous equations and the sequel, we shall use
capital letters to denote the Fourier transforms of the corre-
sponding time function in lower case letters.

Note that because of the causality condition, g(r) =0
for 7 <0, the lower limit of integration in Eq. (4) is zero,
instead of — . G (w) can be considered a system function
(transfer function) of a complex, but linear, system or a gen-
eralized scattering amplitude which converts an incident
field to a scattered field. The change of lower limit of integra-
tion for G (w)from — o toQhas farreaching consequence. It
implies that G (w) has a regular analytic continuation in the
upper half o plane. This connection between causality and
analyticity is at the root of all dispersion relations.

If in addition G (@) is square-integrable along the real
axis of the w plane, v = w, + iw,,

[ 1cwrde<c, 9
where C is a constant, then G (w, + iw;) (@, >0) is also a
square-integrable function of @, . By integrating the function
G (0')/(0' — @) over a complex contour as shown in Fig. 1
and letting 2 approach infinity, one finds that the real part of
G (), ReG (w),and theimaginary part, ImG (), form a pair of
Hilbert transforms. This result is summarized by Titch-

-04iQ mw 0.i0
r3
i r2
My f_\__
N o243 o Q+id
woe W w+e Rew

FIG. 1. The contour I". We take the limits £2— « ,6—0, and §—0.
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marsch’s theorem as stated in Ref. 10: .

If a square integrable-function G (o) fulfills one of the
four conditions below it fulfills all of them:

(i) The inverse Fourier transform, g{t ), equals O for ¢ <0

{i1)G (w) is, for almost all real w, the limit as Imw—0" of
a function which is analytic throughout the upper half plane
and is square-integrable over any line parallel to and above
the real axis

J.w |G (@, + iw,)|*dw, < C for », > 0. (6)
(i) ReG () = if ImGl@) 4, ™
m —_—w W — W
(iv) ImG () = — f ReG@) 4y, (8)
w —w W —@

Equations (7) and (8) are a Hilbert-transform pair. The
slash through the integral sign indicates that the Cauchy
principal values of the integrals along the real axis are to be
taken.

Equations (7) and (8) are dispersion relations for the
system function G (w). They are a consequence of linearity,
causality, and square-integrability. Since the condition of
the square-integrability (6) is to assure that the top and sides
of the contour integral I” vanish as 2— o, Egs. (7) and (8)
may also be derived under

lim G{w)— 0 uniformly, 7>argw>0.
{co] >0
As often happens, the square-integrability condition on
G {w) cannot be satisfied, but rather the weaker condition that
|G ()| is bounded, i.e.,

|G (w)|*<C.
For such cases, we may construct a new function H (o),

H(w) = (G () — G (@,))/ @ — @), Ima, >0.

H (@) is square-integrable and has no poles in the upper half
plane, and hence satisfies a pair of equations like Egs. (7) and
(8). Substituting H (@) as defined above for G (w) in Egs. (7)
and (8) and taking @, to be real and then rearranging terms,
we obtain

ReG () = ReG () + 220!
o
xf Im[G(a)’)—G(a)o)] fiw’ R
- W — Wy o —w
(@ — ,)
ImG (@) = ImG (wy) — ———
m
foRe[G(w'),“G(w‘))] 4’ (1)
e ® — w, o —o

This is known as a dispersion relation for G (o) with one
subtraction. Further subtractions may be taken if G (w) is
bounded by a polynomial function of w. Details are given in
Ref. 10.
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. THE KRAMERS-KRONIG RELATION FOR
HOMOGENEOUS MEDIA
A. The canonical proofs

A dispersion relation, similar to Eqs. (9) and (10), was
first established by Kramers' and Kronig? for the complex
index of refraction of light waves in homogeneous dielectric
media. Later on, a similar relation was deduced for acoustic
waves in homogeneous fluid media.’ In both cases, such a
relation can be expressed in terms of the complex propaga-
tion constant K (w) of a time-harmonic wave.

Consider a plane harmonic wave with angular frequen-
¢y o propagating in the direction of the z space axis with a
complex amplitude function 4 (v},

u(tz) = A () €1~ K0 = g () e~

The complex wave number X (w) is related to the com-
plex phase velocity ¢(w) by K = w/c. The Kramers-Kronig
relations can be taken in the form

iw[l—z/c(m)]' (11)

ReK (@ =——+—/f ImX e fi“’
-
+ ReK (0 (12)
ImK () = — _J} [ReK 1] do’
c, 1o —w
+ ImK (0), (13)
wherec , = lim (w/K ) as w— o . Equations (12) and (13) are

of the form of a dispersion relation for X (w) with two subtrac-
tions, the point at @ = 0 and the pointat w = .

To show that Eqgs. (12) and (13) are valid, we must estab-
lish that K (@) is analytic in the upper » plane and that the
real limit ¢ exists. The proof is not as straightforward as
that for G (w) in Egs. (7) and (8) because & (¢ ), the inverse
Fourier transfrom of K (w}, is neither a causal function nor a
physically meaningful function in the time domain. The
proof usually proceeds as follows'®:

Consider a material slab of thickness z, (Fig. 2), and let
the input function at z = 0 be f/(¢,0) and output at z =z, be
w(t,z,). From Eq. (1) we write

w(t,zo) =/J; g(t — 7,2,) f{7,0) dr, (14)

where g(t,z,) is a causal function in time. If the input is
f(2,0) = foexp( — iwt), it generates a plane harmonic wave as
represented by (11), propagating through the thickness z,,.
The output should be u(,z,) = 4 (0) exp[ — iwt + iK (w)z,)],
where 4 (w) is a thickness independent amplitude. The Four-
ier transform of Eq. (14) is

f=expl-iwt) w=A(wlexpfiwt+iKz)

FIG. 2. A slab of thickness z with plane wave f{f ) and plane wave output

wit ).
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Wl w,z,) = G (0,20)F (,0),
where
G (@,25) = A (w)e™ ¥, (15)

Since G (w,z,) is the Fourier transform of a causal func-
tion, it is analytic in the upper half @ plane. Furthermore,
|W (w,z5) |<| F(w,0)| because energy is not generated within
the medium, i.e., the system is assumed passive. This implies
that G (w,z,) is bounded,

|G (@,z,)|<1.
These two conditions assure a dispersion relation, Eqs. (9)
and (10}, for G (w,z,,) with one subtraction. Note that though
G (w,z,) satisfies a dispersion formula, there is no a priori rea-
son to expect its logarithm to obey the same type of formula.

Toestablish the analyticity of K (w} in the upper  plane,
we consider two slabs of thickness z, and z, = z, + d, and
apply Eq. (15) twice for two system-functions G (w,z,) and
G (w,z,) with the same amplitude 4 (w) and wave number
K (w). From the ratio of the two system-functions, we obtain

Kiw)= — m[G(”’zll]. (16)
d G {w,zy)
Since the logarithm of an analytic function is analytic in the
same region except at the zeros of the argument, and since
the quotient of two analytic functions is also analytic except
at the zeros of the denominator, we conclude that in the
absence of zeros for G (w,zy) or G (w,2,), K () is analytic in the
upper half » plane. That G (0,z) for all finite z has no zeros
can be seen from observing that no slab is a perfect reflector,
i.e., there is always some penetration although often expon-
entially little. Equation (14) leaves K (w) ambiguous by an
integral multiple of 27/d and one might therefore suspect
the presence of branch cuts. But since X is independent of o
and d is arbitrary, we see that there can be no such cuts.
The analyticity of K (w) alone is not sufficient to estab-
lish Egs. (12} and (13). We need to show further that either
K (w] or a new function

Hiw)=K|w)/w— 1/c

is square-integrable,

f |H (@, + iw;)|*do, <C, o;>0.

This part of the proof is usually established by appealing to
the field equations and constitutive relations of the media in
which the plane harmonic wave is propagating. We proceed
first with light waves in dielectric media, then discuss acous-
tic waves in a fluid, and conclude this section with a discus-
sion of stress waves in solids.

B. Light waves in dielectric media

For an isotropic dielectric medium, the polarization P
at a point is related to the history of the applied electric field
E at that point by a convolution integral'®

= f' Xt —7)E(r)dr.

The susceptibility function y (¢ ) is causal in time. The Four-
ier transform of y (¢ ) is related to the dielectric constant €{w)
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by

€lw) — 1 = 47X (), (17)
where
X(w) = J; xlt Ye''dt. {18)

Hence, the complex dielectric constant €(w), or €(w) — 1, is
analytic in the upper half w plane. From Maxwell’s equation
for light waves in a medium with dielectric constant €(w) and
unit magnetic permeability (u = 1), we have

€w) = ¢} [K [w)/0)?, (19)

where ¢, is the light speed in vacuum. Thus we can confirm
that K (w)/w is analytic in the upper half plane, except per-
haps at its zeras.

Much is gained when use is made of the known physical
properties for €(w), or X (w), at high frequencies. As shown by
Nussenzveig (p. 44 of Ref. 10), based on the consideration of
microscopic motion of electrons in an electric field, the sus-
ceptibility X {w)is of the order of , /@’ as w approaches infin-
ity where, #, is the electron density. Thus €{w) — 1 and, con-
sequently (K /w)* — 1/c3, are square-integrable in the form
of Eq. (6). It is then simple to show that K /w — 1/¢, is also
square-integrable in the form of Eq. (6). From Titchmarsch's
theorem we arrive at the Kramers—Kronig relations as given
by Eqgs. (12) and (13).

C. Acoustic waves in fluid

Ginzberg® has been quoted extensively as having pro-
vided a proof of Egs. {12} and {13} for pressure waves in a
fluid. Let v(t ) be the particle velocity of the fluid medium
with ambient pressure p, and density p, and let p(t ) be the
perturbation pressure. Again a heredity integral relation is
assumed,®

povit) = J-i s(t — 7 iplr) dr. 20)

The function s(¢ ) is casual and its transform S () is analytic
over the upper half & plane. The Fourier transform of the
above equation gives rise to

poV(0) = S (0)P(w). (21)

From the balance equation of linear momentum one finds

poV )= — Pw)/clw), (22)

where c(w) is the complex phase velocity of the plane har-
monic wave given by w/K (w). Hence 1/¢(w) = — S (w)isalso
analytic in the upper half plane. This establishes the analytic
property of K (@)/w.

The behavior of K (@) or 1/c{w) as w— co is difficult to
estimate as there is lacking a microscopic relation for S (w)
like that for X () in the electromagnetic case. A discussion of
the behavior of 1/c(w) for w larger than a critical high fre-
quency, say w,{ > 10'?Hz), is given by Ginzberg. We shall not
repeat his discussion here except to point out that he essen-
tially assumed that 1/c(w) exists as w— o0, and that it ap-
proaches a limiting value uniformly, independent of argw.

Equation {20) may be criticized on the grounds that it is
not a constitutive relation. The fluid velocity of a point is
given by Eq. (20) as a linear functional only of the pressure at
that point. At the very least there exists also an implied de-
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pendence on wave-propagation direction. The function s(¢ )
has no immediate physical significance.

D. Dispersion relations for homogeneous viscoelastic
media

If we attempt a similar proof for stress waves in material
media we find for the same reasons as in the previous section
that K (w) is analytic throughout the upper half » plane; and
again we find that the high frequency behavior of K (w) can
only be ascertained by appeal to physical argument. We can,
however, improve the derivation by replacing Eq. (20) witha
genuine constitutive equation.

For an anisotropic viscoelastic linear continuum the
stress tensor o; at a point is related to the local strain tensor
€,,; at the same point by a convolution integral"'

o;(t)= fi Comalt — T )eg{T ) dr. (23)

The stiffness function ¢(t ) is causal. If € and ¢ have a har-
monic time dependence exp{ — iwt | we may write

):ij(w) = Czjkl(a))Ekl(w)’ {24)
with
Cs o) = [ cyuttle 25)
0
From the balance equation of linear momentum
Puz = aij.j)

where u; is the particle displacement vector field, we
conclude

— pw*U, (@) = Cin (@) 2y (). (26)

Since 26, = u,; + u,; and since Cyy, = Cyyy, we find
— pa’Ui(w) = Cyyl) Uy ; (). (27)

If the particle displacements are assumed to have a plane-
wave dependence on position exp{/K-x), then

po’U; (@) = Cyy (@)K, K; U, (o). (28)

For propagation in direction n with components », and
K = Kn the solutions to Eq. (28} are the eigenvectors of the
matrix Cy,n, n; = M, and pw*/K *(w) are the associated
eigenvalues.

One concludes, in analogy with Eq. (19), that K (o) is
given by the eigenvalues of the matrix M, .

M, (o) Uy (@) = (po®/K?) U, (). (29)

Thus knowledge of the high frequency behavior of C(w)
would determine the high frequency behavior of X (). Un-
fortunately this behavior appears to be very difficult to esti-
mate. In the electromagnetic case there is a nondispersive
continuum {the vacuum) which underlies the dielectric. At
high frequency the dielectric has a negligible response and
the propagation becomes that characteristic of the vacuum.
In the stress-wave case there is no such underlying contin-
uum, and the dispersive medium cannot be divorced from
the wave quantities. Strain and displacement fields, unlike
electric fields cannot be defined at high frequencies. In short,
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the continuum approximation inherent in Eq. (23) is invalid
in the very region of high frequency where we wished to
employ that equation. Locality and linearity may likewise be
failing in this regime.

One could avoid these questions and, following Ginz-
berg,® assume the existence of the real uniform limit

¢, = lim o/K(®), ;>0 (30)

independent of argw in the upper half plane. Using the analy-
ticity of K (), and its assumed high frequency behavior, and
assuming that K '(0) exists, the integration of the following
quantity along the contour /" shown in Fig, 1 is taken

H (o) =[K(a))—K(0) 1] 1

E
w— o' o —0 ¢, lo—0ao

vielding Eq. (12) and (13).

We do not find this proof entirely satisfactory. It is per-
haps possible to rigorously derive Eq. (30) from consider-
ations on the high frequency behavior of the stiffness C ().
We have been unable to do so convincingly. In this context it
is perhaps appropriate to point out that the assumption of
homogeneity made in subsection B also breaks down at high
frequency, where the electron density cannot be considered a
constant.

We admit further dissatisfaction with any proof based
on appeal to the high-frequency behavior of a generalized
susceptability such as X (w) or C (@). It is only in a homogen-
eous medium that one may make identifications such as (19)
or (29). Thus such proofs cannot be generalized to inhomoge-
neous media. In a periodic medium K (@) is a Floquet wave
number and not directly related to a generalized local sus-
ceptability. In a homogeneously random medium where
K (w) is the wave number of the ensemble averaged field,
again there is no direct connection with a generalized
susceptability.

In a certain sense the high-frequency behavior of K {w) is
irrelevant to actual experimental work. The plausible as-
sumption that |K ()| is bounded by some power of || as
|@|-+co with Imw>0, together with the analyticity of K (w),
already established at least for homogeneous media, suffices
to give a dispersion relation for K (w) with an unspecified
number of subtractions. In practical work though, the num-
ber of subtractions employed is determined by convenience
and may greatly exceed the required number.® Thus the
theoretical determination of the required number may be
moot. Nevertheless it is of considerable significance theoreti-
cally to determine the required number of subtraction, or
indeed if there is any number which is sufficient.

We conclude this section with the statement of a certain
property of K (w). This property will be useful from place-to-
place in the following and we state it here for reference.

Given that g(#,z,) is a real function, a property which
follows from Eq. (14}, we conclude, in view of Eq. (15), that
G (w,2,) has the property

G(@*2g) = G* — w,zy)
and that K (w) has the property

K{—o*)= — K*o), {31)
where an asterisk denotes the complex conjugate.
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IV. THE PHASE PROBLEM

In many cases a physical experiment will measure only
the absolute value |G {(w)| of a complex system function. It is
the concern of the phase problem to reconstruct the complex
number G {w) from knowledge of |G (w)|. Two references in
this regard are the papers by Toll,” and Burge et al. > Here
we will quote Toll’s result and show its relevance for our
problem.

For a quantity G (w) which is bounded and causal in the
form of Eq. (4), we consider the complex quantity n(w) de-
fined by

G (a)) — eifz(w) (32)
or

Req(w)=17, = argCG (v),

Imp(e)=7;, = — In|G ()| (33)

We ask if knowledge of 7, (w), which is an even function of w
for all real w, suffices to determine 7, (w) for all real w. Toll’s
answer is that it suffices to determine 7, to within two real
constants, if (i) G (w) has no zeros in the upper half plane, if (ii)
the integral

1) o< w (34)
b 14w
exists, and if (iii) 5, (@) is continuous. He obtains the result,
n_ 20" (7 mle .
77,(0))=—J/ ) + B’ 41, (35)
T Jo & —w@

where B is positive and real and J is real. The condition on
the zeros of G (w) and the condition on the continuity of 7, ()
may be relaxed at the expense of generating additional de-
grees of freedom for 7, (w).

As G (w,2) for electromagnetic or stress-wave propaga-
tion in homogeneous media satisfies most of the three condi-
tions assumed in Toll’s derivation we may conclude that the
quantities ReX (w) and ImX (w) as defined in Eq. (15) satisfy
Eq. (35) if ReX (w) is continuous and if

ImK (@) dw < . (34')
b 14w

This result is very interesting but it leaves one wonder-
ing if the conditions on the continuity of ReX (») and the
convergence of the integral (34') may be relaxed. One also
wonders if an inverse relation giving ImX () in terms of
ReK (w) can be obtained. In the next section we present a new
proof, applicable to any type of linear wave propagation. The
new proof establishes an equation like (35) for ReX (@) and a
reciprocal equation for ImK (w). Furthermore Eq. (34') is
shown to be a consequence of first principles rather than an
initial constraint.

V. DISPERSION RELATIONS FOR A GENERAL LINEAR
MEDIUM

In this section we will establish dispersion relations for
K (w) in general linear media independent of any appeal to
detailed physical structure. We will show that there must
exist a real quantity, which plays the role of ¢, such that
formulas equivalent to Egs. (12) and (13) are valid. These
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relations will be established for homogeneous media and for
that class of inhomogeneous media which admit plane waves
with wave number X (w).

We begin by considering a slab of thickness D such as in
Fig. 2 supporting some unspecified type of linear distur-
bance at frequency w. As discussed in Sec. III the transfer
amplitude—or transmission coefficient—through the slab
should be of the form

G(w,D)=A(w)e™P, (36)

This is a form appropriate to any homogeneous medium,
where K (o) is the wave number in that medium. For a ran-
dom inhomogeneous medium which is statistically homo-
geneous, K (w) is the wave number of the average field and
G (w,D) is the ensemble-averaged transmission coefficient.
For a periodic inhomogeneous medium, X (o) is a Floquet
wave number and D is restricted to a set of slab thicknesses
differing by an integral multiple of the periodic spacing.
Note that here we make no reference to the type of linear
disturbance.

A. The analyticity of K(«») for inhomogeneous media

We will need to show that K (w), as defined above, is
analytic in the upper half w plane. For a homogeneous medi-
um the discussion of Sec. IIT suffices.

In a random inhomogeneous medium which is suffi-
ciently statistically homogeneous to allow the wave form Eq.
(36), the analyticity of K (w) may be established by the follow-
ing proof. The same proof is also applicable to homogeneous
media and is found in the book by Nussenzveig.'® He points
out that K (w) will have the same domain of analyticity as that
of G (w,D ) except at the zeros of exp[iK (w)D ]. Forany given
realization in the ensemble of random media, the field trans-
mitted through the slab, though not a plane wave, is causal.
The average of these fields is a plane wave, and of course still
causal. Hence G (w,D ) has the required analyticity in random
as well as in deterministic media and X (w) will have the same
domain of analyticity except at the zeros of exp[iK (w)D ].
But any zeros in the exponential factor at, say o = § would
imply abranch cutin G (w,D ') atw = { forsome D '#D. The
possibility of a branch cut is excluded by the analyticity of
G (w,D ) for all D. Thus there are no such zeros and X (@) is
analytic throughout the upper half o plane.

In the case of a periodic medium, we may conclude that
there are no zeros in the factor exp{iK (w)D ] at any finite
value of @ in the upper half plane because a zero in G (»,D)
would imply that there is some frequency (perhaps complex)
for which a vanishing field to the right of the slab is consis-
tent with a nonvanishing field to the left. This can only hap-
pen at a frequency at which one of the constituents of the
medium has singular properties. But these properties are
causal transforms and analytic in the upper half plane. Thus
G (w,D ) has no zeros in the upper half w plane and K (w) may
be assumed analytic there except for possible branch cuts
where X (@) jumps by an integral multiple of 27/, & being
the periodicity of the medium. While such branch cuts may
exist, they may be swung into the lower half plane without
loss of generality by noting that there can be no branch
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points of K (w) in the upper half plane. Any such points for
K {w} would imply branch points for G {w,D } and these are
disallowed by its analyticity. Van Kampen'? has also dis-
cussed the analyticity of the Floquet wave number as a func-
tion of w.

Thus we conclude for this class of media that K (w) is
analytic in the upper half plane. We have not yet discussed
its behavior at large @ and cannot yet conclude with a disper-
sion relation for K (w). The discussion of the high frequency
limit of K (w) will occupy the remainder of this
communication.

B. K(w) as a Herglotz function

K (0} has a further property which has so far not been
exploited, that is, its imaginary part may be assumed non-
negative. Since the system under consideration is assumed
passive and no energy can be added to the wave, we conclude
that

|G (w,D)I<1 (37)

for all real w and all positive D. It is appropriate here to point
out that logical connections between passivity and causality
have been widely noted ''*!5, often in the context of deriv-
ing dispersion relations for system functions.'®'” By refer-

ring to Eq. (4) we may extend Eq. (37) to all values of w in the
upper half plane and on the real axis. By noting that Eq. (37)
must hold for arbitrarily large thicknesses, D, we conclude

leX P | <1, Imw>0 (38)
and thus
ImK ()>0, Imw>0. (39)

Equation (39) together with the analyticity of X (w) in the
upper half plane form the definition of a Hergoltz
function.'*'®

Any Herglotz function admits a representation in the
upper half @ plane in terms of a bounded (from above and
below) nondecreasing real function a(t ) of a real variable 7,
the real numbers B, J, with B positive

14+ tw

K(w)=Bw+J+ Jw da(t) (Ime>0).(40)

The integral is a Stieltjes integral.

There is a slight resemblance between Eq. (40) and Eq.
(7). The resemblance can be explored by taking the limit
Imew—0 and assuming that a(¢ } is sufficiently differentiable
everywhere. One obtains, for real o,

K (©) = Bo + J — ird'(0)(1 + &?)

+ o
+£ lj—_ﬂa'(t)dt

(Imw = 0). (41)

Thus a’ may be identified
7 1+
and Eq. (41) becomes
ReK (@) = By + J — iJr

T J -

ad'lw)= —

1+ tw ImK(¢)

~ dt.
141¢°

o (43)

With a little more manipulation which exploits the property
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that ImK (w) is an even function of real w, Eq. (43) may be
made into the form (12) with¢_ = 1/B and J = ReK (0).
This approach, similar to that of Wu,'” whose concern is
with despersion relations for impedances, is not adequate for
the present purposes. We have assumed here that a(t ) is
differentiable. The meaning of such an assumption is not
clear. Furthermore we have derived only one of the Hilbert
transform-pair, and not the reciprocal relation which gives
ImK (@) in terms of ReK ().

From K {o) as described in Eq. (40}, we construct an-
other analytic function
K (o) — K (@)

® — g
f daft) —LF (44)
(t— a))(t — a)o)

where w, will be specified later. Clearly H (w) is analytic in
the upper half plane. We will show in the following that as
®— o0 ,H (w) vanishes uniformly in a sector of the upper half
plane, 37/4>argw>7/4 and approaches zero in a possibly
nonuniform manner on and in a neighborhood of the real
axis. Itisin this limited sense only thatc¢ , = 1/B can be said
to exist for general linear media. Fortunately, the nonuni-
form properties of H (w) will be seen to be sufficiently unpath-
ological that equations effectively equivalent to Egs. (12) and
(13) will be valid.

An illustration of the possible nonuniform properties of
K (w) is provided by the consideration of a medium which
embeds sharply-resonant scatterers. We take their reson-
ances to occur at frequencies Rew, , n = 1,2,3..., 0 and each
resonance to have width Imw, > 0. Each oscillator will be
assumed to have strengtha,,. Thus K (w) will include a patho-
logical term of the form

Zan/(a) —w,).

If, for example, Imw, —0 as n— oo such that

H(w)= —B

K, (0} =

lim a,(Imw,) 'o, ™"

H-»oc
does not exist, i.e., if the resonances are becoming increasing-
ly sharp as n— w0, then H (w) may converge to zero on most
sequences w— oo, but will diverge on sequences close to the
sequence {w, }. It may be that the behavior described here is
unphysical. It is not clear, though, that all pathological be-
havior can be ruled out.

C. The contour integral
We consider the integral along the closed contour I of
Fig. 1 where ' =1+, + I+,
Hw)

ro—ao'

dow =0. (45)

By taking the limit of this integral as £ goes to infinity, and

{2 + if2

Hw
f Hiw) ),da)
nN+is O~
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as € goes to zero, we wish to establish that the contribution to
the contour integral from the top, I, left- and right-hand
sides, I', and I, vanish in the limit 2— o0 . Clearly if |H ()|
vanishes uniformly as 2> o on all points of a given section
of the contour, the contribution from that section will vanish
in this limit.

1. The top of the contour I,

The proof that |H (w)| vanishes as £2-— o0 on Iy is also
found in Ref. 14. We write H (w) in the following form:

_ 1412
H(w)_ JI\IKT (t —(())([ '—w()) da(t)
1412
= L

where T will be taken as arbitrarily large but fixed as 2— «
and @ in understood to be on I,

In the limit 2— o0 with [w|>42, the first integral of Eq.
(46) vanishes because it is of the order 1/w times a fixed
quantity. In the domain of the second integral where
|t |» e, the integrand is of the order of unity,

1+ 23/t — o)t —wp)|=x1. (47)
The second term of Eq. (46) then becomes

14¢2
f:>7mda(t) = f[>Tda(t). (48)

Since T is arbitrarily large and as (¢ ) is monotonic and
bounded from above and below this integral is arbitrarily
small. We conclude that | H ()| vanishes on I, as 2— « and
that the top section of I" contributes zero in the limit 2— o .

2. The sides of the contour I, and I,

We now let w lie on I, and break the integral represen-
tation for H (@) into four terms

il S0 A
" L p (T__l;,)%%wf)) dalt), (49)

where 0 <8 < 1 and T'is arbitrarily large but fixed as 2-— 0.
The first integral vanishes because it is of the order 1/w
times a fixed quantity; the second and fourth integrals vanish
as {2— o0 in manners similar to that of Eq. (48). The third
integral is readily seen to be bounded for sufficiently large £2,

H (0)|<[al? +B2) — a(2 — 2)](1 + B)2 /Imw.
(50)

It is not apparent that the expression above vanishes as
f2— 0. The first factor vanishes, but the factor £2 renders the
convergence questionable.

We can, however, through the bound on |H ()| along
I, construct the consequent bound on the contribution to
the contour integral from this segment. For large £2 and for
=102 +iw,

<[al? +B2) — a2 - B2)](1 + B)[In2 — In5]. (51)
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This expression will now be shown to vanish as 2— « at
fixed § but in general, not in a uniform manner.

We state that there exists a sequence of increasing num-
bers £2,, n=123... with 2, — o as n— oo such that the
right-hand side of inequality (51) vanishes as n— o . This will
be proved by asserting the contrary, i.e., that there is no such
sequence, and discovering a contradiction. It is clear that if
J

alw) —alf2)= f:da(t)— z m“da(t)

m=0

= 20 [alX,. . ) ~alX,)] = mzo[{a(l +B){%] Ha[(l -

there is no such sequence then there exists some (large) 2
such that forall X> 02 /1 — B8

1
X+ BX)~alX -BX)> —————.
(X + BX) — alX — BX)> X Inlnk (52)
This implies
L ” 53
=5l (53)

where X, =2 and X,, ., = [(1 +B)/(1 — B)1X,,. Combining Egs. (52) and (53) we conclude, with ¥ = (1 + B)/(1 — 3),

afow) —

a2)> S [(mlny+ In -

m=20

The sum does not converge. But a{ ) — a(f2 ) must exist.
Thus we have a contradiction and there does exist a sequence
of £2,, with the desired properties.

We conclude that
12, + if2,
lim M do =0 (55)
n—w J2 4+ i5 O — @
Similarly we can conclude for the left-hand side
—Z,+i8
lim L(a_))_, do =0, (56)
now Jiz —z, ©0—0

where Z, is some sequence, not necessarily the same as (2, ,
which goes to infinity as # goes to infinity. It will be shown,
however, that Z, can be taken equal to £2,,. This will follow
from the parity of K (w) under o—w*.

3. The bottom side of the contour

We now take the limit §—0. The limit can be taken only
if K (£2,,) exists in a suitably well-defined way. The validity of
the limit is related to the validity of taking the bottom section
of the integration along the real axis in the first place. K (w)
has not been guaranteed analytic, or even everywhere de-
fined, for real . But since X (@, + i6)is analytic forall § > 0,
it is reasonable to assume that its integral transforms with
respect to w, are continuous functions of § as 5—0. Hence
K (w,), though perhaps not a good function, is in this sense
locally integrable and thus a distribution. See Beltrami and
Wohlers'® for a discussion of distributions as boundary val-
ues of analytic functions.

Thus we conclude that

2,
H@) 4,

lim - (57)
n—ew J_Z 00— @
and, for Imw'—0,
fim f H@) 4y — inH (o), (8)
n—wJ_z, ®—a'
the real and imaginary parts may be taken now.
2,
ImH (o) = lim — | Retl@) 4, (59)

—z, 0 —w

n—co T
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03) In (mlny-{- In =7

)]‘l. (54)

1 F” ImH (@) 4,,. (60)

—z, w—

—

ReH{0') = lim

n—o 9T

Since ImK (w)>0 for all real w, the limit in Eq. {60} is clearly

independent of the details of the sequences £2, and Z,. We
therefore may take, for this integral, 2, = Z, >

_ __{F*"’ ImH(co 0, (61)

where there can be no amblgulty in regard to the limits of
integration. Furthermore, taking w, = 0, ImH (w), except for
a part which gives zero upon being Hilbert-transformed as in
Eq. (61), becomes an odd function of real w [(see Eq. (31)] and
the above integral can be rewritten as

2 f" olmH @) 4, 62)

T &}—-(1)

ReH (') =
or

ReK (') = Bo' + 22 {f K@) 4y + Rek (0).
0’ — o
(63)
Note that Eq. (63) implies the inequality (34').

Equation (59) is not in a useful form. The purpose of the
remaining parts of this section will be to replace Eq. (59) by
Eq. (68). This will be done by considering the right- and left-
hand sides of I” simultaneously and showing that the real
part of the possibly nonuniformly convergent part of the sum
of the contributions from the right and left sides of I" vanish-
es for all £2.

4. The uniform limit
Again we assume w, = 0. We first show that the o' #0
integrals on the sides differ from the o’ = O integrals only by
a uniformly convergent part. By referring to Eq. (50) one
may write, for @ on the left or right sides of I',
l M\ <[al +BR) — al2 — B2)]
w—o

(1+8) [ (w)]
X —L22 )1 +0|—]]|

Ime 2 (64)
If this quantity is now integrated along the right or left sides
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of I, it is only the leading term, which is independent of ',
that is of questionable convergence. The integral of the re-
matining terms clearly vanishes uniformly as 2-» . Thus
for an investigation of the nonuniform covergence of the side
integrals, we may take &’ = 0 without loss of generality.

Now setting o’ = 0, we consider the integral up the
right-hand side of the contour I, and down the left-hand
side I',. The integral along I', is

f H@) . _ TH W2+ i) i dy

r,

- (65)
s 241y

The integral along I', is

Equation (66) becomes, on recognizing that
H (w) = H *( — o*) except for the unimportant term

K (0)/ow,

J‘.I_{ﬁ)_da)_——_— i
rnoow s

and the sum of the integrals on I', and I', becomes

J;I—I%w)-da)-{- L‘Egldw

12 .
=if dy{ H(()-}-‘zy) +
5 2+ iy
which has zero real part.
Therefore the integral

o] [

is uniformly convergent to zero as f2—co.
We rewrite Eq. (59) as

H(-02+Y), (66)
n -4y

HYR2+y) ;.
(42 + p)*

(2 +iy)*

+

ImH () = lim — f ReH (@) 4, (68)
2~ 2 ©0—o

SinceReH (w) = ReH ( — a)) fore real exceptforapart which

gives zero upon being Hilbert transformed, we may recast
Eg. (68) into

— 2 [ ReH(w) o

ImH (') = — 4 o (69)
or
+ ImK (0). (70)

By subtracting from Eqgs. (63) and (70) the appropriate
multiples of

:FO :
o w?—w?

one obtains the sometimes more convenient formulas

20" [ ImK (a)) —ImK ()
T 2

dow =0

ReK (0') = Bow' + —
0 w? — o'
+ ReK (0), {71)
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— 207 [ ReK (o' eK (o’
im0 = 2= [ [ 2Tl Seve
X =22 4 ImK(0), (72)

o — o'
where now the integrands contain no explicit poles. B is an
unknown positive real number, equal to, when the limit ex-
ists unambiguously,

lim X (w)/o = B.

In lieu of the definition (44) of H {w) one could consider
the quantity

Ho)= [ﬂ”—;—“—o’ —K'(O)] 1 73)

which, by analysis similar to that of Sec. VC1 and VC2 can
be seen to be uniformly convergent to zeroon/,, 5, and I,
as 2« . It follows immediately that one may write a dis-
persion relation for H (). After taking the imaginary part of
this dispersion relation and recognizing that ImK '(0) =
one obtains Eq. (72). After taking the real part one obtains, in
place of Eq. (71), the possibly more useful relation

ReK (') = ReK (0) + @'ReK (0)

2

207 J“"’ [ImK(w)
+ L
7 Jo o @

ImK ’(a)')] dw
0’ — "

If ReX (0) = 0, as it must if ReX (w) is an odd function, Eq.
(74) becomes Horton’s* Eq. (5).

V1. CONCLUSIONS

To summarize, the Kramers-Kronig relations have
been established without reference to the exact physical na-
ture of the medium, and independent of any assumptions
regarding the high frequency behavior of the medium. This
high frequency behavior, until now a prerequisite to
Kramers-Kronig relations, is seen to follow logically from
the first principles of causality, linearity, and passivity. The
Kramers~Kronig relations for the wave number K (@) have
thus been found to hold for a wider class of homogeneous
and inhomogeneous media, for which a priori high frequency
behavior is difficult to judge, than has heretofore been
thought to be the case.

The surprising result is perhaps not the validity of some
form of a Kramers—Kronig relation for general linear media.
They have been employed in a wide range of circumstances
for many years. It would have been remarkable had it been
shown that for some media there is no dispersion relation for
the wave number K (). The more surprising result is that
two subtractions Egs. (71) and (72), where the second sub-
traction is a point at infintiy, are always sufficient, or, speak-
ing more loosely, that the attenuation, ImK (@), cannot rise as
w— oo as fast as a linear function of w, nor can the real part,
ReK (w), rise faster than a linear function of w. It is remark-
able that these properties follow from only causality, passiv-
ity, and linearity with no appeal to specific physical
argument.
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The Cauchy-Riemann equations of holomorphy are extended to fields in higher-dimensional
spaces in a framework of Clifford algebras. The equations of holomorphy in Minkowski spacetime
turn out to be the Maxwell equations in vacuum. The Lorentz gauge condition is a result of the
holomorphy. Sources can be included in an extension of the residue theorem, where charges

correspond to the residues.

PACS numbers: 03.50.De, 02.40. 4+ m,

1. INTRODUCTION

Ever since the creation of the beautiful branch of math-
ematics dealing with holomorphic functions and residue in-
tegration in the complex plane,' there have been efforts to
extend those results to higher dimensions. The direction
which concerns us is the formulation of holomorphic fields,
using, as a basis, an algebra with anticommuting elements
and not several commuting complex bases. This latter ap-
proach has been adopted to create the theory of *“‘several
complex variables.”** The theorems of Frobenius™® and
Hurwitz and Albert’~" give all normed division algebras
without singular inverses other than the zero element as R,
C, and H. This result has motivated a group of researchers to
look into *‘quaternion holomorphy”''"-'? as the natural ex-
tension of complex holomorphic fields. (Ref. 12 contains an
extensive bibliography.)

Recently, we have demonstrated that all Clifford alge-
bras up to order 8 are either division algebras, or “singular”
division algebras.'>'* Furthermore, any larger Clifford alge-
bra has division defined for each rank antisymmetric tensor
field.'>'® This property, as well as the manipulatory ease of
Clifford algebras, leads us to formulate a theory of holomor-
phic fields using Clifford algebras. Related but distinct ef-
forts can be found in Refs. 17-20. Also of related interest is
the work of Penrose and his school on holomorphic twistor
fields.?'~*

In this paper, we show how to construct the generalized
Dirac operator D **¢ in any flat Riemannian space as a
vector operator in the Clifford algebra (Sec. II1I). D is defined
using the realization of Clifford algebras in terms of the dif-
ferential forms of each space, introduced in Refs. 15 and 16.

In Sec. 1V, we show that the Cauchy—Riemann equa-
tions of holomorphy correspond to the expression Df = 0 in
two dimensions. By using the Clifford algebra in four-di-
mensional Minkowski spacetime,”’~”° the corresponding ex-
pression Df = 0 in four dimensions gives rise to two distinct
sets of equations. When fis a vector field, it can be identified
with the electromagnetic potential, and the condition Df = 0
is equivalent to the Lorentz gauge condition plus the differ-
ential equations expressing a zero electromagnetic field in
terms of the potential. When fis an antisymmetric rank-2
tensor field, f can be identified with the electomagnetic field,
and the condition Df = 0 is equivalent to the Maxwell equa-
tions in vacuum,

It is possible to include singular points, in which case
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the fields are nonholomorphic. An integral formalism de-
rived from the differential treatment is introduced. Using the
analogy with electromagnetic fields, we show how a residue
in Minkowski space can be evaluated via an extension of the
usual Residue theorem. We apply this method to (i} the vec-
tor field r|r| " and (ii) the electric and magnetic multipole
fields. The result obtained is that the only nonholomorphic
field is in fact that corresponding to the electric field of a
point charge. These examples illustrate the close connection
between electromagnetism and the holomorphic properties
of Minkowski spacetime.

1. PROPERTIES OF THE CLIFFORD ALGEBRA IN
MINKOWSKI SPACETIME

We review her the “vee” representation of Clifford alge-
bras in terms of differential forms, which was introduced in
Refs. 15 and 16. The reader is referred to there for details;
here we give a summary of those results that are necessary in
the following discussion. In particular, we study the Clifford
algebra in Minkowski spacetime, denoted by 4 1* = N,.272%

Consider the differential oneforms o* = dx*;
© = 1,2,3,4, of the Minkowski space M."'* We construct a set
of 2* = 16 basis p-forms using the Cartan exterior product®’:

{LLlo*,0“No*,0* Aa* No?, @* =a' AN o'},
pvA = 1,4, pu#tvLi. {1)

The volume element in four dimensions is labelled w*. In the
space M ', define a metric scalar form

gW=(o* 0" )=diag(—1,—1,—1,+1). 2)

In general, the metric can have p plus signs, ¢ minus
signs, and p + ¢ = n. In that case, the construction is ex-
tended to the Clifford algebra 4 #¢, which is of dimension
2P+4a 15,16

We define an associative multiplication V, “vee,” be-
tween all the basis forms in (1) in terms of the Cartan exterior
product and the contractions (2}. The “vee” multiplication
between a basis 7-form and a basis (s)-form is defined as a sum

of permutations of basis forms in (1), as follows'>1:
Definition 1:

(@ A ATV (0% A A 0™

! Hy g
A-Z’ok!(r—k)!(s—k)!;;(_l)( 1)

X g\ g g A NG NG A Aa”. (3]
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Here ( — 1) and ( — 1) are the signs of the
permutations

v, v, - p,
m,=(" ) 1L=C’j‘ P ) @
) /'Lr . U

In actual practice, the rules of manipulation of the vee
product are very simple. For example, it follows from defini-
tion (3) that

aVo'=g"+a* Ao, (Sa)

o*V(o*ANo’*)=g"c* — g0 + 0" ANo”Aa*. (5b)

Define the “tensor types” f,, which are antisymmetric
tensor fields of rank k£ expanded onto a basis of differential
forms in (1). The crucial difference between the “tensor
types” and the usual differential forms is that the bases are
here endowed with the vee product; hence the tensor types
possess intrinsic algebraic properties in addition to those ex-
pected from the theory of differential forms. The most novel
property is the existence of a unique two-sided inverse of
each tensor type.'>'¢ In four dimensions, the ranks of the
tensor fields can be only 0,1,2,3, and 4. The most general
element of the algebra 4 '* is a combination of all distinct
tensor types f;:

a=fy+fi+fHL+f+ 1
=fo+ I Nl +1 3 Lo No”

%Zf;uv/la,‘u/\a.\//\a,/{ +ﬁ0w4’
LYYV S

+

v, A=1234 u#vs£A (6)

The coefficients of the tensor types are all rea/; the total
number of scalar components is 16, which is the dimension
of the algebra.

In the discussion of forms, the notation of the dual®®
plays an important role. A result of particular practical sig-
nificance is the ability to express the dual notation algebra-

ically using the vee product as follows'>'®:
Theorem 1:
8y = (= VL, =fi ”

The index ¢ is different for each space and for each rank.
The duality theorem [Eq. (7)] can be used in the three-dimen-
sional subspace of Minkowski space to reduce a second rank
tensor Fin four dimensions into space and time components.
This is known as the “canonical decomposition”?®:
F=EAc*— %« B=EAc¢*+ &’ VB,
3

E'=F% B'= —| Ze‘ij i, k=123 (8)
i, jk

In the case of the electromagnetic field, this is just the
familiar reduction into the vector fields E and B in the three-
dimensional space.

In our notation,a and b will represent vectors in four
dimensions, with scalar product (2,b) = 2} _ ,a,b*. We use
the Minkowski metric (2) g™ =(—1,—1,— 1, + 1). The
quantities a and b are the spatial part of the same vectors, and
have a Euclidean scalar product denoted by
(a-b) = =;_ ,a'b". The usual vector cross product in the
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three-dimensional subspace is defined as a b
=32, ableto~

We list the vee products between vectors a, b and the
tensor type-2 F, as follows; they are easily calculated using
(5):

aVb=(ab)+ (b*a—ab)Ao* — w*Vaxb, (9a)
aVF= —a'E — axB — (aEjo* + 0* V[ — (a-B)o*
+aXE — a*B]. (9b)

The hypercomplex character of the vee product is ex-
plicit in (9a). (Compare this product with the well-known
quaternion product. It has a similar form, but is quite dis-
tinct.) In (9b) we have used the canonical decomposition (8)
to separate the tensor F into the space part B and the space-
time part E. Identities (9) demonstrate that fields in space-
time can be described in our formalism by employing the
traditional vector notation.

lll. CONSTRUCTING THE GENERALIZED DIRAC
OPERATOR

Consider a field fthat is a function of the » variables
x',...,x". Then, any general derivation D can be written in
terms of the chain rule as

Definition 2.

Dfix',..x"]1 = z dx°d, f[x',...x"]. (10)
a=1

Motivated by this rule (10), proceed by making the fol-
lowing identifications: (i) Interpret the coordinate differen-
tials dx“ as the basis one-forms o endowed with the vee
product, and (ii) interpret fas any ‘““tensor type’ in (6). We
can consequently use the Leibnitz chain rule to define a first-
order differential operator. The interpretation given here has
the feature that the differential operator D actually generates
the algebra in the space of variables.

It is possible to identify the partial differential operators
d,, with the covariant components of a vector in » dimen-
sions expanded on the o-basis, as follows:

Df=DVF, D= 3 3,0" (11)
a=1

With this identification (11), the purely operational
definition (10) becomes an algebraic definition of D as a vec-
tor differential operator. The obvious advantage to this con-
struction is that the properties of D can be deduced very
simply by using the algebraic vee structure. We list some of
the properties here:

Dfy=f ooy + S ps (12a)
DV(f, +fi)=DV f, +DV f, (12b)
DV(DVf)=(DVD)V, (12c)
DvD=0. (12d)

These properties (12), along with the universality of the
Clifford algebra, demonstrate that D is in fact isomorphic to
the generalized Dirac operator.

In the Grassmann algebra, D may be identified with the
operator (d + &), which is the sum of the Cartan exterior
derivative d with the Hodge coderivative 8, as follows?**°:
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Theorem 2:
DVfoid+Af=dN £ *dA*)). (13)

It is to be stressed that, although some results are ex-
pressible using d and & separately, it is crucial in the follow-
ing analysis to consider the operator D as a vector operator.

Practical calculations in Minkowski spacetime are done
as follows. In keeping with the traditional usage of vector
calculus, we denote the vector derivative in the three-dimen-
sional subspace of Minkowski space as V, using contravar-
iant partial derivatives of the space coordinates.

3 . .
V= Yddo, D= -V + &t (14)
i=1
Using (14) and the vee product rules (9), we explicitly
write down the D derivatives of the tensor types in Min-
kowski spacetime:

DVa=(Va)+da* +(—Fa—Va*) Ao + 0’ VV Xa,
(15a)
DVF=V-B—3E + (V-Ejo* + w*V [ —3*B — VXE
+ (V-Bjo*]. (15b)

We have utilized the canonical decomposition (8 in
(15b). One sees from (15) that fields in spacetime can be de-
scribed by using the language of classical vector analysis.
The properties of D acting as a differential operator on vee
and wedge products of fields fV g and fA g are easily ob-
tained by writing everything in coefficient form and using
the algebraic rules (5), (11). Often, it is easiest to first reduce
the vee products between fields using (8),(9), then apply D
using (14), (15).

IV.HOLOMORPHY IN FOUR DIMENSIONS. MAXWELL'S
EQUATIONS

In this section, we investigate the extension of the con-
cept of holomorphic fields to any dimension. The specific
interest of this paper is in four-dimensional spacetime with
Minkowski metric, but our construction is quite general.

We introduce the notion of holomorphy in # dimen-
sions, using the D operator as defined in the previous section.

Definition 3: A tensor type fis holomorphic iff

DVf=0. (16)

By utilizing the identification (13) in the Grassmann
algebra, the condition of holomorphy (16) is equivalent to the
two separate conditions ( fis a tensor field of homogeneous
rank).

dAf=0,
dA(*f)=0.

(17a)
(17b)

In two dimensions, condition (16) gives the Cauchy-
Riemann equations. Of interest are the specific expressions
of holomorphy for fields in four-dimensional spacetime. The
tensors of type 1 and 2 in spacetime will give two distinct sets
of differential equations of holomorphy. (The tensor type 3 is
dual to the vector, and gives the same equations.)

The D derivative of the vector @ is given by (15a). Setting
the coefficients of each basis form in (1) equal to zero, we
obtain the following set of seven equations as the holo-
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morphy conditions of a vector field a:

(Vea) + 3 %* =0, (18a)
3% +da* =0, (18b)
(VXa) =0, (18¢)

Via the electromagnetic analogy, (18a) is the Lorentz
gauge condition for the vector potential, which is implied by
the holomorphy. Equations (18b) and (18c) define the deriva-
tives of the vector potential when the electromagnetic field is
identically zero.?'

Equations (18) are a generalization of the Cauchy-Rie-
mann equations, as can be seen by considering a two-dimen-
sional subspace of Minkowski spacetime. Take the 4 %2 sub-
algebra of 4 '* generated by o' and . The expressions of
holomorphy for a two-dimensional vector u = u'c' — u’0?
are the Cauchy-Riemann equations'~

d'u' =042  Fu'= -3 (19)

The sign results from the conjugation in the complex
product which does not arise in the vee product.

What is of considerable physical interest is the fact that
the expressions of holomorphy for a tensor of type 2 in Min-
kowski spacetime are precisely the Maxwell equations in
vacuum. This is seen by using (15b) and (16), and setting the
coefficients of each basis form equal to zero to obtain the set
of eight equations

(VXB) —3*E'=0, (20a)
(V-E) =0, (20b)
(VXE)+d*B =0, (20c)
(V-B)=0, i=1,2.3. (20d)

These are the Maxwell equations in vacuum. In deriv-
ing this result, we have used nothing more than the holomor-
phic structure of Minkowski spacetime, formulated in terms
of Clifford algebras and the generalized Dirac operator.

One can, of course, obtain Eq. (20) by requiring the two
separate conditions (17); in this case, however, both the tran-
sition to integral holomorphy and the algebraic framework
are lost.

Equations (20) reduce to the Cauchy-Riemann equa-
tions in two dimensions in exactly the same way as do Egs.
(18).

This can be seen as follows. In two dimensions, the elec-
tromagnetic field is either an electrostatic or magnetostatic
field in the plane; E = E o' —~ E%0? or B= B 'o' — B>
Equation (20} then becomes

B2+ 9B =0, (21a)
d'B'—3%B?=0,

or
'E'—32E?=0, (21b)

J'E*+3°E'=0,
which are the Cauchy-Riemann equations. (The sign again
results from having to use the conjugate field).

We would like to clarify the fact that, whereas Max-
well’s equations have been written in terms of Clifford alge-
bras in the past,**—>* the derivation given here as a result of
holomorphy in spacetime is quite distinct. Also, while it is
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known that the static Maxwell equations for electrostatic
fields in two dimensions can be cast in a form analogous to
the Cauchy-Riemann equations,** we have demonstrated
that one can generalize the Cauchy—Riemann equations to
four-dimensional spacetime to obtain the full time-varying
Maxwell equations.

Related but distinct formulations of the Maxwell equa-
tions in vacuum have been given in terms of analytic twistor
fields by Penrose and his school,?'~2* in terms of spinor fields
in Refs. 36 and 37, and in the context of the 3 X 3 matrix
representation of the Lie algebra SO (3).**° In the latter
case, these matrices do not satisfy anticommutation relation
required of any representation of a Clifford albegra; hence
the algebraic basis is quite distinct.

This completes the discussion of fields which are strict-
ly holomorphic. We proceed in the next section to include
sources.

V.INTEGRAL EXPRESSIONS OF HOLOMORPHY:
RESIDUES

It is possible to extend the discussion of holomorphy
given in the preceding sections to show that certain results of
potential theory in three and four dimensions are analogous
to residue integration in the complex plane.

We seek to obtain integral expressions corresponding to
the differential formulation of the holomorphy condition
(16). In this, we are motivated by Theorem 2, Eq. (13), and
the duality Theorem 1, Eq. (7). The novelty of expressing the
dual as the vee product with the volume element ", along
with the fact that @" can be treated via its purely algebraic
properties, leads to a key identification. We define integral
forms corresponding to the Cartan exterior derivative and
the Hodge coderivative as follows:

Definition 4: The integral forms corresponding to d A f
and 6 A\ fare

f dNf= fff (22a)
and

a)”VJ-d/\(aff) =w"V§:§f. (22b)

We have applied the Stokes theorem to express the inte-
grals over closed hypersurfaces of the appropriate dimen-
sion.* As always in this discussion, fis a tensor type, i.e., a
tensor field of homogeneous rank. The domain of integration
is determined by the differential form basis of /, and will in
general extend to an infinite domain. In actual practice, the
integrals are evaluated in a finite domain, and then limits are
taken, following the standard procedure of potential theory
(see below).

It is now possible to give a definition of “‘integral holo-
morphy” as follows:

Definition 5: (a) A tensor type fis holomorphic iff the
sum of integrals (22) goes to zero in the limit of an infinite
domain of integration.

{b) fis nonholomorphic if the sum of integrals (22) is a
constant volume, and

{c) fis divergent nonholomorphic if the sum of integrals
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{22) diverges in the limit of an infinite domain of integration.

If a tensor field f'is holomorphic, then from (16), (17),
and (22) the following conditions are true separately (the lim-
it is implied):

§f= 0 and §a'|l:f= 0. (23)

The case of particular interest is when a tensor field fis
nonholomorphic, i.e., possesses a singularity. This case can
be examined by proceeding with the electromagnetic
analogy.

Consider the electromagnetic field in the canonical de-

composition, F = EA¢* — %B(8). In this case, the integrals
3

(22a}, (22b) are easily evaluated and are equal to the magnet-
ic and electric flux, respectively:

§F= 3§(E/\a“ —%B)= — ffB dS’ =0, (24a)

Ef*F: §(B/\a“ + %E) = §E dS'=o,. (24b)
4 3

The electric flux equals the sum of the charges; there-
fore, integral (24b) can be written as

§?F= 4754, (25)

We now apply Theorem 5 to the electromagnetic field F
to obtain the following expression from (22), (24), and (25):

fD \ F<—>§F + o'V §*F = 477'(042%. (26)
4 a
Hence the electromagnetic field is in general
nonholomorphic.

We now show that expression {26) is analogous to the
usual residue theorem in two dimensions. In that case, the
field F is either a pure electric, or pure magnetic field in the
plane, i.e.,

F=E'c'+E%* or F=B'c'+ B~ (27)

Since our construction is valid in any space, the expres-
sion corresponding to {26) in two dimensions is just

§F + oV §S*F= 47073 g, (28)
2 [¢4

One can naturally indentify 7, the unit pseudoscalar in
two dimensions with the complex unit/ = 1/ — 1. Note that
®*V w* = — 1; the commutation properties are here irrele-
vant. After explicitly performing the two-dimensional dual
of (27}, we have from (28]

fﬁ(E Vdx' 4 E?dx?) + ifﬁ(Ez dx' — E'dx’) = 47iy g,
«@ (29)

This expression is identical to the residue theorem. By
combining the two integrals, we can express (29) as a single
integral using complex multiplication. The complex electric
field is E = E' + iE?, dz =dx' + i dx?; the tilde denotes
complex conjugation, and we have the residue theorem:

ff)ﬁ dz =4miy q,. (30)
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This analysis demonstrates that, by considering the
Dirac derivative as a vector operator, one obtains a corre-
spondence with holomorphic functions in the complex
plane. The charges correspond to the residues. The factor of
2 arises from the special geometry involved, and is discussed
below. In the analogous case of a pure magnetic field in two
dimensions, the integral (28) vanishes, and gives Cauchy’s
theorem for the holomorphic magnetic field:

Bdz=0. (31)
$

We note that, in the special geometry involved, the elec-
tric field is due to infinite long wires perpendicular to the
plane, and is equal to £ = 24 /r. Here, A is the linear charge
density which corresponds to a two-dimensional charge.
The residue of the electric field at the origin is equal to 24,
since Res, _ 4(1/2) = 1. This is the factor of 2 that appears in
Eq. (30), in addition to the 27 of the residue theorem.

This completes the definition of integral holomorphy in
n dimensions, and its relation to the residue theory in the
complex plane.

VI. HOLOMORPHIC FIELDS IN THREE
DIMENSIONS:MULTIPOLES

The questions one now asks is, what are the holomor-
phic functions? We first examine functions in the three-di-
mensional subspace of Minkowski space. The basic func-
tions are polynomials of the radius vector r, which can then
be used to build any other field through a three-dimensional
Fourier expansion. The scalar fields are

In|r|, (32a)
[e]", n=0, £1, +2,-, (32b)
(ker)|r|", k= constant vector. (32¢)
The vector fields are

rlel”, (33)

and the tensor fields are

:ge!“l“". (34)

From these expressions, we can construct any tensor
field in three dimensions.

By substituting the vector field (33) in the integral forms
(22), we obtain direct expressions. Integral {22a) is evaluated
on the perimeter of a circle of radius R around the origin:

3§r|r[" =0.

Integral (22b) is evaluated on the surface of a sphere of
radius R around the origin:

ﬁ;*rhf" =47R"+3,
3

{35a)

(35b)

This expression (35b) diverges when the radius R is tak-
en to infinity for n > — 3. Itisequal to 47 forn = — 3, and
goesto 0 as R— oo for n < — 3. We can apply Definition 5 to
determine the cases when the field (33) is holomorphic. From
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(22) and (35) we have the formula
§r(r|"+a)3V§*r]r|"=41m)3R"“. (36)
3

Applying the prescription of Theorem 5, we see that of
the vector fields (33), the holomorphic ones are for n < — 3;
the divergent ones are for n > — 3; and the nonholomorphic
field corresponds to n = — 3. In that case, we have the ana-
log to the residue theorem in three dimensions as

r 3 r 3
— +w V§ — = 47w’ . 37
ER LT 7
Returning to the differential definition of holomorphy,
we can obtain the analogous expressions using (14) on (33).
These correspond to Definition 3, Eq. (16) in the limit 7— 0 :

DVrlr|"= —VVr|e|"

= 01 * 1» + 21""
=3+ )", [:’# 3 (38a)

=478(r), n= —3. (38b)

We see therefore the existence of the singularity for
n = — 3, the coefficient 47, which is the surface area of the
unit sphere S %, and the three dimensional residue at the point
r = 0, which is equal to 1. This case corresponds to the elec-
tric field of a point charge.

A deeper connection to electromagnetism is established
by considering the potential ¢ of an arbitrary charge distri-
bution, expanded as a series of 2"-pole scalar potentials ¢, :

P= Pu- (39)

n=20

Each term in the expansion is given by

1 1 3 i i Fpaenand,

¢n=—_(Dn5Rn)=— z Dnl lllllll Rn R (40)

n! R i =1

where D, is the 2"-pole moment of the charge distribution
defined by the symmetric tensor

D, =fr’®---®r’p[r’](a)3)' (n times), (41)

and R, [r] is the spatial multipole tensor which gives the
space dependence of the 2" pole:

{sennd, I
R, =9, g, —. 42
" lrl ( )

We note that R, [r] is a function of 1/|r|" * !; hence the
2"-pole potential varies as 1/[r|"*+ .

The electric field of each 2" pole is obtained as the gradi-
ent of expression (40):

E, = —-Vg,. (43)

Substituting the electric field (43) into the holomorphy
integrals (22), we obtain via the Stokes theorem,

fﬁEFfv/\En=fv/\v<pn=o, (44a)

ff*En = f #*(VE,) =J*V2¢u =fV2¢nw3-
3 3 3

We proceed to calculate the Laplacian of the potential

(44b)
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@, using (40):

1 3 i i
V2¢7n — ;T Z Dnl ..... nvza ‘a _l_ (45)

=1

S i,

We can exchange the order of differentiation to obtain

the expression
vza,.‘ wd, — =3, 0,
" | r l i n

= — 479, ~d, 8lr). (46)

SQ*E,, _ _ 4 ja 3, 8w, (47)
3 nt i

Using a formula from the theory of generalized func-
tions,* for any polynomial P [x',x*x>] we have the identity

ff(x)P (9,,8:,8,16(x — a)eo®
=P[ =3, =3, -3/ Xk (48)

In the case of interest, we have f{x) = 1; hence the inte-
gral (47} is identically zero, except for the case n = 0, i.e., the
point charge. We therefore have

4me, n=0
E — [ b 9
%f " 0, n>0. (49)

Equivalently, we can write this as the residue theorem
(26) in three dimensions:

N B dzw’e, n=0,

In the same manner, it can be shown that all the mag-
netic multipole fields are holomorphic.

We have shown in this framework how all the higher-
order multipole fields are holomorphic. The only nonholo-
morphic field is that due to the point charge. A point worth
noting is that the holomorphy of the vector fields r|r|”, (33)
requires the discussion of the limit to an infinite domain. In
contradistinction, the multipole fields E, (43) are in exact
agreement with the differential conditions of holomorphy
(16), since this condition in fact implies Maxwell’s equations.

This analysis illustrates the intrinsic connection be-
tween electromagnetism and holomorphic fields in three
dimensions.

Vii. CONCLUSION

In this paper, we have indicated how the theory of holo-
morphic functions in the complex plane can be extended to
spaces of any dimension.

In conclusion, we recall the main points of this paper:

First, we have shown how one can realize the general-
ized Dirac operator in a calculationally useful algebraic set-
ting. Using this operator, we introduced a definition of holo-
morphy for fields in any dimension, and showed that the
differential expressions of holomorphy in Minkowski space-
time are precisely the Maxwell equations.. Second, we have
obtained an integral expression for holomorphy in any di-
mension, and shown how it corresponds to residue integra-
tion and the Cauchy theorem when the dimension of the
space is equal to 2. Third, we have determined the holomor-
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phic fields in three-dimensional space, and have found that
the nonholomorphic field is in fact that corresponding to the
electric field of a point charge.

These results underline the connection between electro-
magnetism and the structure of spacetime. We have recast,
combined, and extended certain results from potential the-
ory in an essential manner in order to provide this
construction.

Our analysis has been based on the following key points:

(i) We have used the tensor fields of a given rank which
correspond to physical fields. This is in contrast to other
work in this area, where one usually considers the most gen-
eral element of the algebra, i.e., a linear combination of all
rank tensor fields. This geometrical distinction has a pro-
found consequence on our results. This same distinction was
utilized in the definition of inverses in a Clifford algebra. We
recall that a linear combination of tensor fields may not al-
ways have a inverse, while a specific tensor field always
has. 15,16

(ii) The identification of the differential forms as the
bases of the algebra is crucial in the construction of the gen-
eralized Dirac operator as a vector operator in the Clifford
algebra. This feature also enables us to utilize the entire ap-
paratus of the exterior calculus in our discussion. Our use of
a geometrical basis has as a consequence that most of our
results are independent of the analytic properties of the indi-
vidual field components; they follow from the underlying
geometric structure.

We believe that this paper has illustrated how electro-
magnetism is intrinsically related to the holomorphic prop-
erties of fields in Minkowski spacetime.
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A Hamiltonian structure of the interacting gravitational and matter fields
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We present a Hamiltonian formulation for classical field theories. In a general case we write the
Hamilton equation by means of the energy-momentum function E and the symplectic 2-form £2.
We investigate thoroughly an important example, the gravitational field coupled to a matter
tensor field. It will be shown that the energy-momentum differential 3-form yields a
generalization of the Komar energy formula. We prove that the energy—-momentum function E,
the symplectic 2-form £2, the Hamilton equation, and four constraint equations for initial values
of canonical variables give rise to the system which is equivalent to the Euler-Lagrange
variational equations. We also discuss relations between the Hamilton equation of evolution, the
degeneracy of the symplectic 2-form £2, and the action of the diffeomorphism group of spacetime

in the set of solutions.

PACS numbers: 03.50.Kk

I. INTRODUCTION

The classical approach to the field equations in physical
theories is based on variational principles and on the Ein-
stein principle of general covariance. This combination gives
rise to the geometric formulation of the field equations for a
comprehensive class of field theories (scalar field, electrody-
namics, Proca field, gravitation, Yang—M.ills fields). In the
4-covariant picture the space of solutions of the field equa-
tions is a subspace of the space of sections of some bundle
over spacetime M. This approach is static; a state (a solution
of the field equations) represents the entire history of the
system under consideration (the Heisenberg picture). We
shall show that the space of solutions—Sol—is endowed
with a closed differential 2-form {2 (in general degenerate).
The static 4-covariant approach is not convenient for the
discussion of the initial value problem. Therefore it is inter-
esting to formulate a given classical field theory in terms of
the space (Id) of initial data and their evolutions [curves in
(Id)]. This picture corresponds to the Hamiltonian form of
mechanics (the Schrodinger picture in quantum mechanics).
In this paper we present a Hamiltonian formulation for clas-
sical field theories and prove that the evolution of an initial
data fe(Id) is generated by the action of the group of diffeo-
morphisms of spacetime M. Therefore our construction suits
those theories which are invariant with respect to the action
of Diff M (e.g., the gravitational field coupled to a matter
field).

The general scheme of this paper is the following. Let
% —M be a bundle over spacetime M and O,, - be a differ-
ential 4-form on Z. (&, Oy_c) is the multisymplectic bun-
dle of a classical field theory in the sense of Refs. 1-4. The
space of solutions—Sol—consists of four-dimensional sub-
manifolds of & (images of sections of ) which satisfy the
field equations [cf. (2.1)]. We assume, additionally, that
Diff M acts in & and that 6,,_. is invariant with respect to
this action. For a fixed three-dimensional surface o in M

“’Permanent address: Institute of Mathematics, Polish Academy of Sci-
ences, ul. Sniadeckich 8, 00-050 Warsaw, Poland. Alexander von Hum-
boldt Fellow.
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(Cauchy surface) we define the restriction 2 (o) of Z to o.
The space of initial data (Id) (o) consists of these sections of
Z (o) which can be extended to sections of & satisfying field
equations. The space (Id) (o) is equipped with a symplectic
2-form {2 (0) and an energy—momentum function £ (o).
These quantities satisfy the Hamilton equation

dE(0)'V= —2©)(YA'D), (1.1)
where’ i’\eI((Id)(a)) is the evolution vector (Hamiltonian vec-
tor) and "V'is an arbitrary vector tangent to the space of
sections of 7 (o).

If f&(1d)(0) and 'Y is the vector field on f(0) C # (o) re-
presenting the vector of evolution 'Y, then the evolution
t—f, of f = f, is given by equation

df,

dt
We see from (1.1)—(1.2) that the energy—-momentum function
E and the symplectic 2-form {2 generate the dynamics in the
same way as the Hamiltonian H = H ( p;, ¢/) and the sym-

plectic 2-form w = dp, A dq' generate the canonical equa-
tions of classical mechanics

(x)="Y(f,(x)), xeo. (1.2)

dp. i
. _ _OH 49 _OH ¢ Refs s, 6
dt dq' dt  dp;
i dp.
(In thiscase/Y:d—qi_-Fii-)
dt 9¢° dt dp,

We give a geometric construction of the energy—mo-
mentum function E for an arbitrary classical field theory
based on a multisymplectic structure (2, 6;;_c). Our con-
struction applied to the gravitational field gives rise to a gen-
eralization of the Komar energy formula’ (cf. also Appendix
D and Sec. 8). The part of the paper devoted to the Hamil-
tonian dynamics presents ideas which are close to those of
Fischer and Marsden,?® who, in the seventies, reformulated
the classical results of Arnowitt, Deser, and Misner'® con-
cerning the dynamics of the Einstein theory of relativity. In
our more general case the connection on spacetime is not
Riemannian. Therefore we need two types of equations for
the gravitational field, one system of which describes the
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evolution of the metric and the second, the evolution of the
connection. We get these equations by means of the vari-
ational principle of the Palatini type; that is, variations with
respect to the metric and the connection are independent.
Such a procedure is now widely accepted in theories of grav-
ity. We are, however, able to get the inverse result: We can
recover from (1.1) the variational gravitational equations
and also the Euler-Lagrange matter field equations. We pos-
tulate the energy—-momentum function E, the symplectic 2-
form £2 and try to solye Eq. (1.1) with respect to an unknown
vector of evolution 'Y. The essential difficulty is that the
symplectic 2-form is degenerate and a solution 'Y, if it exists,
is not unique. We solve this problem in the following way: let
Sbm (4) be the space of all four-dimensional (sufficiently
smooth) submanifolds of &7 (which are images of sections of
Z)and let Sbm,, (3) be the corresponding set of three-dimen-
sional submanifolds in Z (o). We define £ and {2 on Sbm (4]
[and on Sbm,, (3)], investigate Eq. (1.1) for arbitrary (sample)
vectors 'VeT (Sbm, (3)} and show that it has a unique solu-
tion 'YeT ((Id)(o)). As one could expect, knowing E and £2 is
not sufficient to determine 'Y. We have also to assume the
constraint equations for initial values of the canonical varia-
bles. [We shall prove in Sec. 5 that the constraint equations
(5.1) give the necessary and sufficient conditions for the solv-
ability of (1.1).]

The following diagram shows relations among several
problems investigated in the paper:

multisymplectic
: ———
manifold(Z, 6y ) #
action of Diff M field egs.;
in Z;(Xz,vz) space-Sol
energy—momentum Cauchy problem;. symplectic
function E dynamics 2-form 2 L
action of Diff M canonical
in Sol; Degeneracy variables
distribution of £2
Hamilton-Jacobi

— <

relations

Two fundamental geometrical objects appear in the scheme:
the energy-momentum function E and the symplectic 2-
form £2. The symplectic 2-form {2 for an arbitrary classical
field theory based on a variational principle (multisymplec-
tic bundle) has been constructed by Kijowski and the present
author” (cf. also Ref 4). The diagonalization procedure for (2
and the geometrical definition of the canonical variables in
theories of gravity were presented for the Einstein and Ein-
stein-Maxwell theories''~"* and for a generalized theory of
gravity with the presence of a tensor matter field.'® In the
present paper we use a stronger version of the results given in
Ref. 14 (cf. Proposition 4). The geometric definitions of the
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canonical variables, the Belinfante~Rosenfeld identities, the
contracted Bianchi identities, and some other technical re-
sults of'*!5 are used throughout the paper. We also give the
definition of the canonical variables by means of variations
of the action integral (the Hamilton-Jacobi relations) (cf.
Ref. 16 and Sec. 7).

All constructions in the paper are performed under the
assumption that topologically M is the product of the real
line R and a compact, three-dimensional manifold o (with-
out boundary). Therefore we can neglect all integrals of
three divergencies on o. If o is a noncompact manifold, some
surface integrals can give nontrivial contributions. We dis-
cuss this problem briefly in Sec. 8.

There are several papers in the literature devoted to the
Hamiltonian (canonicalj formulation of gravity (especially
the Einstein theory). The most popular among physicists is
the approach in the language of “constrained Hamiltonian
systems” and the Dirac brackets; cf. papers by Dirac,'” Berg-
mann,'® Arnowitt—-Deser-Misner,'® Faddeev,'” Kuchat,?°
Hojman-Kuchat-Teitelboim,”' Hanson-Regge-Teitel-
boim,?* Nelson-Teitelboim,?*?* Pilati,?* Nester—Isen-
berg,”*?® and Murchadha-York?>*"° (see also the papers
by Sniatycki,*! Tulczyjew,*? and Gotay—Nester—Hinds>? de-
voted to the mathematics of the Dirac theory of constraints).
As we have already mentioned above, there is the series of
papers by Fischer—-Marsden, Moncrief, and Arms, 33436
who treat the Einstein equations, the coupled Einstein-Max-
well, and Einstein—Yang-Mills equations, respectively, as
infinite-dimensional Hamiltonian systems (cf. also Ref. 5
and the review paper by Francaviglia®”). These authors in-
vestigate such problems as the Cauchy problem, the lineari-
zation stability, the structure of the manifold of solutions,
and singularities of this manifold. The third, recently devel-
oped approach is given in the interesting book by Kijowski
and Tulczyjew™® (see also Ref. 39).

We present here an alternative theory which has cer-
tainly many points in common with all the above-mentioned
papers but tends rather towards the Fischer-Marsden ap-
proach. Some questions about relations between our theory
and other papers are discussed in Sec. 8.

2. THE SYMPLECTIC 2-FORM 12 AND THE ENERGY-
MOMENTUM FUNCTION £

For a given classical field theory the basic notions are
the field potentials which are sections of some geometric
bundle over spacetime M. The dynamics is determined by a
Lagrange function L and the Euler-Lagrange equations of
the variational problem for L. The Lagrangian L depends on
values of the field potentials and their first partial derivatives
(theories with derivatives of higher orders are not discussed
here). In the geometric approach to the calculus of vari-
ations, solutions of a variational problem are sections of
some bundle 7: & —M over spacetime M. A point of the
fibre of & at xeM determines values of the field potentials
and their first partial derivatives. By means of the Lagran-
gian L we construct a differential 4-form Oy . on Z (the
Hamilton—Cartan 4-form} and formulate the variational
principle in terms of @ . Detailed descriptions of such a
construction were given in papers by Dedecker,*® Goldsch-
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midt-Sternberg,” Kijowski—Szczyrba,'**"'2 Garci,*? and
Kijowski-Tulczyjew.*® The Euler-Lagrange equations can
be written in the following geometrical formulation:

A section F:M— 7 is a solution of the E-L equations if
and only if for every (r-vertical) vector field X, tangent to &
and defined at points of the submanifold C, = F (M )C #, the
condition

F*(X1dBy ) =0, 2.1
or equivalently
(XJdGH—C) |C4 =0,

holds.

Remark: The symbols J, d denote the interior product
(contraction) between vectors and forms and the exterior
derivative, respectively. F' * denote the pullback operation
for differential forms generated by Fand (X1d 6, )|C, is
the pullback of the 4-form X 146y, _ onto the submanifold
C,C Z (cf. Refs. 5, 6).

Four-dimensional submanifolds C, = F(M)C &
which satisfy (2.1) form the space of solutions Sol. The space
Sol is a subspace in the space Sbm(4) of all (sufficiently
smooth) four-dimensional submanifolds of & which are the
images of sections of 7. The space Sbm(4) carries the natural
structure of an infinite-dimensional manifold (either Banach
or Fréchet-Schwartz cf. Refs. 43, 44). The space of solutions
Sol is not a manifold for generic classical field theories, how-
ever. It has singular points, that is, such points that no neigh-
borhood of them can be parametrized by means of vectors of
the tangent space. For the Einstein theory of gravity this
problem was investigated by Fischer, Marsden, Moncrief,
and Arms.>*>?%4346 However, a weaker structure is sufficient
for our considerations. We endow the spaces Sbm(4) and Sol
with a kind of pseudodifferential structure.>*'* The most
important definition we need in the present paper is that of a
tangent vector. A vector Ytangent to Sbm(4) at C,eSbm(4)
is represented by a (smooth) 7-vertical vector field Y tangent
to 7 and defined at points of C,. A vector Y tangent to Sol at
C,eSol is represented by a 7-vertical vector field Y tangent to
2, defined at points of C,, which satisfies the linearized
version of field equation (2.1) (cf. Refs. 3, 12 and Appendix
A). We denote the tangent bundles of Sbm(4), Sol by
T(Sbm(4)) and T(Sol), respectively. In the framework pre-
sented in Refs. 3, 12 the notions of vector fields, differential
forms, and their exterior derivatives can be defined in a natu-
ral way.

Remark: Throughout this paper we consider smooth
(i.e., C *) sections of bundles, smooth vector fields, etc.
However, we can choose another topology in these spaces—
e.g., C* (k-times differentiability) or H * (Sobolev spaces).
The precise choice of the topology is necessary if one intends
to investigate the structure of the set of solutions deeper (cf.
Refs. 9, 46).

In Refs. 1-3, 11-15, 41, 42, and 47 several examples of
classical field theories, their multisymplectic bundles and
the Hamilton-Cartan 4-forms were given, including the Ein-
stein theory of gravity and its generalizations.

The symplectic 2-form 2 on the space Sol is defined in
the following way.>*!? Let C,Sol, Y b YzeTC (Sol)and Y,,

2.1)
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Y, be 7-vertical vector fields defined on C, which represent
Yl, Y2, respectively. Let o C M be a three-dimensional sur-
face in M such that M = R X o. We define

20)P, T =4 f (AT 16,

=4| 1,dv,1d6,0), 22)

Fo)
where Fisasection of Z suchthat C, = F (M ). It was proved
in Ref. 3 that the integral in (2.2) does not depend on the
choice of ¢ in M and therefore (2.2) defines a differential 2-
form 2 on Sol.

Remark: We must, of course, single out a class of three—
dimensional surfaces o in M for which the integral (2.2) is to
be computed. One possible, reasonable set of axioms was
presented in Ref. 1. If we discuss a particular theory, then the
class of admissible surfaces o in M has to be contained in the
set of Cauchy surfaces, i.e., in the set of such three-dimen-
sional surfaces in M for which the initial value problem is
well posed.

_Wecan generalize the definition of {2 (o) for C,eSbm(4),
Y, - YzeT ¢, (Sbm(4)). However, in this case the value of the
integral depends essentially on the choice of o C M and we
have the family (£2 (6)),c», of differential 2-forms on
Sbm(4). The form £2 on Sol is closed, i.e., df2 = 0 (cf. Refs. 3,
12). We are able to prove that all the forms §2 (¢) on Sbm(4)
are also closed.

An essential feature of theories of gravity is that they
are invariant with respect to the action of the diffeomor-
phism group of spacetime—that is, we have an action 4 in
the bundle &#

(Diff M, 7)3(P, p)—>A (P ) p)eZ, 2.3)
and that for every ®eDiff M
AMP)Oyc =6 ¢ 24

It follows from (2.4) that the action 4 generates an action A
in the space Sol (see Sec. 6).
The action (2.3) induces the mapping

C ~(TM)DZ—dA (id)ZeC =(TP?) 2.5)

where dA is the derivative of (2.3) with respect to the first
variable, id is the identity in Diff M, and the vector field Z on
M is generated by a one-parameter family of
diffeomorphisms

&, =1id,

(¢t )teR ’
=4
Z(x)= 7 P.(x)

xeM. (2.6)

We have a globally defined vector field on &
X, =dA (d)Z. 2.7

For every section F of & the family (®,),.r gives us a one-
parameter family (F, ), Of sections of #

F,(x) =A4(®, YF(P,(x),
xeM, F,=F. (2.8)
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Let

Y(F(x))= iF, (x) , XeM. 2.9
d t t=0
Y is a 7-vertical vector field defined on C, = F (M) and tan-
gent to & . If the section F satisfies field equation (2. 1), then
the field Y represents a vector YeT ¢ (Sol).
Proposition 1: If X, is the vector field on & defined by

(2.7, C; = F(M), and Y is defined by (2.9), then

X (F(x))=dF-Z(x) — Y{F{x)), xeM. (2.10)

Definition: The Hamilton 3-form v, on & (corre-
sponding to the vector field Z) is given by

vy = —Xz160y ¢ (2.11)

Definition: The energy-momentum function E, on Sol
is given by

E,(C) = Yz
F(0)

C,eS0l, (2.12)

where o C M is a three-dimensional submanifold (surface) in
M. (We recall that o is always a compact manifold without
boundary.)

By virtue of (2.4) we have

Ly, Ouc=dX;10y )+ X;1dOy c =0. (2.13)
Using field equation (2.1), we get
d((X; 16, )|Cy) =0, C,eS0l, 2.19

and therefore the integral (2.12) does not depend on the
choice of o C M (for homotopically equivalent surfaces in
M).

Proposition 2: Let VeT, (Sol) and ¥ be the 7-vertical
vector field on C, representing V. Then

dE, V= f Vidv,. (2.15)
F(o)

Proof: 1t is easy to see that

dE, V= Fivy,

F(o)

where ¥ is an extension of ¥ on a neighborhood of C, in 7.
Using the properties of the Lie derivative [cf. (2.13)] and
integrating by parts, we get (2.15).

Theorem 1: Let ¥ be an arbitrary vector tangent to Sol
at C, = F(M) and Y the vector tangent to Sol defined by
means of (2.9). Then

dE,V= —Q(YAP)= —20(F, D). (2.16)

Progf: Let V be the 7-vertical vector field on C, repre-
senting V. From the invariance property (2.4) we have

0= fX,GH—C =d(Xz104 ¢} + Xz 1dOy .
Contracting with ¥, we get
(Vdd (X, 46y ) |Cs + (V1X, 1dOy ) |Cs =0
The decomposition (2.10) enables us to write

— (Vddv,)|Cy + (VIdFZ 1dBy ) |C,
—(V1Y1d6, )|C,=0. 2.17)
But dFZ is tangent to C,, C, satisfies (2.1}, and therefore the

second term in {2.17) vanishes. We see that {2.16) follows
from (2.2), (2.15), and (2.17).
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We remember that we have the family (£2 (0)),c s of
closed differential 2-forms on Sbm(4). In a similar way for-
mula (2.12) defines a family of functions (E(0)),c On
Sbm(4). Formulas (2.15) and (2.17) are valid also for
?GTC‘ (Sbm(4)). We have .

Theorem 1: Let C,eSol, VeT, (Sbm(4)) be an arbitrary
tangent vector and YeT (Sol) be the vector defined by (2.9).
Then

dE,(0o\WW= — Q@ TAV)= — 200/, V). (2.18)
We show later that for theories of gg\avity E,(0)=0 on Sol
[but E,(0)=£0 on Sbm(4)] and that Y belongs to the gauge
distribution {degeneracy distribution) of f2. These facts im-
ply that formula (2.16) is trivial. On the other hand, Eq.
(2.18) is not trivial and can be taken as the basic equation for
the dynamical picture (Sec. 5).

3. THE BUNDLE OF INITIAL DATA AND THE TIME
EVOLUTION

In this section we show how to pass from the static
description of classical field theories, as presented in Sec. 2,
to the evolution picture. In the static approach a state of the
system is a solution of field equation (2.1); that is to say, a
state is a field of geometric quantities on spacetime. For the
coupled system of the gravitational and matter fields we
have a metric tensor g = (g, ), an affine (linear) connection
I =(I'},) and a tensor matter field ¢ = (¢ 5'77*) on M.

In order to describe the evolution problem, we assume
that a slicing of spacetime into a family of three-dimensional
surfaces (0, ),z and a method of passing from one surface to
another are given. This can be accomplished in the following
way. Let o be a three-dimensional submanifold in M such
that M is diffeomorphic to the product R X 0. Let (@, ),z bea
one-parameter subgroup to diffeomorphisms of M (i.e.,
P,=id, D, ,, =D, oD, ' =P _ ), which satisfies the
conditions

) Ur®P(0)=M,

(i) @, (NP, (0)=0 fort,#1,, 3.1

(iii) the vector field Z (x) = d /dt ®,(x) is transversal

to every submanifold o, = @,(0).

Remark: A construction of the subgroup (®,),.x by
means of the exponential mapping exp: C ©*(TM )—Diff M
was discussed in Refs. 48, 49,

By means of the diffeomorphisms (@,),., we transport
geometrical quantities from points of M lying beyond ¢ onto
o. If Fis a section of &, then the formula

filx)=4(@ 7 )F(P,(x)), xeo, (3:2)

gives us a one-parameter family of sections of & over ¢. Let
7_: % (0)—0 be the restriction of the bundle 7: 7 —M to the
submanifold o C M.

Definition: A section fig— % (0) of the bundle Z (o) is
called an admissible initial data if there exists a section
F:M—Z such that

(i) F(x)=f(x), forxeo,
(3.3)

(ii) F satisfies field equation (2.1).
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A one-parameter family (f;),.z of sections of Z (o) is
called an evolution of the initial admissible data fif

® fo=/

(ii) the section F of & given by

Fly)=A4(P) /(P '), yeM, (3.4)
satisfies field equation (2.1).

The set of all admissible initial data on o is denoted by

(Id) (o). For every section fe(1d)(o) there is a corresponding
three-dimensional submanifold ¢, = f(0) C # (o). Wecall it
an admissible initial surface and the corresponding space of
three-dimensional submanifolds of # (o) is denoted by

(Is) (0).

In general we have no 1-1 correspondence between ele-
ments of (Is) (o) and Sol. In theories with gauge (electrody-
namics, gravity, Yang-Mills fields) to every fe(Is) (o) there
correspond many possible solutions of (2.1).

Let +—f, be an evolution of an admissible initial data /.
We define

V() =20 . xeo (3.5
dt t=0

'Yis a T, -vertical vector field tangent to %7 (¢) and defined at

points of the three-dimensional surface ¢; = f (o).

We see from (2.8) and (3.2) that the vector field ' Y'is the
restriction of the vector field ¥ [defined by (2.9)] to the sub-
manifold c;CC, = F(M)C 7. 'Y gives us the initial values
of Yonc,. The vector field 'Y defines a vector 'Y tangent to
(Is) (0). We call 'Y the vector of evolution; in the literature 'Y
is often called the Hamiltonian vector.’

We have a 1-1 correspondence between tangent spaces
T, ((Is) (0)) and T, (Sol), respectively. In fact, if Fis a
section of 7 satisfying (2.1) and Y'is defined on C, by means
of (2.9), then the vector field 'Y on c, is defined by means of
(3.2) and (3.5). Conversely, if 'Y is a vector field on ¢; and
t—f, is an evolution such that (3.5) holds, then we are able to
construct the vector field ¥ on C, by means of (2.8), (2.9),
and (3.4).

Formulas (2.2) and (2.12) define the symplectic form
and the energy-momentum function on (Is) (¢). The inde-
pendence of the definitions of the choice of o means that
these quantities are maintained in “time.” Evolutions are
symplectomorphisms, and the energy—-momentum function
is a preserved quantity. We can reformulate Theorems 1, 1’
in the space (Is) (¢). The vector of evolution 'Y satisfies the
Hamilton equations (2.16) and (2.18). This problem is thor-
oughly investigated in Sec. 5. We shall prove there that ad-
missible initial data have to satisfy some constraint equa-
tions. These equations together with the Hamilton equation
(2.18) yield the complete characterization of the space of
initial data and their evolutions.

Remark: In order to reformulate Theorem 1’ for
(Is)(0), we have to embed the space (Is) (¢) in the space
Sbm,, (3). This space consists of such three-dimensional sub-
manifolds of # (o) which are the images of sections of Z (o).
We have the following natural definition: A vector 'Y tan-
gent to Sbm,, (3) at c;eSbm,, (3) is represented by a 7, -verti-
cal vector field 'Y tangent to &7 (o) and defined at points of
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¢;. We show later that a vector ¥ tangent to Sbm,, (3) at
c;€(Is) (o) is tangent also to (Is) (¢) if and only if the compo-
nents of the vector field 'Y satisfy the linearized version of
the constraint equations (4.21).

In this paper we deal with geometrical quantities on M
and with geometrical quantities on 0. We describe now the
relations between these notions.

Elements of the fibre of the bundle & over xeM are
geometric 4-quantities (quantities tangent/cotangent to M ).
Elements of the fibre of Z7 (¢) over xeo are also 4-quantities
tangent/cotangent to M at x. We would like to attach to
every 4-quantity at x a family of 3-quantities tangent/cotan-
gent to o and to describe fibres of 77 (o) by means of these 3-
objects. Such a procedure is called the 1 +3 decomposition
of geometrical quantities (objects) on M. We recall briefly
this construction (see Ref. 14 and Appendix B).

Let M =R X g, (x*) be local coordinates on &, x° be the
coordinate in R. Let

o, ={xeMx"=1t}. (3.6)

Let g ={g,,,) be a Lorentz metric on M such that o, are
spacelike surfaces for g. Let M 3 x-»n(x) be the field of vec-
tors orthonormal to the slicing (i.e., n'n = — 1 and n is or-
thogonal to every ¢, ).

We decompose vectors tangent to M at xeo, into the
normal part (parallel to n) and the tangential part (tangent to
o,). Similar constructions can be performed for covectors
and arbitrary tensors. In Appendix B we define such decom-
positions by means of the “bar’’ operation, which commutes
with the contractions of tensors and with the covariant dif-
ferentiation. The bar operation applied to an affine connec-
tionI' =" f“,) on M gives rise to several geometrical objects
ono,. Fourofthem (I, "3, I"%,, I %) are specially inter-
esting. The first three groups give us the fundamental forms
of the embedding i: o,—M '*; the quantities "}, define a
connection T on o, induced by the connection I on M. By
means of the 1 +3 decomposition (the bar operation) we
redefine local coordinates in fibres of the bundle Z? (o) and
work with geometrical 3-objects on o,.

Remark: In the present section we have defined two
kinds of slicings of spacetime into sets of three-dimensional
surfaces. In a general case the dynamical slicing (3.1) does
not coincide with the coordinate slicing (3.6). The most in-
teresting case is when they, however, coincide. We will as-
sume such a situation in Sec. 5.

4. THE SYMPLECTIC 2-FORM AND THE ENERGY-
MOMENTUM FUNCTION FOR THE INTERACTING
GRAVITATIONAL AND MATTER FIELDS

The system is described by a metric tensor g = (g,,,), an
affine (nonsymmetric) connection I' = (I" ﬁv), and a tensor
matter field & = ¢ “ = (¢ 5 5*) on M. The interaction be-
tween the geometry and the matter is given by the
Lagrangian

L=(/16mR + L., 4.1

where R is the Ricci scalar built up from g and I" and
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Lmat = Lmal (g;tv’ ,uv! ¢ 4 a/l¢ )
is the Lagrangian of the matter.

The multisymplectic bundle T 9’—>M is defined by lo-
cal coordinates (x*; g,.; I'%; % €uvrs T vr3 ¢ 7 ) and
their transformation properties with respect to a change of
local coordinates in spacetime M.

The transformation properties ofg,., I *v, and ¢ 4 are
well known; the quantities g,,,, ., ri ., andé", ' have the
transformation properties of first partial derlvatxves ofg,.,
I'%,,and ¢, respectively.

The Hamilton—Cartan 4-form &y  on & is given by

O = (1/16m)[ - glgs; — g763)
Xdx® A\ dLog A Adx?
+gm'([“f'”rzr_1“;#r:f
X,}—ga'x(’/\dx'/\dle\d)?]

+ J —gpadx® A A dg) A Adx?

—(pad ", — Lo ) —gdx° Ndx' ANdx* Ndx>.
(4.2)
In the definition of the bundle & the variables g,,, ., I" P
and ¢ _ are completely independent of g,,,, I' %, and ¢ .
However, only such sections of & for which

8uvr = afg,uv’ =d r;};v’ ¢A,r = ar¢ A (43)
are interesting. From now on we assume that the space
Sbm(4) consists of these (smooth) sections of & for which
relations (4.3) are satisfied.

Proposition 3'*'°: Field equation (2.1) for a section F of
Z [satisfying (4.3)]

x*—F (x%) = (x% g,,, (x%); T, (x%)¢ * (x%) )
reads

(Eq. mat), = —V—g'a,(V —gi)=0,
(4.4)

(Bq. Iy"=G* —8rx ,,, T* =0, (4.5a)

(Eq. I} = & + 16754 = 0, (4.5b)

where G**, . T*", ¢, 8", p); are the Einstein tensor, the
symmetric stress—energy tensor of the matter, the hypermo-
mentum tensors of the gravitational and matter fields, the 4-
momentum tensor of the matter, respectively (see Appendix
E).

Equations (4.5a) have the form of the Einstein equa-
tions, equations (4.5b) give us algebraic relations between the
connection I";;, and the pseudo-Riemannian connection 3/,

= {},} on M (cf. Refs. 14, 15 and Appendix E). Therefore
system (4.4)—(4.5) yields a generalization of the Einstein
equations for cases of tensor fields minimally coupled to
gravity. It is not a unique conceivable generalization. An-
other possibility is to take into account only connections
compatibie with metrics on spacetime. Such a theory is
called the Einstein—Cartan theory of gravity.?®>>! Howev-
er, the variational principle based on a metric g,,, and a con-
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nection I"/,, gives rise to nonmetric compatible solutions of
{4.5b). In order to get the Einstein—Cartan theory, we have to
take fields of tetrads and anholonomic components of a con-
nection as independent gravitational variables.?®**? The
third possible generalization of the Einstein theory was re-
cently proposed by Kijowski.**** His very ingenious vari-
ational principle is based only on symmetric (holonomic)
components I ﬁv of a connection; the metric g*" is defined as
the conjugate variable by means of the Legendre transforma-
tion. However, field equations in this theory are equivalent
to those obtained from the Lagrangian (4.1) (in the case of a
symmetric connection) by means of our variational
principle.

We give now the diagonal formula for the symplectic 2-
form 2 (o) on Sbm(4). The special case, the diagonal expres-
sion for £2 on Sol, has been presented in Ref. 14.

Let o be one of the surfaces of the slicing (3.6), e.g.,

o = 0,. Let g = (g,,,) be a metric on M such that o is space-
like for g. Let I = (I"#,) be an affine (nonsymmetric) con-
nection on M, ¢ =(¢")=($ 55 be a tensor field on M
andp = (p*;5)=0L,,,/3(3,¢") be the 4-momentum
of ¢. The metrlc g induces the metric g = (g;;) on o; we de-
note by g” the elements of the matrix inverse to the matrix
(g;)and g =detg,. Let I}, be the bar components of the
connection I" on M, ¢ 4 and P be the bar components of the
tensor fields ¢ “ and p?, respectively. Let N and N * be the
lapse function and the shift vector of the slicing (3.6) (see
Appendix B).

The symplectic variables on Sbm(4) are

P = V([T + T8 )

—giurs, §"b+1",o)) g (4.6)
P55 =N g s, @.7)
A = —(I/NWVFE® +16m7§’°), N,

4.8)
M= —(/NYVEE® +1675%), N*

Remarks: (i) The geometrical meaning of the gravita-
tional momenta /7 ¥ has been explained in Ref. 14 (see also
Appendix B). (i) We call 7%, g;, 2 ,, $* the canonical
variables of the theory. In Sec. 5 we derive the equations
which govern their evolutions.

Proposmon 4. If C,eSbm(4), ¥ I YzeT ¢c,(Smb (4)), then

2(0)(¥, ¥y

=(1/32m)|  (8,1176,8; — 86,1178 ,g,)dx" Ndx* Ndx®

Flo)

+ %f (6,7 ;6,64 — 6,7 ;6,6 )dx' Ndx* Ndx®
F(o)

+ (1/327) f (8, MEN — 8,0 5,N + 8,4, 5,N*
F(o)

— 8,4 8 N ¥)dx' Ndx* Ndx?, “.9
where
50”’]’ 5ag1j’ 6«1 t@A ’ 6a¢_A;
8,4, 8,N, 6,.4,, 85,N5 a=1,2,
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are the components of the vector fields Y, representing f’\a R
expressed in the symplectic variables.
In the special case, when C,eS0], Y, YzeT (Sol) we
have, by virtue of (4.5b), # =0, #, =0,6.4 =0,
64, = 0and formula (4.9) reduces to that given in Ref. 14.
Remark: In order to get (4.9) from (2.2) we have ne-
glected some integrals of 3-divergencies on ¢ (exact 3-
forms). The terms which are to be omitted were given in Ref.
14.
We discuss now the energy-momentum formula.
Proposition 5: If Z = 5x*(x")-d/x" is a vector field on
M, then

X, = 8x 3/0x* + 88,,0/08,,, + 6T'%, 8/I?,
+ 60" 3/9¢* + 8g,,. 0/8,.. + 6, 3/0I,

+ 8¢, 3/00" ,, "
where
88, = — (8,c0,0x° + 8,.9,6x),
8ri, = —(3,9,6x + ', d,6x*+I'.,d,6x —I':,d.x"),

Z b plad, 8 2 & i, 05, 0%,
m (4.10)

88uv,r = 0,68, — 0,6x°g,,,..,
8ri,. =a.8rk, —a,6xri,.,

544, =3.66" — . 6x¢ 1,
Proposition 6: If Fisasectionof 7 and C, = F (M ), then

vz|Co= — (X216 ()|C,
= i(— l)iei1f—gdx0/'\---,{---/\dx “4.11)
i=o
et =e"(Z)
= — [(1/1677')(RZ'{ —gaﬂfzriﬁ +gwfzfi'g
+ L Z—piL29")

where Z* = 8x*(x") and the corresponding Lie derivatives
are (cf. Ref. 15):

fzrﬁv =Dy.DvZA +RAVTuZT+Du(ZTQ¢v)1

Labos =2V, 505 4.12)
— V Za'¢ -raz..aA — V ZC!,l al.-f!.,:B\,r
+VaZ¢€M+ VR Zp

(D,., V,, are the covariant derivatives with respect to the con-
nectlons ri, and Viw {“ }, respectively.
We have from (4.11), (4.12), and (E12), (E13), (E7).
Proposition T:
MZ)=(1/8m[H", —87 o T*)Z7
+ 87T(V am/l +a/1wr£ )Zr]
— (1/16m)(c + 167NV, Z° + 15, Z7)
+ (1/8mV.b ™ 4.13)

where the skew-symmetric tensor b ™ is aefined by

b = 87 —a®Z 7 + (1/16m@*"D,Z* — g*D,Z*)
+ (1/16mZ"(g*°Q%, —870%,)] 4.14)
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(tensors H* , a®? and the canonical stress—energy tensor
wan T7. are defined in Appendix E).

The energy~momentum formula (4.13) is the sum of
three terms. The second of them is expressed by the left sides
of field equations (4.5b), the third is the Riemannian diver-
gence of a skew-symmetric tensor. We show in Appendix D
that the first term in (4.13) can be also expressed by the left
sides of field equations (4.4) and (4.5a, b). This result gives us
relations between our energy—~momentum formula and those
presented by Komar’ and Kijowski*®~? (see also the paper

by Trautman®?®). For C,eSbm(4), C, = F (M ) we have from
(2.12), (3.6), and (4.11)
E,0) = | V = gZ)dx' Adx® Adx® (4.15)
Flo)

Proposition 8:
V —g2z) = Vzez)

= (1/167)(Constr.,Z ° + Constr, Z?)
+ (/1670 MZ° + M ,30Z ")
— (/160VgV, [(Eq. m1Z°)
— (1/16mVgV, [(Bq 1)FgZ°]
— (1/16mVgV, [(Bq 11)2Z*]
+(1/80)Vgv. 5
+ (1/16m).4(— N°8,Z° + Z*3,N)
+ (1/16m) M (—~ N3, Z° + Z'I,N*
—g*“N?3,(Z°/N)) (4.16)

where V, is the Riemannian covariant derivative on o (cf.
Appendix B) and

Constr, = — ﬁ“’R iy, ﬁ)(mwpq — s(tedT P
— (/R — 7oyt — )
— [T — m)?) — V(g
— T, 5 + (13, — g, trm)
\/:—0”?4) 167 JBlL e — (1/B)
X b Do 2%

ap

+ JEm, - '\/' e (4.17a)
Constr, = —2V, 117, — V,(V gz)
+ 167 P50V, 5 (4.17b)

Remark: 'R is the scalar curvature of the metric
g=(g;)ono.

Among eight terms which appear in (4.16) four are 3-
divergences and therefore are not important for integra! for-
mulas. In the special but the most important case when the
dynamical slicing (3.1) coincides with the coordinate slicing
(3.6), we have

Z°=N, Z*=N" (4.18)

and the last two terms in (4.16) vanish.
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We define the reduced energy-momentum 3-density:
% ea = (1/167)(Constro,Z ° + Constr, Z?)

+ (/167N MZ° + M ,0,Z 7). (4.19)
We have from (4.15), (4.16), and (4.19)
Ez(@)=| &, dx'Ndx*Adx®, (4.20)
F(o)

The quantities Constr,, Constr, (a scalar density and a co-
vector density on ¢) are called the left-hand sides of con-
straint equations (or simply constraints). They play a funda-
mental role in the Hamiltonian formulation of the theory.

Remark: By means of (E12) we can express Vg 74 by
the canonical variables Z ,, ¢ “. Therefore Constr, can be
expressed by canonical variables /77, g,,., 7 » & *and their
spatial derivatives. For Constr, the situation is more compli-
cated. We show in Sec. 5 that under some additional assump-
tions Constr, can be also expressed by means of canonical
variables and their spatial derivatives.

The following result explains the name “constraints.”

Proposition 9: If field equations (4.4), (4.5a, b) are satis-
fied, then

Constr, =0, Constr, =0. 4.21)

The proof of Proposition 9 is given in Appendix D.

We show later that Eqgs. (4.21) yield some relations
(constraints) among initial values of canonical variables and
that the evolution maintains these relations. We have from
(4.19)-(4.21)

Proposition 10: If C,eSol, then, for every o, E (0) = 0.

By virtue of Proposition 10 we see that from Eq. (2.16)
we can only conclude that the vector of evolution ¥ belongs
to the degeneracy subspace of 2 (see Sec. 6). This result does
not help us too much. We are not able to determine from
(2.16) the components of Y. Therefore we have to compute
the derivatives of E (o) in directions tangent to Sbm(4) (they
do not vanish) and to apply formula (2.18). This problem is
solved in the next section.

5. HAMILTON EQUATION FOR THE COUPLED
GRAVITATIONAL AND MATTER FIELDS

In Secs. 2 and 3 we have presented in outline the Hamil-
tonian formulation for classical field theories. We have
proved that the variational principle and Euler-Lagrange
equation (2.1) [cf. (4.4)-(4.5)] give rise to Hamilton equa-
tions (2.16), (2.18). We show that the converse statement is
also true and that Hamilton equation (2.18) is equivalent to
the system (4.4)—(4.5): instead of the Lagrangian (4.1) and
Eqgs. (4.4)+(4.5) we postulate the energy-momentum func-
tion E (0)-(4.20), the symplectic 2-form {2 (¢)-(4.9), and the
Hamilton equation (2.18). Our main result reads

Theorem 2: Let f'be a section of the bundle Z (o) such
that constraint equations

Constr, =0, Constr, =0 (5.1)

hold. Let '¥bea vector tangent to Sbm,, (3) at ¢; = f(o) such
that for every vector 'VeT, (Sbm,(3))

dE(0)}'V= —202(0)'Y,'P) [cf. 2.18)]. (5.2)
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Let

'Y = 8117 3/3IT" + 8g,,, 8/3g,, + 67 , 3/37 ,
+6443/3¢ + 6.4 3/0.4 + 6N 3/IN
+ 6.M, 3/OM + SN 3/IN* + - (5.3)

be the 7, -vertical vector field on ¢, representing ' Y. Then the
evolution equations for symplectic variables read

Ol = 8IT7, 3g,, = 88,,,
(5.4a)
3,7, =62,, dp*=568",
Oyt =6M, I N =0ON,
(5.4b)
ot =8M,, I N*=6NY
and the system (5.1)—(5.4) is equivalent to (4.4)—(4.5).
Remarks: (i) From (5.2) we are able to compute only
these components of 'Y which enter into the symplectic 2-
form £2 (0), i.e.,

5”pq, 5g,,q, 6«@,4, 5¢_A’
6.4, 6N, 6.4,, 6N*

(i) We show later that the vector 'Vis not only tangent
to Sbm,, (3) but also to (Is)(o)—its components satisfy the
linearized version of constraint equations (5.1) (see Proposi-
tion 14).

(iii) Hamilton equation (5.2) gives rise to relations (5.4)
only on o, i.e., for x° = 0. Therefore, in order to get (5.4) at
allinstants of time, we have to postulate constraint equations
on every o and to solve (5.2) also for every . We show fur-
ther that this requirement can be reduced (Proposition 11).

Proof of Theorem 2: (I) Let us observe that in fibers of
the bundle (o) we have the following independent
variables:

8> N, N their spatial derivatives; (5.5a)
P = /N DT,y — S8,atrm), IN, IN*  (5.5b)
%, #, #,; their spatial derivatives; (5.5¢)
W, =), (T — 18T %),

T}, T*; their spatial derivatives; (5.5d)
2N (5.5¢)
$4; their spatial derivatives; (5.5
2 4; (5.58)

Remarks: (i) Variables (I"%, + I5,), I'%,, '3, canbe
expressed by the independent variables (5.5) [cf. (C1)].

(ii) We assume throughout this paper that there are no
relations among the canonical momenta Z , of the matter
field. Degenerate cases, e.g., the Maxwell electrodynamics,
can be treated in a similar way (cf. Ref. 13).

(II) Let

'V = 88,, 8/38,; + SNI/IN + EN* 3/3N* + -, (5.6)

where 8g,,, 6N, 6N k etc. are arbitrary variations of the inde-
pendent variables (5.5), be a vector field on ¢; = f(0) repre-
senting ‘VeT (Sbm, (3)). We have from (4.19)—(4.20).
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dE () V= (1/16m) | [8(ConstroN + 8(Constr,)N?
f(o)

+ 8M N + M N + MEDN)

+ M B@N ) Jdx" Ndx> ANdx>. 3.7
We recall that N = Z°, N* = Z* [cf. (4.18)] and the equa-
tions (5.1) are satisfied. The formulas for §(Constr,, ) are giv-
en in Appendix C.

We see from (C_3) that the integrand in (5.7) contains
variations 8I"4,,, 8(I 5o — 183 15), 8T %, 8(T°%, — T'%,).
These variations do not appear in {4.9), and therefore all
terms containing them have to vanish. It gives rise to the set
of equations

(Eq.11);"=0, (Eq.11)§’—(Eq.11)"=0,

(Eq. 11 W =0 for s#k,

(Eq.11),° = (Eq. 11 )2° = (Eq. 11)°, (5.8)

(Eq. 1) + 8( Eq. 11 )7 = 0.

We have from (5.8)

./” = 0, 4//]( = 03 (5'9)
and therefore the terms with § (G,N), 8 (3N ©) vanish from
5.7).

then

(III) Let lin.symp.var. (linearized symplectic variables)
be the vector space consisting of systems

& =", 8g,,67 ,,66", 64,5N,8.4,,5N"),

where components of £ define corresponding tensor fields
or tensor densities on o. For every 'FeT(Sbm_, (3)) there ex-
ists a unique 7 elin.symp.var. [cf. (5.6)).

We know that equations (5.8) are satisfied and therefore
[cf. (C2)~(C5)] the left sides of linearized constraints define a
linear differential operator

P: lin.symp.var.—C *(g, den) X C (o, denT *(0)),

where C *(0o, den) is the vector space of (smooth) scalar den-
sities on o and C (o, denT *(o)) is the vector space of
(smooth) covector densities on o.

P& = s, u, )eC *{o, den) X C ={g, denT *(o}}

s = 6(Constry), u, = 6(Constr,) (5.10)

[see (C2)—(C5)]. The space lin.symp.var. has a natural scalar
product. If

& elinsymp.var., j=1,2, &, =(81", 88,
J i
(5.11)

o #2) = (/16m) [ [ (1/[R1811811 5,8, +V B88,, 00,878 + (/N DU 5.4+ GoNSN

+ 1/ Jeot 540, + [gsN*SN Sgks] dx' Ndx* Adx®
1 2 1 2

+ﬂ(1/\/§)6?7’@”5% + \/g:r6¢7Ag=AB<S¢73}dx‘ Adx> Ndx®,
- 1 2 1 2

where

= = =

84B :ga.u, "'ga,‘yk?;lv""??‘v‘v
8o=1 8x=8o=0, Zis =8>

§0021, §Ok=gk0=0’ g=ks=gks‘

(5.12)

(5.13)

We define the symplectic operator J: lin.symp.var.—lin.symp.var:

J (8117, 8¢, 6P ,, 644, 6.#,6N, 5.4 ,,5N*)

= (VE T8, — (/N D)8u8,01 *, VE 81358 — 1/ DF?67 ., VE SN, — (1/ VoA,

< Vg 8. 5N, — (/NS M 5.

We have
Ji= —id (5.15)
Let X, 1 X, ,€T(Sbm, (3)) and £°,, £, be the corresponding
elements in lin.symp.var. We have from (4.9) and (5.12)
22(o)(X,, ' Xy) =oAL, JZ) = — gL\, ).
(5.16)
Let (g, v*)eC (o, R) X C * (o, T (0)): g is ascalar function on
o and v* is a (smooth) vector field on 0. We have the natural
pairing
(@ )6 1)) = (1/167) | s + v )dx' Ny Ads
7 (5.17)
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(5.14)

M .
By means of the scalar product (5.12) and the pairing (5.17)

we define the adjoint operator
P*.C *(0, R) X C * (o, T (0))—lin.symp.var.
go)(P*(g, v*), &) = (g, V") |PZ).
The explicit formulas for P * are given in Appendix C. From
(5.7) and (5.9) we get

dE (o) V= {(N, NY)|P7") + g(0)(Z, 7))  (5.18)

P
where 7" is the element in lin.symp.var. corresponding to 'V
and

2 =(0,0,0,0, VEIN,0, VE gdoN0). (519
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We have from (5.18)
dE (o) V = g(o)J (— JP*(N, N¥) — J.Z), ¥), (5.20)

and by virtue of (5.16) the solution of (5.2) is
— (JP*(N,N¥) +JZ). (5.21)

% determines the components (5/7%7, 8g,,,,+) of the right
sides of equations (5.4).
(IV) We have from (5.14) and (5.19)

—JZ =(0,0,0,0,0,3,N, 0,3,N ). (5.22)

From (C1), (C3), and (C6) we compute 6g,,., 5N, 6N * com-
ponents of % . They read

88,y = V,N, + VN, + N /N g, — — 18, trm)
+ N[ = (Bq 1), 8, + gg,,q Eq. 11){%g,,
+ W(Eq. 11)g,, ], (5.23)

8N = 8,N + NUN( Eq. I i"'g,, — N ( Eq. 1171,
(5.24)

(5.25)

N*=3N* + N [N(Eq. I1)°].
However, we know from (5.4b) that
008pg = 08,y» OoN =06N, IN*=6N*.
Therefore, it follows from (5.23)—(5.25) and (E22) that

(Eq.I1)§°=0, (Eq.I)’=0, (Eq 1) =
G. 26)

Relations (5.26) together with (5.8) give rise to
(Eq.I1);" =0,
and thus Eqgs. (4.5b) hold.

(5.27)

(V) From now on we assume that Egs. (5.27) hold. Ex-
plicit formulas for ~JP * in this special case are given in Ap-
pendix C. We get from (C6) and (5.4)

dott =0, o, =0. (5.28)
This formula is in perfect agreement with (5.27) [cf. (4.8)].
We see also from (C6) that equation

pp 4 = 66" (5.29)
are simply the identity. Equations
3,2, =67, (5.30)

are exactly the E-L matter field equations (4.4).

Now we explain the meaning of dynamical equations
for the gravitational momenta

3177 = 81T, (5.3D)

It has been proved in Ref. 14 that this system is equivalent to
\/g(sym sym pq %gpq tr sym T))g_pgq}

- \/gg (sym 87r(sym Tab '_ %gab tr sym T))gub
(5.31)
Remark. In order to prove the equivalence between
(5.31) and (5.31) we have to use equations (5.27) and (5.30).
(VI) Relations (D1) give rise to the following result: If
Egs. (5.27) and (5.30) hold, then

Constro = 2V (G, — 87 ., T%)
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= 2\/g_ [(G 00 sym TOO)
- N'(G°, - symT 51 (5.32a)

Constr, = 2V g(G°, - 87 yuT°,)
—2VEN @G , —87 yuTY) (5.32b)

These equations show that the constraint equations (5.1) are
equivalent to

G° —87 ,,.T% =0. (5.33)

It is also easy to prove that Eqgs. (5.31') and (5.33) are equiv-
alent to (4.5a). The proof of Theorem 2 is now complete.

Let us observe that if constraint equations (5.1) do not
hold, we get a nonconsistent system. In fact we would have
then the additional term (1/167)(Constr, 8N + Constr,6N”
in (5.7) and instead of (5.28) we would have

do# = — (Constry), d,#,= — (Constr,), (5.28")
which would be in contradiction with (5.27). {In this way we
have proved that the constraint equations (5.1) give the nec-
essary and sufficient conditions for the solvability of (5.2).]

We have pointed out in Sec. 4 that Constr, can be ex-
pressed by canonical variables and their spatial derivatives.
In a general case this is not true for Constr,. However, if Egs.
(4.5b) are satisfied, then we see from (C2)~(C5) that
8 (Constr,) can be expressed by variations of canonical varia-
bles and their spatial derivatives only.

Let us assume that Eqs. (4.5b) and (4.4) are satisfied.
We know that Constr,, are now related to the Einstein tensor
by (5.32) and the Einstein tensor satisfies the contracted
Bianchi identities (cf Refs. 14, 15).

V&(G}‘u Sym Tl{ ) -
All these facts give rise to the following:
Proposition 11 (see Refs. 14 and 15): If Egs. (4.4), (4.5b),

{5.31") are satisfied for every x” = 0, then constraint equa-
tions (5.1) are satisfied for all x°.

(5.34)

6. THE DEGENERACY DISTRIBUTION OF THE
SYMPLECTIC FORM AND THE ACTION OF DIFF M IN
THE SPACE OF SOLUTIONS

The left action 4 of Diff M in & generates a right action
A'in the space Sol:

(Diff M X Sol) (&, C,}-»/f (@ )(C,)eSol. 6.1
If C,eSolistheimage of a section F-M— 2, then 4 (¢ )(C,) is
the image of the section

M3x—>A4 (@ )YF (P X)e?. 6.2)

A one-parameter family of diffeomorphisms of M (@,),,
defines the vector field on Sol:

?(Q):%X @)C)|  =dA (T, 6.3)

t=0
where U (x) = (d /dt)®,(x)|,_ o; XeM is a vector field on M.

Proposition 12: The vector ¥ (C,)is represented by the 7-
vertical vector field Y

~ (X, — dFU) (6.4)

In local coordinates we have
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U = 6x* 3/9x%,

Y=8g,, 8/3g,, + 8%, /I, + 504 3/34"
+ 88,.,.. 6/08,,. +6I, d/dr}, .
+ 604, 3/98.,

o8, =V,0x, + v.,bx,,

or,,=D,D,6x*+R", 6x+D,(6xQ%)

84 =8xV, 4% —V 6x"'¢ i

+ VB. ox ¢ b o+ Vg OB 5

88,.,=9,88,, O8I, =3I 64° = 6,6¢ A

(6.5)

Proposition 13: Let a* = 6x* = 8x* + N6x°, B = 6x°
= N&x° be the tangential and the normal components of the
vector field U at points of o. Then the components (57779,
88,4: 07 ,, 84 ) of Y are given by formula (C6) with s = 5,
u* = a*; the components 5N, SN * are

SN=3,8—NVB+aVN,

SN* = dya* + a’V . N* — N*V.a* + BUXN — NV*B.

(6.6)

Remarks: (i) In order to get Proposition 13 from (6.5),
we have used the canonical form of field equations (5.4).

(i) For special cases of the Einstein and Einstein-Max-
well theories the correspodning formulas have been present-
ed in Refs. 11-13.

(iii) It follows from (6.6) that by means of the appropri-
ate choice of a*, 8 we can get arbitrary values of 8N, 6N %,
dPON, 3,6N* on o (on c3).

Let C,eSol. By means of (3.2) we can split C, into a one-
parameter family of initial surfaces (,¢;),. . We have proved
in Sec. 5 that on every initial surface ,c; we are able to deter-
mine [from the Hamilton equation (5.2)] components (617 #9,
88,9 6 Z,,66% of the vector field 'Y representing the vec-
tor of evolution 'Y. Therefore we can construct a 7-vertical
vector field ¥ on C,. We show now that Y represents a vector
Y tangent to Sol andAthat this vector coincides with that
given by the action 4 in Sol. We can expect this result if we
recall the considerations in Sec. 2 which gave rise to Theo-
rems 1 and 1’. We prove also that Y belongs to the degener-
acy subspace of the symplectic 2-form 42 on Sol. Also this
factis understandable by virtue of (2.16) and the fact that the
energy-momentum function £ vanishes on Sol.

For C,eS0l we define the vector space lin.can.var. (lin-
earized canonical variables) which consists of systems
& =611, 6¢,,67 4, 56 ). The components of % re-
present families of geometrical 3-quantities on o depending
on the parameter x“, We assume that they satisfy the linear-
ized constraint equations

6 (Constry) =0, &(Constr,) =0 6.7)
(thus & cker P).

Remark: We recall that for C,eSol the linearized con-
straints depend only on 8/1%, &g, 87 ,,6¢% ltis clear
that every vector ¥ tangent to Sol at C, defines an element
% €lin.can.var. R N

Proposition 14: If Y = dA (C)U [cf. (6.3)], then
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(i) the corresponding element % €lin.can.var. is equal to

Y = —JP¥U° U*) [see(C6)], (6.8)

(i) im JP * Cker P, 6.9)

(iif) for every vector X tangent to Sol at C,

2(F,X)=0 (6.10)
Statement (i) follows directly from Proposition 13; (ii) is the
