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A generalization of the Lie group construction is proposed wherein the composition law depends, 
apart from the parameters of the transformations composed, also on the transformed variables. 
This construction is met, in particular, on the hypersurfaces specified by the first class constraints 
in phase space. 
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INTRODUCTION 

A generalization of the Lie group construction hence­
forth referred to as a quasigroup is proposed in the present 
paper. At the infinitesimal level the quasigroup is given by a 
set of generators that act as differential operators on func­
tions of some initial variables. These generators obey Lie 
algebra commutation relations with the difference that the 
structural coefficients now depend, generally, on the initial 
variables. At the level of finite transformations the main dif­
ference between the Lie group and quasigroup is in the modi­
fication of the composition law which, in the quasigroup 
case, depends not only on the parameters of the transforma­
tions under the composition but also on the variables 
transformed. 

As will be seen, the quasigroup construction is realized, 
in particular, on the hypersurfaces of the first class con­
straints in a phase space. An example of a gauge theory with 
the gauge transformations forming a quasisupergroup (see 
below) is given by supergravity with auxiliary fields meant to 
close the set of generators. 

Let us sketch the contents of the paper. In Sec. 1. func­
tional equations of the quasigroup are formulated and some 
of their consequences are studied. Here differential equa­
tions are obtained which are quasigroup counterparts of the 
Lie and Maurer-Cartan equations and their transformation­
al properties are considered. 

In Sec. 2 the formal integrability of the quasigroup dif­
ferential equations is checked and the problem of recon­
struction of the quasigroup, if the structural functions are 
given, is solved. (Solution of this problem for the Lie group is 
given in Ref. 1). 

In Sec. 3 the quasigroup differential equations are ex­
tended to the case when initial variables and parameters are 
elements of a graded algebra (hosons and fermions). 

In Sec. 4 a realization of the quasigroup is considered in 
a phase space on hypersurfaces of the first class constraints. 

In Sec. 5, basing ourselves on the contents of the pre­
vious sections, we investigate the general structure of the 
quantum transition amplitude (the S-matrix) in dynamical 
systems subject to the first class constraints. 

In the Appendix we introduce the left and right mea­
sures on a quasi group and study their transformational 
properties. 

1. QUASIGROUP 

Letg"(I<a<n) be real variables for which the continu­
ous law of transformation is given by 

(1.1) 

which depends actually on the set of real parameters 
oa(l<a<r). Assume that transformations (1.1) possess the 
following properties: 

1) there exists a unit element which is common for all g" 
and corresponds to 

o a = 0: .ra
( g,O = 0) = g" ; 

2) the modified compositions law holds: 

r(f( g,O) ,0 ') = r( g,tp «(},O '; g» ; 

3) the left and right units coincide: 

tp U«(},O; g) = () U , 

tp U(O,(} '; g) = (}·u ; 

4) the modified law of associativity is satisfied: 

tpCZ(tp «(},()'; g), () ";g) = tpa«(},tp «(}',() ";f(g,(}»; g); 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

5) the transformation inverse to (1.1) exists and may be 
represented as 

g" = f ~ In( g,(}) = r( g,O ((); g)) , (1.7) 

where the function 0 satisfies the equations 

tp CZ(O «(); ff), (); g) = 0, 

tp CZ«(}, 0 «(};f( g,() »; g) = 0 , 

which give the left and right inverse elements. 

(1.8) 

(1.9) 

The set offunctional equations (1.1)-( 1. 9) defines a for­
mal construction henceforth called quasigroup. In case the 
compositional function tp U«(}, () '; g) does not depend upon 
g", these equations express ordinary group properties. 

Taking the consistency of conditions 1 )-5) for granted 
we shall obtain some of their consequences. The infinites­
imal transformations follow from (1.1) when 0 u-+O: 

8g" = R ~(g) (}U, 

where 

R ~(g)- ar(g,(}) I . 
a(}CZ e=o 

(1.10) 

(1.11) 
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Using (LlO) in the relation, 

W(g)= W(g) (1.12) 

which expresses the invariance of a function W (g), we come 
to the identity 

R ~(g) W:a(g)=O, 

where 

Expose the composition law (1.3) to the action ofthe 
operator 

(1.13) 

(1.14) 

(1.15) 

With the use of (1.2), (1.4), (1.5), and (1.11) we obtain 

R aRb R aRb - t Y R d a,b f3 - f3,b a - - af3 Y' (1.16) 

where 

Expose the law of associativity to the operation 

+ cyclic permutations of 

X (a,P,8)] '(1.6)11I~1I'~II"=O' (1.19) 

Using (1.2), (1.4), (1.5), and (1.11) one obtains the modified 
Jacobi relations for the structure coefficients (1,18): 

t~f3,a R ~ + t~a,a R'8 + t~8,a R ~ 

+ t~y tb6 + t~y t~f3 + t~y t~a = 0, (1.20) 

where 

at ~f3( g) 
tl' =--=-~-af3,a- ag" (1.21 ) 

Owing to (1, 16) the generators 

F =Ra(g)~ (1.22) 
a a ag" 

obey the commutation relations of quasi algebra 

[Fa ,Ff3] = t ~f3( g) r y , (1.23) 

Now expose (1.3) to the action of 

~ '(1.3)1 . (1.24) 
ae' 1J'~o 

With the aid of(1.4) and (1.11) we obtain an analog of the Lie 
equation, 

ag' = R a (g;;'\ A. ace· g) 
ae (3 a '5) f3 ' , 

(1.25) 

where 
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1 a f3 £a 
A f3 p y = U y , 

U(e. )=aq:;u(e,e';g)1 
{lf3 ' g - ae 'f3 ' 

II' ~o 

and it is assumed that 

Detl pI =f0 , 
Apply the operation 

(ae'~;e "1) - (r~) }(1.6)11I'=1I" =0 

(1.26) 

(1.27) 

(1.28) 

(1.29) 

to (1.6). With the use of (1.2), (1.4), (1.5), and (U8) we 
obtain the equation for pee; g), 

(1.30) 

whence an analog of the Maurer-Cartan equation follows 
for A (e;g), 

a}.. a aA. a 
_y _ _ f3 + t a (g)}..1' A. v =0, (1.31) 
aef3 aey I'v f3 y 

wherein the property 

A. pee = 0; g) = 8p (1.32) 

holds in virtue of (1.5). Apply the operation 

~·(1.3)1 
ae y II~O 

(1.33) 

to (1.3). Using (1.2), (1.5), (1.11), and (1.25) we obtain the 
transformation property 

S~( g,e) R ~(g) = R ~ (g) U r- lu(e;g) , (1.34) 

where we write e instead of e ' and, besides, 

It is assumed that 

Detl S J =f0, 
Det{ .U'l =fa. 

(1.35) 

(1.36) 

(1.37) 

(1.38) 

(1.39) 

As combined with the transformation property of the func­
tions (1.14), 

Wa(g) = W:b(g) S~(g,e), (1.40) 

which follows from (1.12), relation (1.34) provides the co­
variant nature of the identities (1.13). Using (1.25) and 
(1.34) we obtain an equation for the inverse transformation 
(1.7) 

anP -
_5_f3 = - R ~ (g)A. pee; g) , 
ae 

(1.41) 

where 
-a-f3_ a A. f3 Pr - 81' . (1.42) 

Let us apply the operation 

( a2 , _ (c5+---+r»)'(L6)\ 
aeDae r IO=fJ'=o 

(1.43) 
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to (1.6). With the help of (1.2), (1.4), (1.5), (1.11), (1.18), 
(1.37), and (1.42) we obtain the equation for Ii«(); g) 

-a -(3 -a -P P -a 
(Dp flt,}fl y - (Dp fly)fl6 = t 6/g)flp, (1.44) 

where we again write () for () " and, besides, 

Dp=~ -R~(g)it:~. 
a() aft' 

(1.45) 

Equation (1.44) leads to the following equation for i ((); g) 

Dpi~ -Dyit: -t:v(g)i~i; =0. (1.46) 

Now expose (1.6) to the operation 

__ a_
2 

-:'-::-6 '(1.6)\ . 
a() ya() (J ~ (J" = 0 

(1.47) 

Using (1.2), (1.4), (1.5), (1.11), (1.27), (1.37), and (1.42) we 
obtain the relation 

(D a) -p ali~ p 0 
(3 fl6 fly - a() (3 fl[j = , (1.48) 

with () standing for () '. An equivalent form of (1.48) is 

(D(3 f-l~) A ~ - ali~ i ~ = 0 . (1.49) 
a()Y 

It follows from (1.16) and (1.46) that operators (1.45) com­
mute with one another 

[Dp,Dy] = O. (1.50) 

We have, besides, due to (1.25) and (1.34), 

Dp g' = O. (1.51) 

Components ft' are independent variables in Eqs. (1.44), 
(1.46), and (1.48). Substitute now the inverse transformation 
(1.7) into these equations. With g' as independent variables 
we obtain, by using (1.34) and (1.41), 

(1.52) 

(1.53) 

(1.54) 

(1.55) 

(1.56) 

The ()-derivatives are to be calculated in (1.52)-(1.56) taking 
into account the extra dependence on (), coming from the 
substitution of ft' from (1.7). Operators (1.56) commute with 
one another, 

(1.57) 

This follows from (1.16) and Eq. (1.31) after the latter is, 
using (1.34) and (1.41), written withg' as independent varia­
bles. We have, besides, due to (1.34) and (1.41), 

(1.58) 

Equations (1.41), (1.52), and (1.53) with the independent 
variables. 
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Let us now obtain analogs of the Lie equations for the 
composition function q; a«(),()'; g). Apply the operation 

~'(1.6)\ 
a()" (J'~O 

(1.59) 

to (1.6). Taking into account (1.4), (1.26), and (1.27) we 
obtain 

aq;u~~~';g) =flt:(q;«(),()';g) ;g)J..~ «()';g«()). (1.60) 

Expose (1.6) to the operation 

~'(1.6)1 . 
a() (J=O 

(1.61) 

Equations (1.2), (1.5), (1.11), (1.37), and (1.42) give 

Dyq; a«(),()'; g) = lit:(q; «(),()'; g) ; g) i ~«(); g) , 
(1.62) 

where we write (),() I instead of ()' ,()". Operators Dy are de­
fined as (1.45). 

When written with g' as independent variables [Eq. 
(1.7) must be used to this end], Eq. (1.62) takes the form 

aq; U«(),()'; g) = lit: (q; «(),()'; g) ; g) i ~«(); g). (1.63) 
a()Y 

where the extra dependence on () resulting from the substitu­
tion of ft' from (1.7) should be taken into account when ful­
filling the () y-differentiation shown in the left-hand side of 
(1.63). 

Now expose (1.6) to the operation 

~(1.6)1 . (1.64) 
a() y (J' ~O 

Using (1.4), (1.5), and (1.37) we come to the important rela­
tion between derivatives of the composition function 

aq; U«(),()'; g) P«(). ) = aq; U«(),()'; g) -(3«(),. _«()) 
a()P fly, g a() 'P fly , g , 

(1.65) 

where again we use () , instead of () ". Differentiating (1.8) 
with respect to () and using (1.65) we obtain the equation 
(with g' as independent variables) 

aep
((); g) 

a() y 

= -fl~(e(();g);g)i~(();f~I(g,())), (1.66) 

where 

(1.67) 

as a consequence of(1.4) and (1.8). With theuseof(1.61) and 
(1.63) we obtain from (1.65) the following relation for the 
matrix (1.36): 

U; la(q; «(),()'; g) ;g) - U fJ~ la«(),; g«()) U y~ IP«(); g) 

= -Ap(q;((),()';g);g) aq;u~;';g) R~(g). (1.68) 

Putting 

()a = ea«(),; g), 

in (1.68) one obtains 
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(1.70) 

where the arrow indicates the argument subject to the differ­
entiation. Relations (1.68) and (1.79) show the deflection of 
the compositional properties of the matrix (1.36) from the 
multiplicativity characteristic of the group case. Deflection 
from multiplicativity appears also in the compositional 
properties of the matrix (1.35). Differentiating the law of 
composition (1.3) with respect to ~ and using (1.25) and 
(1.34) we obtain the corresponding relation 

S~(g(O), e')S~(g, 0) 
= S~ (g,qJ (e,e'; g» 

X [15~ + R ~(g)i p(qJ (e, 0'; g); g) aqJa~:';g)] . 
(1.71) 

Now we are going to derive a formula for the determinant of 
the matrix (1.35). From (1.25) we have 

~Sp InIS(g,e)J 
ae fJ 

aA a 

= R a (g;;"\ A a + S - Ib R a (i' . _fJ 
a,a ." fJ a a 5/ a~ 

a a 

=R~,a(g)Ap- :; R~(g)i~A~, (1.72) 

where (1.34) is taken into account in the second equality. Let 
us write, next, (1.49) in a more explicit form 

all" a-;(a alia 
_r-_b_ A b _ _ r-_{j_X{j = _r-_{j R a( )X' Ab. 
aofJ y ae y fJ a~ ,g fJ y 

From (1.73) we obtain subsequently 

ap~ Ra(g)Xy A{j 
a~ y afJ_ 

= ap~ A Ii _ apb i {j 

ao a /3 ae fJ a 

a aA~ a -= - Pb -- - --Sp IIlfl 
ae a ae fJ 

(1. 73) 

(
aA {j ) a -

= -Pb ao; - t!v(g)A~ Ap + aO fJ SpInA 

a a -
= - aefJSplnA +t~v(g)Ap+ aO/3SplnA, 

(1.74) 

where (1. 31) has been taken into account, The substitution of 
(1. 74) into (1. 72) gives 

~Sp InIS(g,e)J 
ae fJ 

a -
=Aa(g)Ap + -(SpInA -SpInA), (1.75) 

aO fJ 

where 

Aa(g)=R ~,a(g) + t~/3(g). (1. 76) 

It follows from (1. 75), in particular, that 

A (If)A a = alnE. 
a g fJ ao fJ 

(1. 77) 
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Equation (1. 77) is at the same time the definition of the func­
tion E (g,O). With the boundary condition 

E(g,O = 0) = 1, (1.78) 

we obtain from (1.75) and (1.77) 

DetlS( O)J =E( 0) Detl~(O;g)J (1.79) 
g, g, DetlA (0; g) J ' 

where 

E(g,O) = exp{f Aa(g(O'»)Ap(O';g)dO'fJ}. (1.80) 

The integral in (1.80) does not depend upon the form of the 
path of integration, Keeping this in mind and using (1.3), 
(1.4), and (1.60) it is easy to obtain for the function E that 

E(g,O) E(g(O),O') = E( g,qJ (0,0 ';g». (1.81) 

Making the formal change 

0_0 (0; g); 0 '-0 (1.82) 

in (1.81) and taking (1.7), (1.8) and (1.78) into account one 
obtains 

E(g,O(O;g»E(f-I(g,O),O) = 1. (1.83) 

To conclude this section consider transformation properties 
of the quasigroup under the transformation of parameters 

oa_t//'(O; g), 

where 

t//'(O = 0; g) = 0 , 

Det{ ~~} #0. 

(1.84) 

(1.85) 

(1.86) 

The change (1.84) introduces the new law of transformation 
of variables~: 

g' = f~ (g,O )=r( g,rfJ(O; g» , 

with 

f~ (g,O = 0) = ~ 

due to (1.2) and (1.85). Making the formal change 

o "-+t//'(O; g), 

o 'a-+,r(O ';!I( g,O» 

(1.87) 

(1.88) 

(1.89) 

(1.90) 

in (1.3), we come to the composition law for transformations 
(1.87) 

f~(fI(g,O), 0') = f~(g,qJl(O, O';g», (1.91) 

where the new composition function is determined by the 
equation 

qJ a(rfJ(O ;g), ",(0 ';!I( g,O »; g) 
= t//'(qJl(O,O'; g) ; g) . (1.92) 

Taking into account (1.4), (1.5), (1.85), and (1.86) it follows 
from (1.92) that 

qJ ~(O,O; g) = 0 a, (1.93) 

qJ ~(O,O '; g) = 0 '" . (1.94) 

Making in (1.6) the formal change (1.89) and (1.90) along 
with 

(1. 95) 
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one obtains, using (1.92), the law of associativity 

cP f(CPI(O,O'; g),O "; g) 
=cP~(O'CPI(O',O";JI(g,O)) ;g). (1.96) 

The transformation inverse to (1.87) is written in the form 

ft = fl-la(g,O) = f~( g,OI(O;K)) , 

where the functions 0 f satisfy the equations 

cP f(OI(O; g), 0; g) = 0 , 

cp~(O,OI(O;ng,O)) ;g) = 0, 

(1.97) 

(1.98) 

(1.99) 

and are connected with the functions 0 a by the relations 

oa(¢(O;JI-I(g,O));g) = t/f'(OM;K);K). (1.100) 

Introduce, further, the functions 

R a ( ) af~(g,O) I 
1/3 g ao /3 0 ~ 0 

=R~(g)np(g) (1.101) 

np(g)= at/f'(O;g) I . 
aO/3 O~O 

(1.102) 

Differentiating (1.92) with respect to 0' and setting 0' = 0 
one has 

at/f'( 0; g) /1/3 (0' g) 
aO/3 r-Iy , 

=llp(¢(O;g) ;g) n~(fI(g,O», 

where 

a(o· )= acpf(O, O';g) I 
III ,g - aD '/3 . 

17 0' ~ 0 

(1.103) 

(1.104) 

The matrix inverse to (1.l04) is defined by the equation 
1 a /3 ~a 

/I. 1/3 Illy = U y . (1.105) 

Differentiating (1.92) with respect to 0 and setting 0 = 0 one 
has 

(DI/3t/f'(O; g» ii~y(O; g) 
= iip(¢(O; g) ; g) n ~(g) , (1.106) 

where we again write 0 instead of 0' and, besides, 

-a (0' )= acp f(O', 0; g) I 
1l1/3 ,g - ao 'fJ ' 

0'=0 

-a-/3_a 
;/. 1/3 Illy - 8y , 

D - a Ra ( ) ra a 1/3=--- la g /1. 1/3-' 
aO fJ a~ 

Now apply the operation 

( a2 'li - (r~) ) ·(1.92) I 
aoyao O~O'~O 

to (1.92). This gives 

np(g)tfYli(g) 
= t~v(g) n~(g) n :;(g) 

an a
( ) +R a () li g _ 

Iy g aft 
where 

an a
( ) Ra() yg 

lli g aft ' 

(1.107) 

(1.108) 

(1.109) 

(1.110) 

(1.111) 

t[a/3(g)= GO~O'/3 - (a~{3») cp [(0,0'; g)lo~ 0' =0 

(1.112) 
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are new structure coefficients. 
Thus, the new functionsf~ (g,O), cp f(O,O'; g), 0 f(O; g) 

satisfy the same functional equations as the initial ones 
r(g,O), cpa(o, O';g), Oa(O;g). 

To finish the consideration of the transformation prop­
erties of the quasigroup we note that the inverse transforma­
tion (1.7) is also a particular case of the change of parameters 
(1.84). Indeed, let us write go instead of ft in (1.84) and set 

t/f'(0; i) = 0 a(o; i) . (1.113) 

Then 

(1.114) 

Equation (1.91) leads to 

f-Ia(f-I(g, 0), 0') = f-Ia(g, ip(O, O';i» , 
(1.115) 

where, according to (1.92) 

cpa(O(O;i), O(O';J-I(g, O»;g) 
= Oa(ip(O,O';i);i). 

From (1.96) it follows that 

ipa(ip(O,O'; i), 0"; g) 
= ipa(o,ip(O ',O";J -I(g, 0»; i). 

(1.116) 

(1.117) 

It may be shown, that the function ipa is related to the func­
tion cp a by the following formula 

ipa(o ',O;J(g, 0 '» = cp a(o, O';J -I(g, 0». (1.118) 

2. INTEGRABILITY OF THE EQUATIONS OF 
QUASIGROUP. RECONSTRUCTION OF QUASIGROUP 
FROM THE STRUCTURE FUNCTIONS 

In the previous section we obtained some consequences 
of the functional equations (1.1)-(1.9). In particular, the dif­
ferential description of the quasigroup is contained in the 
following set of equations: 

ago Ra(;rl;/.a 
aO/3 = a g, /3' 

go( 0 = 0) = ft , 
a;/. ~ a;/. a 

/3 
__ /3+ t:v(i);/.~;/.;=O, 

ao ao y 

;/. p(O = 0) = 8p , 

(1.25') 

(1.2') 

(1.31 ') 

(1.32') 

which we complement by the equation for the compositional 
function 

acp a(o, 0'; g) 
ao'y 
= IIp(CP (0,0'; g); g);/. ~(O'; g(O» , 

la /3_~a 
/I. /3lly - U y , 

(1.60') 

(1.26') 

(1.4') 

We formulate now the following problem. Let there be given 
structuralfunctions R ~ (g), t ~/3( g) that obey the Eqs. (1.16) 
and (1.20). Let us try, using (1.25')-(1.32'), to reconstruct 
the quasigroup law of transformation, at least locally, i.e" in 
a sufficiently small, but finite environment of the zero values 
of the parameters. 
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Let us, first of all check the fulfillment of the formal 
conditions of integrability. Differentiating (1.25') with re­
spect to e r and performing the antisymmetrization with re­
spect to the indices (y, /3) we obtain zero on the left-hand side 
identically, while the vanishing of the right-hand side is pro­
vided by Eqs. (1.16), (1.25'), and (1.31'). Differentiate (1.31') 
with respect to e 15 and add next the cyclic permutations of 
the indices (y, (3,8). The second derivatives of A cancel while 
the other terms disappear owing to (1.20), (1.25'), and (1.31'). 
Thus, the formal conditions of integrability of Eqs. (1.25') 
and (1.31') are fulfilled, which provides existence ofa solu­
tion. This solution, however, is determined with the arbi­
trariness of the transformations of parameters under which 
the system (1.25')-(1.32') is covariant with the given func­
tions R ~ , t ~(3' These transformations have the form (1.84) 
with {J p( g) = 8p , where {J p is defined as (1.102). To fix a 
unique solution of the set (1.25')-( 1.32') it is necessary to 
impose auxiliary conditions on the functions A p thus mak­
ing a special choice of parametrization of the quasigroup (see 
below). 

Assume now that functions gu(e), A p(e) which satisfy 
Eqs. (1.25')-(1.32') in a special parametrization, are found. 
Let us check the integrability of Eq. (1.60'). Differentiating 
(1.60') with respect to e '15 and performing the antisymmetri­
zation with respect to the indices (8,y) we get identically zero 
on the left-hand side, while on the right-hand side we obtain 
via (1.31'), (1. 60'), and ( 1. 26') 

/-lp(cp (e, e'; g); g)(t~v( gl) 
- t~v( g2)) A ~ (e'; i(e)) A ~( e'; i(e)) , 

where 

g: =r(f( g,e), e') , 

~=r(g,cp(e, e';g)), 

r( g,e )= ga(e) . 

Differentiation of (2.2) leads to 

ag: =RQ(=)AU(e,.-(e)) ae '{3 U g I {3 , g , 

with 

g: (e' = 0) = gu(e) , 

Differentiating (2.3) with respect to e' we have 

a~ = R Q (= ) A U( (e e'. ). ) acp r(e, e'; g) 
ae '{3 a g2 r cp , ,g, g ae '(3 

with 

= R ~(g2) A ~(cp (e, e'; g); g) /-l~(cp (e, e'; g);g) 

XA ~(e'; i(e)) 

= R ~ (g2) A ~(e'; i(e)) , 

gie' = 0) =gu(e). 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

Comparison of (2.5) and (2.6) with (2.7) and (2.8) shows that 
expressions (2.2) and (2.3), as functions of e', obey one and 
the same differential equation (whose integrability has been 
already established) and the same boundary conditions at 
e' = O. Hence we conclude that 

g~ (e') = ~ (e') , (2.9) 
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i.e., 

ru( g,e), e') = r( g,cp (e,e'; g» . (1.3') 

By virtue of (1.3') expression (2.1) vanishes. Thus confirm­
ing the integrability of (1.60'). Simultaneously the law of 
composition (1.3') is obtained as a consequence of the quasi­
group differential equations. 

By analogy with (2.2) and (2.3) let us introduce the 
functions 

<Pf= cpa(cp(e, e';g), e ",g) , 

<P ~= cp a(e,cp (e', e ";f( g,e»; g) 

(2.10) 

(2.1l) 

into consideration. Taking (1.60') into account one has for 
(2.10) 

a<p a 
ae "~ = /-l~(<PI; g) A ~(e "; g2) , 

while 

<pf(e" = 0) = cpa(e, e'; g). 

Analogously one has for (2.11) 

a<p u 
ae ": = /-lp(<P2; g) A ~(cp (e', e "; i(e )); i(e)) 

while 

Xacp {j(e ',e"; i(e)) 
ae"r 

= /-lp(<P2; g) A ~(cp (e' e"; i(e)); i(e)) 

X/-l~(cp (e', e"; g(e ));g(e)) A ~(e"; gt! 
- a(d>.. )~(3(e".-) -/-l{3 '¥2, g /L r ,g2' 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

By comparing (2.12) and (2.13) with (2.19) and (2.15) we con­
clude that 

<P ne") = <p~(e"), (2.16) 

i.e., 

cp a(cp (e, e'; g), e "; g) = cp ale, cp (e', e";f( g,e )); g). (1.6') 

Therefore, the modified law of associativity is obtained as a 
consequence of the differential equations of quasigroup, 

Further on, we find from (1.60')-(1.4') 

cpU(e=o,e';g)=e'u. (1.5') 

Define now a function 0 a( e; iJ of the independent variables 
e; i as a solution of the equation 

cp a(o (e; iJ, e; iJ = 0 . (1.8') 
Then, taking (1.2') and (1.3') into account we obtain 

rU( i, 0 (e; iJ),e) 
= r( i,cp (0 (e; iJ, e; iJ) = r( i,O) = gu, (2.17) 

whence 

f - la( i,e ) = r( i, 0 (e; iJ) . (1.7') 

Substitution of (2.4) into (1.8') gives 

cp U(O (e;f( g,e », e;f( g,e» = 0 . (2.18) 

It follows from (1.4') and (2.18) that 

cp a(e,cp (0 (e;f( g,e », e;f( g,e» ; g) = e u . (2.19) 
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With the help of (1.6') we may represent (2.19) in the form 

q; a(q; «(J,e «(J;j( g,(J» ;g) , (J; g) = (J a . (2.20) 

In virtue of (1.5') this equation has the solution 

q; a«(J, (j «(J;f( g,(J» ; g) = 0 , (1.9') 

which is unique in a sufficiently small neighborhood of the 
point (J = O. 

Thus, we have not only confirmed the formal integrabi­
lity of the set of differential equations (1.25')--(1.4') but also 
derived the functional equations of the quasigroup from it. 

Let us now proceed directly to reconstructing quasi­
group when the structure functions are given. For the special 
parametrization we choose the canonical one with the func­
tions satisfying the condition 

Ap(Jf3=(Ja, 

or, what is the same, 

(2.21) 

/lP(Jf3=(JU. (2.22) 

Multiplying (1.25') and (1.31') by (Jf3 and (JY, respectively, 
and using (2.21) we obtain for the functions 

G Q(x) g"(x(J) , 

A p(x)- xA p(x(J) , 

and the set of equations 

dGQ =RQ(G)(Ju 
dx U , 

GQ(x =0)= ~, 

dA a 
_f3 = 8a + t a (G) (JvA /L 
dx f3 /LV f3 ' 

A pix =0) =0. 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

The function (2.23) may be found from (2.25) and (2.26) and 
then susbtituted into (2.27). The latter equation, along with 
(2.28), determines the function (2.24) and (2.28). Then we 
have 

g"((J) = GQ(x = 1), 

A p((J) = A pix = 1) . 

(2.29) 

(2.30) 

Next one must show that the functions (2.29) and (2.30) do 
satisfy Eqs. (1.25')-(1.32'). To this end we must study some 
consequences of (2.25)-(2.28). Introduce the function 

h U(x)=A pix) (Jf3 - x(Ju. (2.31) 

With the use of (2.27) we have 

dh a = t a (G) (J vh /L 
dx IlV , 

with the property 

hU(x =0) =0, 

(2.32) 

(2.33) 

which follows from (2.28). From (2.32) and (2.33) it follows 
that 

hU(x) = 0, 

so that for all x the relation holds 

A pix) e f3 = xe u 
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(2.34) 

(2.35) 

as a consequence of (2.27) and (2.28). Introduce now the 
function 

hp(x)= aGa -R~(G)Ap. a() f3 

Differentiating it with respect to x we have 

dh Q d dGQ __ f3 = __ _ 

dx dx ae f3 

dGb dA a 
-RQ (G)-A a -RQ(G)-P 

a.b dx f3 a dx 

= ~ dG Q _ R Q (G) R b (G) () Y AU 
a(J f3 dx a,b r f3 

- R ~ (G )(8p + t ~v (G) e v A ~ ) . 

The differentiation of(2.25) with respect to ()f3 gives 

~ dG Q = R Q (G) aG b (J a R Q (G ) 
ae f3 dx u,b a(J f3 + f3 

(2.36) 

(2.37) 

= R ~,b(G)(h ~ + R ~(G) A;) e a + R p(G) . 
(2.38) 

Substituting (2.38) into (2.37) and taking (1.16) into account 
we obtain 

dh a 
_{3 = R Q (G) e a h b 
dx a.b f3 ' (2.39) 

with condition 

hp(x = 0) = 0, (2.40) 

which holds owing to (2.26), (2.28), and (2.36). Equations 
(2.39) and (2.40) lead to 

h pix) = 0, (2.41) 

i.e. for all x the relation 

(2.42) 

holds as a consequence of (2.25)-(2.28). Besides, from (2.25) 
and (2.26) it follows that 

GQle=o = ~. (2.43) 

Introduce next the function 

aA U aA a 
h a (x)==: _r _ _ f3 + t a (G) A /L A v • 

{3y a() f3 a() r /LV f3 r (2.44) 

Its differentiation with respect to x and the use of (2.25) and 
(2.27) result in 

dh py a dA p a dA p 
--=---~ - ----

dx ae f3 dx ae Y dx 

+ t~v,a(G) R ~(G) ()Il A i3 A; 

+ t;v(G)(8iJ + t~T(G) e'A p)A;: 

+ t;v(G)Ai3(8~ + t~T(G) eTA;). (2.45) 

Differentiation of (2.27) with respect to e r with the use of 
(2.42) gives 

a dAp 
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aAI' 
+t a (G)AI' +t a (G) (}y_P . (2.46) I'Y P I'V a() y 

The part of (2.46) antisymmetric with respect to the indices 
({j,y) is 

~dA~ _ ~dAp 
a(} P dx a(} y dx 

= t ~v.a (G) () v R ~ (G)(A ~ A ~ - A ~ A ~) 
+t~p(G)A~ -t~y(G)A~ +t~v(G)(}Vh~y 
-t~v(G)(}Vt~T(G)ApA;, (2.47) 

where the definition (2.44) has been taken into account. Sub­
stitution of (2.47) into (2.45) and the use of (1.20) result in 

dh u 

~ = t a (G) (}V hI' dx I'V py, 

with the condition 

h py(x = 0) = 0 

(2.48) 

(2.49) 

that follows from (2.28). Equations (2.48) and (2.49) provide 

h py(x) = 0 , (2.50) 

for all x. Thus the relation 

aA u aA a 
-y - _P +t a (G)AI' A v =0 (2.51) 
a() f3 a(} y l'f3v f3 y 

holds as a consequence of (2.25)-(2.28). Besides, it follows 
from (2.27) and (2.28) that 

(2.52) 

Setting x = 1 in (2.35), (2.42), (2.43), (2.51), and (2.52) we see 
that the functions (2.29) and (2.30) do realize solution of the 
set of equations (1.25')-(1.32') with canonical variables (2.21). 

Now consider Eq. (1.60') for the compositional function 
in the canonical coordinates. Multiplying it by () 'y and using 
(2.21) we obtain for the function 

cI> a(x)='P a((}, x(} '; g) 

and the following equation 

dcl>a , 
dx = Ji.p(cI>; g) () f3 , 

cl>a(x = 0) = (}a, 

(2.53) 

(2.54) 

(2.55) 

where Ji.p((); g) is the matrix inverse to (2.30). After the solu­
tion ofEq. (2,54) subject to the condition (2.55) is found one 
has 

(2.56) 

We are going to show that the function (2.56) found in this 
way satisfies (1.60'), indeed. To this end we introduce the 
function 

where 

a 

A == xA. p(x(} '; g((})) , 
f3 

so that the equations hold 
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(2.57) 

(2.58) 

(2.59) 

. 
a •• Ii-

A f3 = Da + t a (G) () 'v A 
d f3 I'V 

X f3 
a 

A (x=O) =0, 
f3 

dG a = R a (G ) () 'a 
dx a , 

G(x = 0) =g"((}), 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

• a • a 

withg"((}) in (2.63) defined as (2.29). The function G , A , in 
f3 

accordance with the above said, satisfy the equations 

aG • • a 

~ =R~(G)A , a(} f3 
(2.64) 

G a I 0' ~ 0 = g"( () ) , (2.65) 

• a I A =XDp. 
f3 IJ' ~ 0 

(2.67) 

From (2.57) we obtain taking (2.54) and (2.60) into account 

dh a a dcl>a 
--y =----
dx a(}'y dx 

_ aJi.p(cI» ll(cI» (}'E ~ f3 
acl> Il Ji.E y 

a {3 f3. 'v· fl 
- Ji.f3(cI> )(Dy + t I'v(G) () A ). 

y 

Differentiating (2.54) with respect to () 'y we have 

a dcl>a 

a(}'y dx 

(2.68) 

a U(cI» •• 
7c1> Il () 'f3 (h ~ + h ~(cI» A ) + Ji.~(cI» . (2.69) 

Substitution of (2.69) into (2.68) leads to 

dh~ = aJi.p(cI» (}'f3h ll 
dx acl>ll y 

+ Ji.p(cI> )(t~v( g(cI>)) - t~v(G)) () 'v ~ I' , (2.70) 
y 

where the effect the Eq. (1.31 ') has on the functions Ji.P ((); g) 
has been taken into account 

a a a a 
~ f3 _ ~ f3 = _ t f3 ( -(())) a 
a(} f3 Ji. y a(} f3 Ji.1l Ily g Ji.f3 . 

The use of (1.25') and (2.54) leads to 

dg"(cI» ag"(cI» dcl>f3 
--=----

dx acl>f3 dx 

where 

= R ~(g(cI») A. p(cI» Ji.~(cI» () 'y 

=R~(g(cI>))(}'a, 

(1.30') 

(2.71) 
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g"(<P (x = 0)) = ga(e). (2.72) 

By comparing (2.62) and (2.63) with (2.71) and (2.72) we con­
clude that 

• a 

g"(<P (x)) = G (x). 

In virtue of(2.73) one has from (2.70) 

dh ~ = aj1-p(<p) e'P h 8 , 

dx a<plj Y 

with the equality 

h~(x = 0) = 0 

(2.73) 

(2.74) 

(2.75) 

following from (2.55) and (2.61). The only solution ofEq. 
(2.74) with the boundary condition (2.75) is 

h ~(x) = 0 . (2.76) 

Therefore, at every x the relation 

a<P'" • P 
-. =j1-p(<P)A 
ae Y Y 

(2.77) 

holds a consequence of (2.54) and (2.55). Besides, it follows 
from (2.54) and (2.55) that 

(2.78) 

Setting x = 1 in (2.59), (2.77), and (2.78) one sees that the 
function (2.56) satisfies (1.60'), indeed. 

Thus, the reconstruction of the local quasigroup, with 
the structure function R ~ ( g), t ~p ( g) subject to (1.16) and 
(1.20) given reduces, if canonical parameter are used, to the 
following steps: (2.25), (2.26), and (2.29) lead to the transfor­
mation law g"(e); the auxiliary functions A. p(e; g) are found 
from (2.27), (2.28), and (2.30); the composition law 
qJ ale, e '; g) follows from (2.54), (2.55), and (2.56). 

It remains to confirm that the canonical parametriza­
tion is admissible at least locally. Letg"(e), A. p(e) be a solu­
tion of the set (1.25')-( 1.32'). This set, with the structure 
functions R ~ (g), t ~p( g) given, was already mentioned to be 
covariant under the transformations (1.84) if n p( g) = 8p, 
where n {; is defined as (1.102). Write in this case the trans­
formation law (1.103) as 

(2.79) 

where 

(2.80) 

The function A. fp(e; g) along with the corresponding func­
tion it (e; g) satisfies a set of equations which coincides with 
(1.25')-( 1.32'). To confirm that the canonical parametriza­
tion is admissible suffices it to point a function ¢"'(e; g) that 
satisfies (2.79) and (2.80) with the function A. fp(e; g) obeying 
the condition of canonicity 

A.fpep=e"'. (2.81) 

Using the method that was developed above as applied to 
(2.29), (2.30), and (2.56), it is easy to show that the function 

¢"'(e; g)==<P~(x = 1), (2.82) 

where <P ~(x) is a solution of the equation 

1845 J. Math. Phys .. Vol. 22, No.9. September 1981 

d<P ~ a p 
-- =j1-p(<Po;g)e 

dx 

satisfying the condition 

<P~(x = 0) = 0 

(2.83) 

(2.84) 

meets the requirement formulated as (2.79), (2.80), and 
(2.81). Therefore, canonical parameterization is admissible, 
at least locally. 

We conclude this section by noting that for the canoni­
cal parameterization the relations are true: 

A ,He; g( - e)) = A. p( - e; g) . 

(2.85) 

(2.86) 

Note also that the function (2.29) may be formally presented 
as 

g"( e ) = exp { ear a 1 ~ , (2.87) 

where ra are the generators (1.22). 

3. QUASISUPERGROUP 
In the previous sections the variables ~ and parameters 

e a were assumed to be commuting (Bose) quantitites. Now 
we are going to extend the quasi group construction to the 
case when the variables~ and parameters e a are elements of 
a graded algebra: 

g"gb = ( _ I tan. gb~ , 

eae P = (_ I(anoePea, 

(3.1 ) 

(3.2) 

(3.3) 

where na , na are Grassmann parities of the variables ~ and 
parameters e a, respectively. Each of the parities na , na takes 
the values of 0 or 1 depending on whether the corresponding 
quantity is an even (bosonic) or odd (fermionic) element. 

The functional equations (1.1 H 1.9) may be formally ex­
tended to the case (3.1)-(3.3) to now define a construction 
called quasisupergroup. 

Infinitesimal transformations are defined by the formu­
la (1.10), where 

R ~( )= arl
a

( g, e) I . (3.4) 
ae a 

8=0 

Here a, is the right derivative. These functions satisfy the 
relations 

aRa aRa _,_a_ R b _ ( _ Itan" ~ R b 

agb P a~ '" 
= -R~t~p, 

where 

t Y ( )= [( _ 1 )nanO a; 
up g - ae aae 'P 

a
2 

] I ' Y(e e'· ) - -ae-p-a-e-'''' qJ , , g 8 = 8' 

are the structure coefficients subject to the relations 

t ~p = - ( - l)nan" t ba , 
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a tit a " 
(_ l)""n'~R a + (_l)"hn{1~R a 

ag" 8 aga (3 
a tIL 

+(_I)n"n"~Ra +(_I)n"n't't t Y 
ag" a cry (38 

+ ( - 1 )n"n" t P t Y + ( - 1 )n""" t P t Y = 0 oy 0.(3 (3y <'iet • 

The analog of Eq. (1.25) has the form 

ar g' _ R a ( ,.. A a 
ae (3 - a g, fJ' 

where 

A. <P fl~ = D~ , 

ace. )= a,cpCl(e, e';g) I 
flf3 , g - 0 '13 • 

e (1'=0 

Functions (3.12) obey the equation 

a Cl a a 
r fl(3 y ( l)n"n, r fl8 y 
ae r fllJ - - afF fl(3 

= -fl~t~8(i) 

and the condition 

(3.8) 

(3.9) 

(3.10) 

(3.11 ) 

(3.12) 

(3.13) 

fl<P(e = 0; g) = 15'/3 . (3. 13 a) 

For the functions A pee; g) , one has the equation 

aAa aAa 
_r_y _ (_l)n)'nn~ 

ae f3 ae r 
+(_l)n/l"t~v(i)A.;A~=O (3.14) 

and the boundary condition 

A .B(B = 0; g) = 15.8 . (3.15) 

The equation for the composition function cp a(e,e'; g) has 
the form 

arcp a(e,e'; g) 

ae'r 
= fl.B (q; (e,e'; g) ; g) A ~ (e'; g(e» , 

with the boundary condition 

q; ace, e' = 0; g) = l' a • 

(3.16) 

(3.17) 

Within Eqs. (3.9), (3.10), and (3.14)-(3.17) one may put for­

ward a problem of reconstructing the quasisupergroup if the 
structure functions R ~ (g), t ~f3( g) are given satisfying (3.5), 
(3.7), and (3.8). This problem can be solved for canonical 
parametrization (2.21) where the order of factors is fixed. 
The final result is as follows: the function ga(e) is given by 

(2.29), (2.25), and (2.26), the auxiliary function A. .B(l'; g) is 
given by (2.30), (2.27), and (2.28), the compositional function 
cp are, (j '; g) is given by (2.56), (2.54), and (2.55), the order of 
factors in (2.25), (2.27), and (2.54) being kept fixed. 

We present now the formal expression for ga(l') in the ca­
nonical parametrization 

ga(l') = g" exp!ra(j"l ' 

where 
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(3.18) 

(3.19) 

are generators acting to the left. In virtue of (3.5) the gener­
ators (3.19) satisfy the relations 

(3.20) 

Thus, we see that inclusion offermions does not cause any 
essential alterations in the formal construction of the 
quasigroup. 

4. FIRST CLASS CONSTRAINTS AS A REALIZATION OF 
THE QUASIGROUP 

Let qi,p;(i = 1, ... ,N) be canonical coordinates and mo­
ments of a dynamical system with the initial Hamiltonian 
H (q,p) and the first class constraints Ta(q,p) (a = 1, ... ,r). The 
constraints Ta are in involution among themselves and with 
the Hamiltonian: 

ITa' T(31 = U~(JTr' 

IH,T" I =V~T(J' 
(4.1) 

(4.2) 

It is assumed for simplicity, that the dynamical variables are 
bosonic and the second class constraints are absent. Then 
! .. ·l are ordinary Poisson brackets 

(A,B I = aA oB _ oA aB . (4.3) 
oq' OPi OPi oq' 

It is convenient to combine canonical coordinates and mo­
ments in a column 

(4.4) 

and refer in what follows to the lower case latin indices as 
running through the values (l,2, ... ,2N). Then (4.3) takes the 
form 

(4.5) 

where C U = - ~a is the corresponding simplectic matrix. 
Introduce transformations of the variables (4.4) which 

are generated by the constraints 

og" = R ~(g) l'« , (4.6) 

where 

(4.7) 

and (j IT -.0. Let us calculate now the Lie bracket of the func­
tions (4.7). The use of (4.1) gives 

aR~ b 
--R{3 -(a+----+/3) 

agb 

so that 

( aR ~ b P )) --b- R {3 - (a+------>- ) + t ~f3 R ~ = 0 , 
ag T=O 

(4.8) 

(4.9) 

where the new designation of the structure functions of the 
involution is introduced as 

(4.10) 
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Equation (4.1), along with the completeness and irreducibi­

lity of the constraints, allows us to state that 

( at ~{3 R Q + t I' t r ) I 
a t; or {3t; 
~ T=O 

+ cyc!. perm. (a, /3, 8) = 0 . (4.11) 

Let US define finite transformations ~ ~ g"( 0) of the varia­
bles (4.4) by means of the equations 

ag" =RQ(g;;"\,.j,o (4.12) 
ao {3 a 5} {3' 

g"(O=O) = ~, (4.13) 

(4.14) 

(4.15) 

where the structure functions are defined by (4.7) and (4.10). 
Using (4.12) one has 

(4.16) 

where 

(4.17) 

due to (4.13). If the initial data is localized on the hypersur­
face specialized by the constraints 

Ta(g) = 0 

one has in virtue of (4. 16) and (4.17) 

Ta(i) = O. 

(4.18) 

(4.19) 

This means that the transformation given by (4.12H4.15) 
leaves the variables (4.4) on the hypersurface (4.18). Appeal­
ing to (4.9), (4.11) and (4.19) one can confirm the integrabi­
lity of equations (4. 12H4. 15) under the condition that the 
initial data is localized on the hypersurface (4.18). 

Equations (4. 12H4. 15) define naturally an action of 
the (local) quasigroup on the hypersurface of constraints. 
This quasigroup is meant to be reconstructed based on the 
structure functions (4.7) and (4.10) as it was described in 
Sec. 2. The classical Hamiltonian action 

(4.20) 

with the relation £ab ~c = 8~ holding, on the hypersurface of 
constraints (4.18) is invariant under the transformations giv­
en by (4.12)-(4.15). 

Up to this stage we were dealing with the complete set of 
the primary variables (4.4). One may, however, confine one­
self explicitly to the hypersurface of constraints (4.18) by 
eliminating r variables. To this end let us divide the variables 
(4.4) as follows 

(4.21) 

where a = 1 , ... ,r; A = r + 1, ... ,2N - r. Assume that the 
equation of constraints (4.18) when written in the form 

Ta(g',g") =0 (4.22) 

may be solved with respect to the variables g'a, i.e., 
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Det (aT(g', gil)} ~O. 
ag' 

Then it follows from (4.22) that 

g'a = 7""( g") 

and also 

(4.23) 

(4.24) 

aTa ag'1' + aTo = 0 . (4.25) 
ag'l' ag" A ag"A 

From (4.1) on the hypersurface of constraints and (4.25) it 
follows that 

(4.26) 

Transformations of variables g' A on the hypersurface of con­
straints are 

8g'A=R~(g")oa, 

where 

R ~(g")= R ~(g', g") I g' = 1'(g') • 

(4.27) 

(4.28) 

For the function (4.28) from (4.9) and (4.26) we derive the 
relations 

aR ~ R B ( /3) r ( ") R A ag'B {3- a- = -ta{3 g r' (4.29) 

where 

r ( ")- t r ( , ") I t afl g = a{3 g, g g' = 1'( g') • (4.30) 

(~:~ R 1 + t':xr t bt;) + cycl. perm. (a,/3, 8) = O. (4.31) 

The division (4.21) of the primary variables leads naturally 
to analogous division in the functions 

(4.32) 

so that 

Ta(g,g") =0 (4.33) 

simultaneously with (4.22). 
Equations (4.12)-(4.15) may be represented on the hy­

persurface of constraints as 

(4.34) 

(4.35) 

a,.j, ~ a,.j, a 
__ fl + t~v(g")AS,.j,; =0, (4.36) 

ao {3 ao r 

,.j, fi(O = 0) = 8fi ' (4.37) 

where the structure functions are defined by (4.28) and 
(4.30). Equations (4.34)-(4.37) contain only independent 
variables of the hypersurface of constraints. 

5. GAUGE INVARIANCE 

Let ~ be real variables and W (g) be a function invar­
iant under the infinitesimal transformations 

8~=R~(g)oa, (5.1) 

where the functions R ~ (g) obey (U6) and (1.20). 
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Consider the formal integral over all g": 

Z", = J exp/iW(g») t5(l/I(g»..:l",(g)dJ.l(g) , (5.2) 

where 1/1 U( g) is the "gauge" function. [Its derivatives are 
denoted for brevity by subscripts after a comma, like: 1/1:;' (g) 

al/l U( g)/ag"] 

..:l",(g)= Det (fj) -I) , 

fj) p- Iu (g) = 1/1:;' (g) R p( g) , 

dJ.l( g) = M (g) II dg" . 

The function M (g) satisfies the equation 

r~ M=t~p M, 

where 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

are the transposed generators and t ~p( g) are the structure 
coefficients in (1.16). In virtue of (1.16) r ~ obey the com­
mutation relations 

[r~,rn = -r~t~p 
-t Y R O tY r T 
- uP.o Y- up Y' (5.8) 

The compatibility of Eqs. (5.6) is provided by (5.8) and the 
relation 

t~P. 0 R ~ - t ~pt~Jl. - (t~Jl.' 0 R p - (a-!3» = 0, (5.9) 

which follows from (1.20). 
The law of finite quasigroup transformation of the func­

tion M follows from (1.25), (1.77), and (5.6): 

M(g) = M(g)(E(g, (J» -I, (5.10) 

where E (g,O) is defined as (1.80). Equations (1.79) and 
(5.10) determine the transformation of the integration 
measure 

dJ.l( g) = y(O; g) dJ.l( g) , 

where 

y(O; g) = Det(~ (0; g») 
Det(A (0; g)l 

(5.11) 

(5.12) 

An important property of the integral (5.2) is its indepen­
dence of a choice of the "gauge" function I/IU(g) (the gauge 
invariance). To see this let us perform the variation of the 
integration variables in (5.2) 

g" _ g" + t5g" , (5.13) 

where 

t5g" = R ~ fj)p t5l/1P (5.14) 

and fj)'/J is the matrix inverse to (5.4), t51/1 U( g) is an arbitrary 
infinitesimal function. The variation (5.13) and (5.14) in­
duces, up to the first order in 151/1 U the change of the gauge 
function 

(5.15) 

Using (1.16) and (5.6) and the invariance of W( g) one can 

easily see that within the first order in t5l/1U the relation 
holds, 
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Z", = Z"'+l>'" . (5.16) 

Now we are in a position to return to dynamical systems 
subject to the first class constraints. We shall see that the 
quantum transition amplitude exactly reproduces the struc­
ture of the integral (5.2). 

Let g" be again the variables (4.4) taken at a time mo­
ment t. Within canonical gauges 1/1 U( g) the quantum transi­
tion amplitude for the systems given by the action (4.20) and 
the first class constraints Ta (g) has the form2

,3: 

Z", = J exp(iW(g») II t5(l/I(g» ..:l",(g) t5(T(g» II dg", 
t 0 

(5.17) 

where..:l "'( g) is defined by (5.3) and (5.4). 
The factor t5(T( g» acts in (5.17) in two ways: in the first 

place it localizes the integrand in (5.17) onto the hypersur­
face of constraints, in the second place it is an analog of M ( g) 
in (5.5), as we are going now to see. Let us substitute the 
functions (4.7) for R ~ into (5.7). It follows from (4.7) that 

R ~.o=O 

and hence 

(5.18) 

r~=-ru=-R~.i... (5.19) 
agO 

Further on, we get in succession 

r~ t5(T(g» = -R~ .i.. t5(T) 
ag" 
aT a 

= _Ru _P -t5(T) 
a ag" aT[3 

= - (Tf3' Tu) ~t5(T) 
aTp 

= - UpY T ~ t5(T) 
u Y aT 

p 

= - t Yp T ~t5(T) 
u Y aT 

p 

= - t ~p [~Ty t5(T) - t5~ t5(T)] 
aTp 

= t~p(g) t5(T(g» . (5.20) 

In other words, the function t5(T(g» satisfies an equation 
analogous to (5.6). 

The functional integration in (5.17) is carried out over 
the complete set of variables (4.4). One can, however by 
making the division (4.21) integrate over the variables g'a 
thus removing the t5-function of the constraints. In this way 
we obtain 

Z", = J exp(iW(g"») 

X II t5( 1/1 (g"» ..:l '" (g") dJ.l (g") , 

where 

W(g")==W(g',g")lg'~7{g") , 

I/IU( g")_1JI U( g', g") I g' ~ 7{ g") , 

..:l",(g")=Det( fj) -I(g"») , 

I. A, Batalin 
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iiJ (3-la(g") = 1fI':A(g") R ~(g"). (5.25) 

The functions R ~ (g) are defined by (4.2S). 
The integration measure df.L( g") has the form 

df.L(g")-M(g") II dg"A, (5.26) 
A 

where 

M(g")= (Det{aT(g';g")})-11 . (5.27) 
ag g' = ~g") 

One can show that the function (5.27) satisfies the 
equation 

r;:(g") M(g") = t~{3(g") M(g"), (5.2S) 

where 

r ;:(g")= - a:A R ~ (g") (5.29) 

and the functions t ~(3( g") are defined by (4.30). 
Note that the action (5.22) is invariant under the trans­

formations (4.27). 
Thus, we see that expressions (5.17) and (5.21) have the 

same general structure as the integral (5.2). Their gauge in­
variance is provided via the same mechanism that leads to 
(5.16). 
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APPENDIX 

Here we introduce "left" and "right" measures on the 
quasigroup 

dG(O;g)=Det!A(O;g)J[dO] , (AI) 

dG(O;g)=Det!i(O;/-I(g,O»1 [dO], (A2) 

where 

[dO] = II dO a . (A3) 

Let us change to the new variables 0 ~ , 

O~=qJa(o', O;/-I(g, 0'». (A4) 

Using the relation 

aoa 
ao~ =f.L'/J(OL ;/-I(g,O'»A~(O;g) (A5) 

which follows from (1.60) we obtain 

dG (0; g) = dG (OL;/ -I (g,O '» . (A6) 

Let us change now to the new variables 0 ~ in (A2): 

O~=qJa(o, O,;/-I(g, 0». (A7) 

Using the relations 

ao ~ - _ I - {3 _ I 
- =f.L'P(OR;/ (g,O))Ay(O;/ (g,O)) (AS) 
ao y 

which follows from (1.63) and also the relation 

j-Ia(g, 0) = j-Ia(f(g, 0') ,OR), (A9) 
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which follows from (1.115) and (1.11S), we obtain 

iG(O;g) = iG(OR;/(g,O'». (A 10) 

The properties (A6) and (AS) are analogs of the left and right 
invariances of the corresponding group measures. Note that 
the inversion 

(All) 

turns (AI) into (A2) due to (1.7) and (1.66). 
Let now IfI a( g) be an admissible "gauge" function. Re­

present the unity as 

1 = f t5(IfI(f(g,O))) Det {alfl(~~g,O»} [dO], (A12) 

where the integration is to be performed over the region 
which corresponds to the quasigroup as a whole. 

Using (1.25) one has 

alfla(f(g,O» = lfIa (f(g,O» ar(g,O) 
ao y ,a ao y 

= lfI~a (f( g,O» R 'P(f( g,O»A ~(O; g) , 
(A13) 

whence 

Det { alfl(~~g,O )) } 

=.J!p (I(g,O)) Det!A (O;g)j , (A14) 
where.J!p(g) is defined by (5.3) and (5.4). Using (A14) in 
(AI2) we obtain 

1= f t5(IfI(f(g,O».J!p (f(g,O»dG(O;g) , (A15) 

where dG is the measure (AI). The inversion (All) converts 
(AI5) into 

1 = f t5(IfI(f-I(g,O))).J!p (f-I(g,O» dG(O;g) , (A16) 

and dG is the measure (A2). 
We are now going to give an alternative proof to the 

gauge invariance of the integral (5.2) with the aid of (A15) 
and (A16). Introduce into the integrand in (5.2) the expan­
sion of the unity (A16) where another admissible "gauge" 
function IfII is taken 

Zip = f f dG (0; g).J!p, (I-I( g,O)) t5(lfIl(I - I( g,O))) 

X expliW( g)j .J!p (g) t5( IfI (g)) df.L( g) . (A17) 

Perform the change of variables 

~-+r(g,O) (A1S) 

in (A 17). Keeping in mind the invariance of W (g) and using 
(5.11) and (5.12) we have 

Zip = f f [dO] Det !i(O;g)l.Jop,(g)t5(lfIl(g» 

XexpliW( g) I .J!p (f« g,O» t5(IfI(f(g,O))) 

X y(0; g) df.L( g) 

= f f dG (0; g).J!p (f( g,O» I5(1fI (f( g,O))) 

XexpIiW(g)l.Jop, (g) t5(lfIl(g» df.L(g) = Zop, ' 
(A19) 
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where (A15) is taken into account in the final equality. 
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A criterion for completeness of Casimir operators 
F. Berdjis 
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We give a criterion for a set of Casimir operators of any semisimple Lie algebra to be an 
algebraically independent generating set of the algebra of the Casimir operators. The criterion is 
applied to supply complete sets for the Casimir operators of A I' HI' CI , and D,. With the aid of a 
method to construct some Casimir operators we then furnish complete sets for the Casimir 
operators of the exceptional Lie algebras using the criterion. 

PACS numbers: 02.20.Sv 

In the physics literature there are many papers which 
construct Casimir operators for the classical series A "H I' CI , 

and D, and for the exceptional Lie algebra G2
1- 16 (see Refs. 

17-23). But their proof of completeness is in no way satisfac­
tory. In this paper I give a criterion for a set of Casimir 
operators of any finite-dimensional complex semisimple Lie 
algebra to be complete in the sense that it generates algebra­
ically all Casimir operators and is algebraically independent. 
This is important because the simultaneous eigenvalues of 
such a set of operators characterizes the irreducible finite­
dimensional representations of the Lie algebra in a one-to­
one manner. I will apply this criterion then to give complete 
sets of Casimir operators for A"HI,CI,DI, and G2• I give also 
a method for construction of some Casimir operators of any 
semisimple Lie algebra which fulfill a part of the criterion. 
With the aid of this method I will give in a second paper 
complete sets of Casimir operators for the exceptional Lie 
algebras F4 , E6 , E7 , and Eg. In a third paper I will construct 
complete sets of Casimir operators for all the real restrictions 
and real forms of the above Lie algebras. 

In the following L is a finite-dimensional complex semi­
simple Lie algebra, H a Cartan subalgebra of L, U (L ) the 
universal enveloping algebra of L, and Z (L ) the center of 
U (L ). Casimir operators are representations of the elements 
of Z (L ), which we call Casimir elements. In a more precise 
language the above statements on Casimir operators are in­
tended for Casimir elements. To formulate our criterion we 
need the following definitions and assertions. Let S (L ) be the 
symmetric algebra over Land SInt (L ) the algebra of the in­
variants of the adjoint group Int (L ) of Lin S (L ); that means 
SInt (L ) = I sES (L )/g(s) = s,gElnt(L ) J, wheregis the unique 
extension of gElnt(L ) to an algebra automophism of S (L ). 
Then there exists a vector space isomorphism A. :S (L )_ U (L ), 

A. (lS(L)): = 1u (L» 

(1 ) 

where pEN, YjEL, 1 <j<'P, and Sp is the symmetric group, 
withA. (SInt (L )) = Z (L ) (see Ref. 24, pp. 344-346) (by adot·we 
denote the product in a noncom mutative associative algebra, 
whereas for the product in a commutative associative alge­
bra we denote nothing). To prove our criterion we need 

Lemma 1: Let 111",,'/, J, lEN, be a subset of SInt (L ). 
Then I 1" ... ,/, J generatesSInt (L )iff{ A. (Id, .. ·,A. (I,) J generates 
Z(L). 

Proof The right hand side ofEq. (1) can be brought into 
the formYI'Y2":"Yp + r with grad (r) < p, where grad means 
the filtration of r (see Ref. 25, p. 75). Now let I x"""xn J be a 
basis of Land gi the graduation of Ii, 1 <.i <.1. Then Ii can be 

written in the form Ii = ~I'I + "'I'.<gia~""I'.xt'···x':.H, a~, ... I'. EC 
(complex numbers),,uk EI OJuN, 1 <.k<.n. With the above we 
derive 

= A. (Ii H (Ij ) + A. (r) (2) 

with r E SInt (L ) and grad (r) < gi + gj' where we set r = 0 for 
grad (r) < O. Now let z E Z (L ). Then there exists s E Sint (L ) 
with A. (s) = z and s has the form 

s = L bn" .. n,17'···I7', bn, ... n,EC. 
n" .,nJEIOluN 

It follows from Eq. (2) that 

A. (s) - L bn, ... n,A. (Id n, ..... A. (I,)"' = A. (r), 
n" .. ,nJE!OluN 

with grad (r) < grad(s) and A. (r)EZ (L ). With this it follows by 
induction on grad(z), zEZ (L), that IA. (Id, ... ,A. (I,) J generates 
Z (L ), because for grad (z) = 0, plainly, z is generated by 
A. (l s (Ld = lUlL) and PI'''''/, J generates l s (L)' The opposite 
conclusion is proved analogously by using the following 
form ofEq, (2): 

IJj - r = A -I(A. (I;).A. (~)), grad(r) <gi + gj' 0 

Using Eq. (2) one can easily show,22,26 that if PI" .. ,(I,)J is 
algebraically independent and consists of homogeneous ele­
ments, then IA. (II)'''·,A. (I,ll is algebraically independent. We 
remark that the above assertions are valid for every real or 
complex (not necessarily semisimple) Lie algebra. 

Now let L * and H * be the algebraic duals of Land H, 
respectively, W* the set of non vanishing roots of H inL, Int 
~ W*,!f)the WeylgroupofHinL(actingonH *),Slnt (H *)the 
lnvanantsofInt(W*,H)inS(H*)[S(.)meansthesymmetric 
~lgebra], P (L ) the algebra of polynomial functions over L [it 
IS P (L ) = S (L *)], PInt (L ) the algebra of the invariants 
ofInt(L )inP(L) [PInt (L): = IpEP(L )lpog = p,gEInt(L)J, "0'" 
means composition of mappings] and R: 
P(L )-P(H) =S(H*),R (P): =pIH(therestrictionofponH). 
Then we have R (Pint (L )) = SInt (H *) and the mapping ii: 
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PInt (L )-SInt (H *), R (P): = R (P) is an algebra isomorphism 
(see Ref. 27, pp. 504, 521-523). The algebras SInt (L ) and 
PInt (L ) are isomorphic and the isomorphism can be con­
structed ~ith the aj~ of the Killing form K (.,.) of L: The 
mapping8:L_L *,8(x): = K(x,.)[K(x,.):L-C,K(x,.)(y): = 
K (x,y)] is linear and bijective and its extension to 8: 
S (L )-P (L ) has, due to the invariance of K (.,.) under the ac­
tion of Int(L ), the property: 0 (SInt (L ) ) = PInt (L ). Thus 
Sint (H *) and Sint (L ) are isomorphic. It is known by a theo­
rem ofChevalley28 that there exists an algebraically indepen­
dent subset [11",,'/, j of SInt (H *), where I: = dim (H) is the 
rank of L and Ii is homogeneous, such that j IS/HoI' 11"",1, ) 
generates Sint (H *). It follows by Lemma 1 that Z (L ) is iso­
morphic to the ring C (tl, ... ,t l ] of indeterminates t, and that 
every subset [ZI,""Z, j ofZ(L ) which generates together with 
I U\L) the algebraZ (L ) is algebraically independent. For the 
sake of brevi ty we define the algebra U + (L ) which is generat­
ed by L in U (L ) [U + (L ) is an ideal in U (L )] and 
Z +(L): = Z(L )nU+(L). 

Now we are in a position to formulate and to prove the 
criterion. 

Theorem: Let L = H Ell La be the decomposition of L 
aEW· 

into root spaces,B: = rho balhiEll, I <J<J, baELa,aEW*j 
a basis of L, H the (commutative) subalgebra in U (L ) generat­
ed by H, [ZI"",Zlj a subset of Z +(L) such that grad 
(zt!<grad(z2) <.··<grad(z/)' Zi = hz, + bz"I<i<l, with hz, 
EH, grad(hz,) = grad(z;) and bz, is a sum of such monomials u 
in the elements of B so that grad (u) < grad(z,) and for grad 
(u) = grad (Zi) at least one factor in u is an element of I ba 

laEW*j, and [(R 080A -')(hz,)/I<i<1 j, a subset of homo­
geneous elements ofS (H *)which together with IS\HO) gener­
atesSInt (H *). Then [ZI,,,,,Zlj isan algebraically independent 
set which generates Z +(L). 

Proof: We set [x" ... ,xn j: = B, where n: = dim(L). As 
in the proof of Lemma 1 it holds that:). - I (x. ·x· .... • x· ) 

" 11, lp 

= Xi X, ... x, + s,pEN,grad(s) <P,x, , ... ,x, €B. ThusA -I (bz ) 
= Pi(X:"",;n) + Pio(hl,· .. ,h l ), wher~p,EC[tl, ... ,tn]'p,o ' 

EC[t I,···,t,], in every monomial of Pi there is at least one fac­
tor which is an element of (b,JaEW* I and grad (Pm) 
<grad(zJ Now, as is well known, K(ba,h) = O,aEW*, hEll 
(see Ref. 29, p. 108). Therefore, we have (R 08)(Pi(x

" 
... ,xn )) 

= R [Pi(K (xl,.),· .. ,K (x. ,.))] = 0, l<i<l. With this it follows 
that (Rooo)' -I){Z;) = (R08o)' -I) (h z') + (R080), -')(bz,) 

= (Rol)o). -I)(hz ) + (Rol»)(P,u(h" ... ,hd) and grad 

[(Rol»)(P,o(h" ... ,hd)] < grad(zJ As we stated above, we have 
(RoDO). -1)(z,)ESInt (H *) and by assumption (RODOA - ')(hz ) 

€SInt (H *). Therefore (R o8)(Pio (h p ••• ,hl ))ES'nt (H *) and 
grad ((R o8)(P,o(h l1 ••• ,hdll < grad(z, ).Now it follows by the 
generating property of the set ((RODO). -'){hz,)!1 <i<lj and 

the homogeneity of its elements that (R 0 8)(PIQ(h I, ... ,hl )) = 0, 
because it is not possible to generate algebraically by a set of 
homogeneous polynomials a polynomial the graduation of 
which is less than the minimum of the graduations of the 
polynomials of the set. Therefore, the following equations 
must hold: 

(R o8o), -I){ztl = (Rol)oA -I)(hz,), 
(R o8o), -')(Z2) = (R o8oA.. -I)(hz,) + (RoD)(P2o(h l , .. ·,hrll 
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= (R o80A.. -I)(hz,) + q2((RoDO). -')(hz,)), 

(R o8o)' -1)(Z3) = (RODo). -I)(hz,l + (R 08)(P3o(h
" 

... ,h,)) 

= (RODo). -I)(hz.,) + q3((Ro8oA.. -I)(hz, ),. 

(RODO). -1)(hzJ), 

(R 08o)' -I)(ztl = (R o80)' -I)(hz,) + (RoD)(p,o(h" ... ,htl) 

= (R o8oA.. -')(h z) 

+ q,((Ro8oA.. -I)(hz, ), ... ,(R o80A.. -')(hz, ,)), 

where qjEC[tl, ... ,tj _ I ] and grad 
[qj((R o8oA.. -1)(hz,), ... ,(Rol)o). -I)(h

zj 
,))] <grad(zj)' 2<)<1. 

These yield by iterative insertion that to every qj there exist a 
qjEC[tl, ... tj _ 1],2<)<1, with qj((R08o). -')(h z')' 

... ,(RoOo)' -I)(hz )) = 

qi((RoOo). -1)(zlr.'.,(R o8oA.. -1)(Zj _ I))' 
Therefore, I (RODOA, -1)(z;)!1 <i<IJ is, together with I S (HO), a 
generating set of SInt (H *). From this, Lemma 1, and what we 
said above about the isomorphism between SInt (H *) and 
SInt (L ) the theorem follows immediately. 0 

Remark 1: Let [xl, ... ,xnl be any basis ofL and 

(x; , ... ,x: j its dual. Then 8(xj) = i K(x"xj )x;. Therefore, 
j= I 

one can easily calculate, because of the commutativity of H, 
the element (8 0 A -\) (x), XElHI. This shows, as we shall see, 
how useful our criterion is in practice. 

Remark 2: Let (z,) = 2.. <l' .. x~'.". ·x~",I<i<l, 
l', •... ,l' .. Ej0 lul'l 

a~, .. l'H EC, from the theorem be such that Sj: 

= 2.. a~, ... l'"X~' ... x~" is an element of Sint (L ). Then it 
"" .... l'"EjOluN 

can be shown, analogously to our proof, that (SI""'S,} is 
algebraically independent and that ( lS\L I ,s;ll <i</j gener­
ates Slnt (L ). As this assumption is fulfilled by the Casimir 
elements which we will construct, we will have also con­
structed complete sets for the invariants of the adjoint 
groups of all simple Lie algebras. 

Now we construct out of each class of simple Lie alge­
bras A"B" C" D

" 
and G 2 for one model a complete set of 

Casimir elements. Each time, we first present the model (see 

Ref. 29 for AI, B" C" D" Ref. 30 for G2). 

A,: LetM, + I be the setof(l + I)X(1 + 1) matrices, lEN, 
slV+ 1):= (MEM'+l/tr(M) =0\, 
: = 8 jkojm , I <iJ,k,m<" + I, hk : = ekk - e,+ 1,/+ I' 

I <k<l + 1, and Bsli/ + I): = [h k , eijll <k<l, 1 <i,j<1 + 1, 
i =l=jl. Then sl (l + 1 )EA" BS'\I + I) is a basis of sl (I + 1), the 
linear span H of (hklI <k</1 is a Cartan subalgebra of 
s/(l + 1), [Wi - Wj , Wl+ I - wi> W, - Wl+ ,/l<i<,j<l) is 
thesetofrootsofHinsl (I + 1), where [w;ll <i</j isthedual 

I 

of[hk/l<k</j andw'+I:= - 2.. wj>therootspaceof 
i= 1 

W, -wj,ii=j,WI + 1 -Wi andwj -W'+l is IceijlcECI, 
[ce l + I,;ICECj, and (cel ,/ + 1 ICEC), respectively, and the 
Weyl group of H in sl (/ + 1) is the symmetric group of [w j 

II <i<l + 1 J. We define now a new basis of sl (I + 1) which 
allows us to construct easily the Casimir elements. Let Xi; 

: = eij' i i=j, 1 <i,j<l + 1, and Xkk: = hk - _1_ ± hj' 
1+ If= I 

1 <k<l + 1. Then (xij,xkk/1 <i,j<l + 1, i i=j, 1 <k<lj is a 
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basis of sl (/ + 1) and it holds that [x ij ,x km 1 
= Djkxim - Dimxkj' 1 <J,j, k, m<J + 1. Now let (ZI )ij: = Xij' 

1+ I 1+ I 

(Zn + I)ij: = I Xik '(Zn )kj' nEN, and zn: = I (Zn )ii' Then it 
k~ I i~ I 

follows by using the equation ad (xij)((Zn)km) 
= Djk (zn tm - Dim (Zn k (ad is the extension of the adjoint re­
presentation to the universal enveloping algebra), that Zn 
EZ +(sl (/ + 1)), Now we establish 

Lemma 2: (zn/2<n<1 + 11 is a complete set of Z + 
(sl (I + 1)). 

1+ I 

Proof Let hz .. : = I (Xii In, nEN. Then one obtains using 
i= 1 

K(hi' hj) = 2(1 + 1) (1 + Dij)' D(hi ) = 2(1 + 1) (Wi - WI+ I) 
1+ I 

and R(wi) = wi:(RoDOA ~I)(hz..l = (2(1 + 1))n I w7. These 
i= 1 

power sums generate the elementary symmetric polynomi-
als, which build an integrity basis for SInt (H *), and vice 
versa. Thus Lemma 2 follows because h

Zn 
and bZn 

: = Zn - hz .. ,2<n<1 + 1, fulfill all assumptions of the 
theorem. D 

B I : Let 

s,~[~ ~ n 
IEN,BI:= IMEM2/ + I IMSI = -SI,Mt] (Mtis the trans­
pose of M), hi: = ei + I,i + I - ei + 1+ I,i + I + l,eWi 
: = ei + 1,1 - el,i+l+ l,e -Wi: = e~;, eWj - WJ 

: = e i + I J + I - ej + I + l,i + I + I ,e - Wi - Wj 
: = ei + I + IJ + I - ej + 1+ I,i + I' eWi + Wj 
: = ej + 1,i+I+ 1- ei+ IJ+I+ I ,1<iJ<I, and 
B:= Ihi,eW,e_w.,e!Jl.i-w,e_ w -w ,ew +w li=/=j,k<m, 
1 <iJ,k,m.;;;i ]. Th~n BlEB; (r>2)~ B i; a b;sis;f ~(' the linear 
spanH of I hJl <i</] isa Cartan subalgebraofBI' the linear 
functional Wi: H-C, l<i<l, which maps every matrix 
(hij)1 ,;; iJ,;; 21 + I of H on the entry hi + I,i + I, is a root of H in B; 
([wJl<i</] isthedualoflhJI<i</j), I ±Wi>Wi -Wj' 
± ~k + wm)li =/=j, k < m, 1 <i,j, k, m</] is the set W* of H 
in BI and the element of B indexed by an element of W* is a 
vector from the corresponding root space. Now Let Xi, _ i 
: = hi' Xi _ j: = e u). _ w.' X iO : = e _ w., Xo _ i: = e _ w.' X km 

:=e_w'_u"x_:_~:=ew +w :i=/=J:,k<m,I.;;;fJ·,k,m<l, 
m k' k In 

andxij =A -Xji' -1<i,j<l. Then (xij/i>j, -1<i,j</] isa 
basis of BI and it holds that [xij,x km 1 = OJ, _ kXim 
- 8 _ i.mXkj + 8j, _ mXki - 8i.kXjm . By these commutation 

relations it is easily proved that Zn: = l: _ h i i ~I X _ i i 
"" 1.1.~>n"'" .' 2 

,X _ ii' .. , 'X _ ii' nEN, is an element of Z + (Bd. 
''Lemma 3:n'(~2' Z4"",Z21 r is a complete set of Z + (.8;). 
Proof Lethz .. : = 2l:~~ I (Xi, _i)n, Then (ROoo).. ~I)(hz.lis 

proportional to l:;~ I (Wi r· As SInt (H *) is generated by 
(l:; ~ I (Wi)n In = 2,4, ... ,2/] together with IS (HO)' hz. and b

Zn 

: = Zn - hz .. fulfill the assumptions of the theorem. D 

CI : Let 

J'=[ 0 II] 
I' _ II 0' 

lEN, sp(2/,q: = (MEM2JM t,JI = - JI,M], eijEM21' 
1 <i,j<2/, hi: = eu - ei + I,i + I> eWj _ WI: = eij - ej + I.i + I> 
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eW . + Wj: = ei + IJ· + e,' + I,i' e _ w. _ W.: = (e w. + W,' It, e2w. 
I I J' I 

: = ei + I,i>e ~ 2Wi: = (e2w.l', 1 <i,j<l, and BSPI2/.C): = I hi> 
e ± 2Wi' eWj~ Wi' e ± (Wo + Wm ) li=/=j, k < m, 1 <iJ,k,m<.i ). 
Then sp (2/,C)EC1 (1;>3), BsP (2/.C) is a basis ofsp (2/,C), the 
linear span H of! hi/l<i</] is a Cartan subalgebra ofsp (21 
,C), the linear function Wi: H-C, 1 <i<.l, which maps every 
matrix of H on its ith diagonal entry, is an element of the dual 
of IhJl<i</], ! Wi - Wi+ I' 2Wlll <i<l- 1] is a simple 
system of roots of sp (2/,C) relative to H, ! ± 2wi> Wj - Wi' 
± (Wk + Wm )lii=j, k <m, 1 <iJ,k,m<1 J the set W* of Hin 

sp (2/,C), and the element of Bsp (2t,C) indexed by an element of 
W * is a vector from the corresponding root space. It is easily 
proved that the first I power sums in wi , ... ,wi generate 
SInt (H *), Now let Xi, _ i: = hi> Xi, ~ j: = eWj _ wi'Xij 
: = e _ Wi~Wj' X -t. _j: = eWi + wi' Xu: = - 2e -2w;' X -t. _ i 

: = 2e2wi , 1 <i,j;>l, and Xij =xji , iJE! ± 1, ± 2, ... , ± 1]. 
Then! xijli;>j, i,j=/=O, -1<J,j</] is a basis ofsp (2/,C) and it 
holds that [xij' Xkm 1 = €k8 _j,kXim + €mD _j,mXik 
+€kD-i,kXjm +€mD_i,mxjk,where€i = 1 for l<i</and€i 
= - 1 for - I<i< - 1. Now let (z) lij: = €iXij' (zn + t!ij 

: = €il:-I<io<tXi,-io'(Zn);.J,iJE! ± 1, ± 2, ... , ± 1],nEN,and 
(zn): = l:_t<i<l(Zn);,_ i' Then it follows with the aid of ad 
(xij)((Zn)km) = €iO -j,k(Zn)im + €m D -j,m(Zn)ki 
+ €jO-i,dzn)jm + €mD-i,m(znk, nEN, that znEZ +(sp(2/,C)). 

S Lemma 4: ! Z2,Z4, ... ,Z21 ] is a complete set of 
Z +(sp (2/,C)). 

Proof Zn = ~ -l<,ip ... ,i,,<;)ei
l 

··.Ei .. X", _ i1oXiz.'_ i J ... oX i ". - i.· 

Now let hz .. : = l: -I"id(€i r(xi, _ it· Then hZn 

= 2l:: ~ I (Xi, _ i)" for even n. With K (Xi, _ OXj, _ j) = K(hi>hj ) 
= 4(1 + I)Oij' 1 <i,j<l, it follows that (RoDo).. -I)(hz..l is pro­

portional to l:: ~ I w7, n even. Therefore, ! Zn /n = 2,4, ... ,2lj 
fulfills all the assumptions of the theorem. 0 

D,: Let 

S/: = [~I ~]. 
lEN, 1=/= 1 (we exclude I = 1 be~useotherwisewewouldgeta 
nonsemisimple Lie algebra), Dt: = ! MEM2t 
IMSt = - SI,M'j, eijEM2/' 1 <i,j<2/, hi: = eu - ei+ t,i+ I' 
ew;_ Wj: = eji - ei + /J+ /,e Wj + Wj: = ei + lJ - ej + l.i,e - W;- Wj 

:=(ew .+ w.)" l<i,j<I,B:= Ihi>ew.-w,ew +w ,e_ w _ w 
I J "..... J Ie '" "m 

li=/=j,k < m, 1 <iJ,k,m</]. Then DtEDt (/;>4), B is a basis of 
Dt, the linear span H of! hJl <i</] a Cartan subalgebra of 
D" the linear functional wi:H-C, l<i<l, which maps every 
matrix of H on its ith diagonal entry, an element of the dual 
of( hill <i<1 j, ! Wi - Wi +,.,!, WI_ I + Will <i<l- 1] is a 
simple system of roots of Dt relative to H, f Wi - Wj' 
t (Wk + Wm )/i=/=j, k < m, l<iJ,k,m,</] the set W* ofHin 

Dt , and the element of B indexed by an element of W* is a 
vector from the corresponding root space. Letsi, 1 <i<l- 1, 
be the power sum in I indeterminates. Then one can prove3l 

that! si(wi, wL ... ,wi), w l w2",wt/l <i<l- 1] is an algebra­
ically independent set which together with ISIH O) generates 
SInt(H*). Now let Xi, -i: = hi> x i._ j : = eWj _ Wi' Xmk 
:=e_ w -w ,X-k-m:=ewo+w ,ii=j,k<m, l<i,j,k, 
m<l, and Xijm -'Xji> i,jE! ± I,,±: 2, .... ± 1].Then I xij 
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Ii>j,i,j=/=O, -1<iJ<1 J is a basis of ~ and it holds that 
[xij'xkm ] = OJ. _ kXim - 0 _ i.mXkj + OJ. _ mXki - Di. _ kXjrn' 
From these commutation relations follows that Zn 

: = l:i ...... ipEI ± I ..... ± 'J x _ i,.i,' X _ i,.i,· ... ,X _ i •. i,' nEN, and i, 
: = l:.. .. I 1 'J €.. .. x . .' ·x· are ele-'.J., ... ,I,J,e ~ t···. ± 'UI'''''', - 'u -it ... - I,. - j, 

ments of Z + (D,), where € is the totally antisymmetric unit 
tensor. 

~emma 5. [Z2' Z4,,,,,Z2'_ 2' i, J is a complete set of 
Z+(D,). 

Proof With the aid of K(hj,hk ) = 4(/- 1) Djk the proof 
is analogous to those of Lemmas 2-4. 0 

Before proceeding with the construction of a complete 
set for G2 we establish two lemmas which we need for the 
case of all exceptional Lie algebras. The first lemma is a 
generalization of a method of Racah 17 and is found in Refs. 
16 and 32; in Ref. 16 it is formulated only for compact semi­
simple Lie algebras and in both cases the proof is group­
theoretical, where our proof is purely algebraic. In the fol­
lowing K is either R (real numbers) or C. 

Lemma 6. LetL be over K [x1,,,,,xn J, nEN, a basis ofL, 
K: = (KijlI<;iJ<;n, whereKij: = K(xi,xj ), Kij: = (K -I)ij' xj 

: = l:7~ 1 Kjixi , D a finite-dimensional. representation of L, 
and Ip (D): = l:1<;i" ... ip<;n tr (D(Xi, )·D (Xi,)' ... ·D (Xi)) 
Xi"Xi2 . ... . xip,pEN. Then Ip (D)EZ +[L]. 

Proof Let ck ij' 1 <i,j,k<n, be the structure constants of 
L relative to [x 1'''''Xn ). Then 

ad (Xk Hlp (D)) 

I (tr(D (Xi,)' ... ·D (xi))K i"J"'Xi, . ... ·xi.. , 
\. i". "'p·,n 

1 <;m<;p 
\. jm' n 

Now, Cijk being totally antisymmetric, it holds that l:~m ~ 1 
K i",r .. e'·'" = d'" i .. = ~n K rj"'ci", Thus krm k ~k~ 1 rk' 

ad(x k Hlp (D )) 

I (tr(D (Xi,)' ... ·D (Xi", JCi"'rk D (X,..,) . ... 

l,;;;"m<p 

I I (tr(D (X;,l .... ·D (Xi", JD ([Xim,Xk ]) 
l<JI> .... ip~n l<m<.p 

=0, 

because 

L tr(D(XiJ'" .D(xi", JD([Xim,Xk)·D(Xim, J ... D(xi))] 
1 <;m<;p 

1854 

= trD (Xi, ).D (Xk )·D (Xi,)' ... . D (Xi)) 

- tr(D (Xk )·D (Xi,)' .. , ·D (Xi)) 

+ tr(D (Xi, )·D (Xi, ).D (Xk )·D (Xi,)' ... ·D (X;)) 

J. Math. Phys .• Vol. 22. No.9. September 1981 

- tr(D (Xi, )·D (Xk )·D (Xi,)' .. , ·D (Xi,.)) 

+ ... + tr(D (Xi,)' ... ·D (xiJD (Xk )) 

- tr(D (Xi,)' ... ·D (Xi,. JD (xd·D (Xi)) 

- tr(D (Xk )·D (Xi,)' ... ·D (Xi)) 

= 0: tr(D (Xi, ) .... ·D (x;).D (Xk)) 
o 

Two equivalent representations D and i5 supply the same 
Casimir elements: Ip (D) = Ip (i5). Further, Ip (D) is indepen­
dent ofa basis of L. Let [YI,. .. ,Yn J be another basis of Land 
Xi = l:;~ I AijYj' Then Kij = K(x;oxj) = l:~,rn ~ IAik 
Ajm K (Yk ,Ym) l:Z,m ~ I Aik K {rnA :"j; that means 
(A '.(K X) - I·A )ij = (K y)ij. Thus Ip (D) 

= l:1' '. (tr(D (y. ) .... . D (y. ))yi, . ... . yip). Let 15k ""-1 ..... ,lp4n 'I lp ) 

: = l:7 ~ I D (X, )jkXi, 1 <,j, k<d, where d is the dimension of the 
f(;presentation D, a,Ed fj~ = (~k ))..0,k<d' Then Ip (D) = tr 
(DP) = l:1' . dD. ·D ..... ·D·· . In this abbreviated 

~ 1' •.• Jp<. J If 2 J li .~ J,J I 

notation we will state the Casimir elements of all exceptional 
Lie algebras. We denote that Ip (D) interpreted as an element 
of S (L ) is an element of SIn' (L ) (cf. Remark 2 above). 

Now we show that the Casimir elements constructed by 
Lemma 6 fulfill part of the assumptions of the above 
criterion. 

Lemma 7: Let [hi' ball <i<l,a EW* J be a basis of Las 
in the theorem, D a finite-dimensional representation of L, zp 
: = Ip (D) for some pEN, hz : = tr((l:i ~ I D (hi)h 't) and 
bz : = zp - hz . Then zp = h: + bz fulfills the decomposi­
ti~n assumpti~ns of the theor~m and it holds that (RODOA, -I) 
(hz) ESIn, (H *). 

Proof In the above basis Kij has the following form: 

(K"),,,," ~ [~ ~ H 
where S EM, is symmteric and D EM(n _ '112 is diagonal. 
Therefore it follows by inspection that zp = hzp + bz,. fulfills 
the decomposition assumptions. Now, as equivalent repre­
sentations yield the same coefficients for the monomials of 
zp, we assume that D (hi) is diagonal. Thus D(hi ) = diag 
(w,(h,I, ... ,w,lh,) w,(h,I, ... ,w,(h,1 w",(h,I, ... ,w",lh,1) 

______ , ---.- , ... , ---..-, where W k , 1 <k<m, are 
d , times d~ times d",times 

the weights of H relative toD and dk is the mUltiplicity ofwk 

(d = l:;;' ~ I dk ), Now let a i : = D(h i ). Then there exist num­
bers aki such that W k = l:~ = I akqaq. Thus 

(D(hi)ti = wkVI(h i ) = l:~~ lakVlqaq(hi) 
= l:~ ~ I akVlqK(hq,hi) for some k depending onj,l<,j<d. 

From this follows, because of the form of Kij' that 
(l:i ~ I D (hi)h i)jj = l:i,r~ I (D (hi tjK 'rh r) 
= l:i,r'F I akVlqKq,K 'rh r = l:~ ~ I ak V1qh q. By (RODOA, -I)(hq) 
= a q we have (RODOA, -I)(hz,.l = l:;;' ~ I dk w'/.. Now it is 

known thatg E Int (W*,H) permutes the weights and that the 
multiplicity of the weights is invariant under g (see Ref. 29, p. 
113). 0 

The degrees of the elements of a minimal set of homo­
geneous elements that together with ISlll ') generates 
SIn, (H *) are known for all complex simple Lie algebras (see 
Ref. 27, pp. 508-509, 515-516, 518, and 520). By the above­
cited theorem of Chevalley the cardinality of such a set is 
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equal to the rank of the Lie algebra. By the knowledge of the 
degrees of the elements of such a set we construct minimal 
generating sets for the invariants of the Weyl groups of all 
exceptional Lie algebras. For G2 the degrees are 2 and 6. 
Now we present a model for 

G2 : 

Let, for a = (a l,a2 ,a)) EC, the matrix M(a) EM) be de­
fined as (M (ani): = ~k ~ I ekjlak, I <'i,j<.3, where e is the to­
tally anti-symmetric unit tensor with e 123 = 1. Further let 
G2 : = !MEM71 

M = [0_ ,j~b ' ;2a 

-~2a' M(b) 

~2b ] 
M (a) ,a,b E C3,S E sl (3) J, 

-S' 

ei} EM7 as before, hI: = e22 - e55 - e33 + e(,6, 
h2: = e22 - e55 - ~4 + e77 ,g,,;. j: = ei+ IJ+ 1- ej +4,i+4' 

I <.i,j<.3, g",: = ~2(el.i+ I - e i + 4 • 1 ) 

+eijdek+-IJ+4 -ej +l,k+4),g" ;:=.J2(e l.i+ 4 -ei+I,I) 
+ eijdek +4J+ I - ej +4,k + I)' (ijk) E ! (123), (213), (312)], 
~dB: = !hl,h),g,,;. j,~,,;,ga /i#j, l<.i,j<.3]. Then 
G2 E G2 , Bis a basisof22' the linear span of H of (h l ,h2 ] isa 
Cartan subalgebra of G2, the linear functionals a I and a I, _ 3 

on H defined by al(h l): = - l,a l (h 2 ): = - I, 

aI, _ 3 (h Il = I, and aI, _ 3 (h z): = 2 are a simple system of 
roots ofG2 relative toH, [aI' aI, _ 3' a_I: = - aI' a 3, _ I 

-al._ 3 ,a::p := ±(2a l +al._ 3 ),a±3 
. - ± (a I + a I. _ 3 ), a 2, _ I 

. - - a I _ 2: = 3a I + a I _ 3 ,a 2 _ 3 

- a 3.·_ 2: = 3a l + 2a;, _ 3] i~theset W* ofHin~, and 
the element of B indexed by an element of W * is a vector 
from the corresponding root space. 

Lemma 8: Let 12 and 16 be homogeneous elements of 
Slnt (H *) with grad (Ij ) = j,j = 2,6, and (I2'/6] an algebra­
ically independent set. Then the union of! 12'/6] with IS(Ho) 

is a generating set of Slnt (H *). 
Proof From the above there exist two homogeneous 

elements S2 and So with degrees 2 and 6, repsectively, which 
generate together with IS(Hol the algebra Slnt (H *). Thus, 
12 = cS2,c EC,C#O. Therefore, there is ap Eqt l,t21 with 
16 = p(I2,So).From this follows, because of the degrees and 
homogeneity of 12,16, and So, that 10 = a(I2)) + bSo, ab EC, 
and b # 0, since [12' 10 ] is algebraically independent. Thus 
! S2' So] is generated by [12' 10]' 0 

UsingK(B,B): = !K(a,b)/a,bEB ]oneobtains:h I =-h 
(2h l - h 2 ), h 2 = -hI - hI + 2h 2 ), g'" '= -/$",. ;' 
g"i = - Ma,g" '= - Ma' i#j, 1 <'i,j<.3. Now letD be 
the identity representation x~x of G2, x EG2• Then fj = AG 
(cf. Lemma 6) by the above formula, where G: = 

0 - (ji./3)ga _. - (ji.!3)ga _, - (ji!3)ga_. - (ji!3)ga. - (ji!3)ga, - (ji.!3)ga. 
(,p:./3)ga. !(h l + h2 ) ga,. I ga,. I 

0 !g" - !g" 
(Ji.i3)g", 

, 1 

g",. 1 
!( - 2hl + h2 ) ga,. 1 

- !ga 
l 

0 !ga 
I 

cjj.i3)ga. 

(/2/3)ga _, 

ga,. l ga,. l 
!(h l - 2h z) !g" 1 !g" 0 

0 !ga, -~'" 
(Jj.i3)g" -, - !g", 0 !ga, 
(fi!3)g,,-. !ga, - !ga, 0 

We have by Lemma 6 
ZJ: = tr (GJ) EZ +(G),jEN. 

Let 
hzj : = 2(!Y((h l + h2Y + (h2 - 2h lY + (hI - 2h2Y), 

j even. Then (RoooA, - I)(h z ) ESlnt (H *) by Lemma 7: It fol­
lows by calculation that (RODDA, -I)(h

z
) 

= 2(t)'24l((a IY + (a l + a l. _ 3 Y + (2a l'+ aI, -) Y). 
Now we can prove 
Lemma 9: Let 

~:=(aIY+(al +al._ 3 Y+(2a l +al,_3Y' 

Then {I2' 16 ] is algebraically independent and generates to­
gether with IS(H 01 the algebra Slnt (H *). 

Proof Because of Lemma 8 we need only to prove the 
property of algebraic independence. Let 

J: =det . [
81218al 81218al, _ 3] 
8Inl8al 8Inl8al,_3 

Then J(2 hI + hz) = - 1440#0. 0 
Because of the above assertions we have proved by our crite­
rion 
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- l(hl +h2) -ga,. , -ga,. l 

-ga,. I 
t(2h l - h2 ) -ga,. l 

-ga,. 
I -ga,. 

2 
t(-h l +2h 2) 

Lemma 10: {Z2,Z6] is a complete set in Z +(G2). 
Remark 3: Let a: = (g""gaz,g",), 

b: = (ga I.' g" "g" l' c: = (gal. "ga,. " ga,. ,), and 
d: = (ga,. "ga,. I' ga,. ,J. Then Z2 = 
2[ - t(a.b + b·a) + (c·d + d·c) + i((hd2 + (h2)2 - h l·h2)]. 
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We construct explicitly algebraically-independent generating sets for the Casimir operators and 
the invariants ofthe Weyl groups and adjoint groups of the exceptional Lie algebras F4 , E6 , E 7 , 

andEg. 

PACS numbers: 02.20.Sv 

This paper is an extension of the work done in Ref. 1. 
Up to now, sets generating the Casimir operators of F4 , E6 , 

E7, and E g , respectively, were not known. To find complete: 
sets of Casimir operators for F4 , E6 , E 7, and E g , we construct 
with the aid of the lowest-dimensional representations some 
elements of the center of the universal enveloping algebra. 
By a criterion given in Ref. 1, we show that the elements 
obtained in that way are a complete set of Casimir operators, 
in the sense that they generate algebraically all Casimir oper­
ators and are algebraically independent. In order to prove 
our assertions on Casimir operators we need complete sets of 
the invariants of the Weyl groups. Therefore, we constructed 
the Weyl invariants ofthe above exceptional Lie algebras. 
According to Remark 2 and the statements subsequent to 
Lemma 6 in Ref. 1, we have also constructed complete sets of 
the invariants of the adjoint groups of the Lie algebras under 
consideration. We emphasize that we have constructed com­
plete sets for the above invariant algebras of the exceptional 
Lie algebras for the first time in the literature. The method of 
presentation is the same as that of G2 in Ref. 1. The models of 
F4 , E 6 , £7' and E g, are taken from Ref. 2. A mistake in repre­
senting Eg in Ref. 2 is eliminated. 

In order to compute our Casimir operators explicitly we 
have to know all the generators (e.g., a Cartan-Weyl basis) of 
the Lie algebras under consideration. But this knowledge is 
not necessary for our proof of the algebraic indepdence and 
the generating property of our sets of Casimir operators. For 
this we need only the explicit form of a basis of a Cartan 
subalgebra. Therefore, presenting the models of our Lie alge­
bras, we restrict the explicit representation of a basis of the 
Lie algebra by furnishing a basis of a Cartan subalgebra as 
explicit matrices and indicating how to calculate all the oth­
er generators which are elements of rootspaces correspond­
ing to nonzero roots. 

Further we need the knowledge of the degrees of the 
elements of a minimal set of homogeneous elements that to­
gether with IsIH o) generates the algebraS!n. (H *) (we use the 
same symbols as in Ref 1). These are for3 

F4 : 2, 6, 8, 12; 

E6: 2, 5, 6, 8, 9, 12; 
(1 ) 

E7: 2, 6, 8, 10, 12, 14, 18; 

E8: 2, 8, 12, 14, 18,20,24,30. 

Presenting our models of the above algebras we always give a 
list of objects first, followed by a list of propositions. 

Leth j , ej EM26, 1,;;;;1,,4, as in Ref. 2, pp. 169 and 170;H 
be the linear span of [hJl"i,,41, A =(Aij)l<i.i<4EM4 as in 
Ref. 2, p. 200; a i be linear functionals on H with 
a,(hj ): = Aji'l"i,j<4,l(4): = [(1,0,0,0),(0, 1,0,0),(0,0, 1, 
0),(0,0,0,1),(1,1,0,0),(0,1,1,0),(0,0,1,1),(1, I, 1,0),(0, 1, 
1, I), (0,1,2,0), (1,1,1, I), (1,1,2,0), (0,1,2,1), (1,1,2,1), (1, 
2,2,0), (0,1,2,2), (1,1,2,2), (1, 2, 2,1), (1, 2, 2, 2), (I, 2, 3,1), 
(1,2,3,2), (I, 2, 4, 2), (1, 3,4,2), (2, 3,4, 2)}, W+: = [(aI' a 2, 

a 3, a 4 )·at /aEJ(411(. is matrix multiplication, t means trans­
pose), W-:=! -alaEW+J,ea :=e"l"i,,4, 

(2) 

e _ a : = - e~ ,a E W .... ,R +: = ! ea / a E W + J,B -: = ! ea 

la E W- j,andF4 (C)bethelinearspanofB +u B -uH. Then 
F4(C) E F4 with the Lie product [x,y): = X:V - y·x, x, 
Y E F4(C), H is a Cartan subalgebra of F4(C), A is the Cartan 
matrix of F4(C), [a/I ~J<41 is a set of simple roots of F4(C) , 
W + and W - are the set of positive and negative roots, re­
spectively, and the elements of B + and B - are elements of 
the rootspaces corresponding to positive and negative roots, 
respectively. 

First we prove 
Lemma 1: Let [~/j = 2,6,8,121 be a set of algebraic al­

Iy independent homogeneous elements of SIn. (H *) with grad 
(Ij ) =j,j = 2, 6, 8,12. Then the union of f~/j = 2, 6, 8, 12} 
with lSIJlo) is a generating set of SIn. (H *). 

Proof Because of (1) there exist four homogeneous ele­
ments S2' S6' Sg, and S12 with degrees 2, 6, 8, and 12, respec­
tively, which generate together with lS\Jlo) the algebra 
SIn. (H *). Thus 12 = az Sz, a2 E C, az =f0. Therefore, there 
exists a polynomialpE C[tl' t 2] with 16 = p(/z' S6)' Because of 
the degrees and homogeneity of 12,/6 , and S6 it follows that 
16 = a6 (/2 )3 + b6 S6' a6,b6E C, and b6=f0, since [/2,161 is al­
gebraically independent. Analogously there exist polynomi­
als PIE C[t (, t2, t3] and P2E C[t l , t2 , t3, t4 ] with Is = p.(Iz, 16 , 

Sg) = a8(I2)4 + bs/~z + CgSg, as, bg , CgE C and 112 = P2(/z,!6' 
I g , Sd = adlz)6 + bdI6)z + c I216(/z)3 

+ d lzI s(Iz)2 + e12S12' a 12, b 12, ... , e 12E C. Then c 8 =fO and 
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e12 #0, since [12,16 ' Is), and [12 ' 16,ls,ll2) are algebraically 
independent. Thus [S2' S6' S8' S 12) is generated by [12, h, 18 , 

112 ).0 
Now we construct some Casimir operators with the aid 

of Lemma 6 in Ref. 1. For the Killing form restricted on 
H XH we compute 

[ 2 

-1 ° ~2] - 1 2 -2 
(KijIH XH)kiJ<.4 = 18 ~ -2 4 

0 -2 
and 

[' 6 4 

~] _I 1 6 12 8 
(K ij IH XH)1<.iJ<.4 = -

8 6 36 4 

2 4 3 

Since in (4) each homogeneous part has to be identically zero 
and since aJklaa 1 #0, k = 2, 6, 8, 12, it follows that 
a I = a2 = a3 = a4 = O. Thus the rows of the above matrix 
are linearly independent and therefore J #0.0 

By the above we have proved 
Lemma 3: [Z2,Z6.Zg,ZI2J is a complete set in Z +(F4(C))' 
Now we show in the same manner as for F4 that for E6 

and E7 there are, respectively. 6 and 7 Casimir operators 
which generate all Casimir operators and are algebraically 
independent. Since the methods and proofs are analogous to 
those for F4 , we state the lemmas without proofs. 

Let hi' eiE M 27, 1 <i<6 as in Ref. 2, pp. 170 and 171; H 
be the linear span of [hJl <i<6),A ===(Aij lI"iJ,,;6E M6 as in 
Ref. 2, p. 201; a i be linear functionals on H with ai(hj ): 
=Aji ,l<i,}<6, 

(see the proof of Lemma 7 in Ref. 1). Therefore. we have 
h I = f6 (4h I + 6h2 + 4h3 + 2h4). h 2 = f6 I (6.1): = [( 1.0.0.0.0.0). (1.1.0.0.0.0). (1.1.1.0.0.0). 
(6h l + 12h2 + 8h3 + 4h4) .. h 3 = fc;(4h l + 8h2 + 6h3 + 3h

4
), (1,1,1,0,0,1), (1,1,1,1,0,0), (1,1,1,1,0,1). (0,1,0,0,0.0), 

and h 4 = -#2hl + 4h2 + 3h3 + 2h4). Let D be the identity (0,1,1.0,0,0), (0,1,1,0,0,1), (0.1,1,1,0,0), (0,1,1,1,0,1), 
representatio~ of F

4
(C), [x

I
, ... ,X

52
): = (0,0,1,0,0,0), (0,0,1,0,0,1), (0,0,1,1,0,0), (0,0,1,1,0,1), 

B +u B -u H,Djm (0,0,0,1,0,0), (0,0,0,0,0,1), (0,1,2,1,0.1), (1,1,2,1,0.1), 

= !.i: I~D (x;)jm, l~. m<;26, and D: = (~m )1 <J.m,,;26 . Then (0,1,2,1,1,1), (1,2,2,1,0,1), (0,1,2,2,1,1), (1,1,2,1,1,1). 
Zk: = tr(Dk)E Z + (F4(C))' kE N. Let h

z 
(1.2.2,1,1,1). (1.1,2,2,1.1). (1,2.2,2,1,1), (1.2.3,2,1.1), 

: = tr[(!.i~ ID(hi)h it]. Then hz, = (~)k (1.2.3,2,1,2)]. 
((2hl + 4h2 + 3h3 + 2h4)k + (2hl + 4h2 + 3h3 + h4)k 1(6.2): = [(1.1.1,1.1.0). (1.1.1,1.1.1), (0,1,1.1.1,0), 
+ (2hl + 4h2 + 2h3 + h4)k + (2hl + 2h2 + 2h3 + h4)k (0,1,1,1,1.1), (0.0.1,1,1.0). (0.0.1,1,1.1), ((0,0,0,1,1,0). 

+ (2h I + 2h2 + h3 + h4)k + (2h2 + 2h3 + h4)k (0.0,0,0,1.0)) • 

(5) 

(6) 

+ (2hl + 2h2 + h3)k + (2h2 + h3 + h4)k + (2h2 + h3)k W+: = [(a l , .... a 6)·a tlaEI(6.1)uI(6.2)J, 
+ (h3 + h4)k + (h3)k + (h4n k = 2. 6, 8. 12. Then B: = [ea. et

_ alaE W + I [ea defined as in Eq. (2)], and Eh(C) 
(RaDay-l) hz.l ESln, (H·) (see Lemma 7 in Ref. 1). It follows is the linear span of BuH. Then Eh(C)E E6 with the Lie prod-
by calculation that uct [x,y]: = x·y - y·x, x, Y E E6(C)' H is a Cart an sub algebra 
Jk: = (RaDaA -I)(hz') of E6(C),A is the Cartan matrix of E6(C)' [aJI <i<6 J is a set 

= (rl,) k ((a I + 2a2 + 3a
3 
+ 2a4)k + (a I + 2a2 + 3a3 + a4)k of simple roots of E6(C)' W + is the set of positive roots, and 

( 2 2 )
k k the elements of B are elements of the rootspaces correspond-+ a l + a 2 + a 3 + a 4 + (a l + a 2 + 2a3 + a 4) 

ing to positive and negative roots, respectively. 
+ (a l + a 2 + a 3 + a 4)k + (a z + 2a3 + a4)k Lemma 4: Let [Ijl) = 2, 5, 6, 8, 9,12) be a set ofalge-

+ (a I + a 2 + a 3 )k + (a2 + a 3 + a 4)k + (a 2 + a 3 )k braically independent homogeneous elements of Sin, (H *) 
+ (a3 + a 4)k + (a3 )k + (a4 )k ).k = 2, 6, 8, 12. with grad(./.i) = },} = 2. 5, 6, 8, 9, 12. Then the union of [./.il 

Now we can prove } = 2,5,6,8,9,12) with l sIH *) is a generating set ofS1n,(H .). 
Lemma 2: LetJ

k 
be as in Eq. (3). Then [Jklk = 2, 6, 8, Now we construct some Casimir operators. For the 

12) is algebraically independent and generates together with Killing form restricted on H X H we compute 
l sIH *) the algebra Slnt(H *). (KijIH XH)I,,;iJ,,;6 = 12Aij' and (K ij- IIH XH)ISiJ,,;6 

Proof Because of Lemma 1 we have only to prove that = #A;; 1)I,,;iJ,,;6' A -I as in Ref. 2, p. 201. Therefore, we 
[Jk Ik = 2, 6, 8, 12) is algebraically independent. Let know that hi =!.J ~ I K ij IH XH hj.l <i<6. Let D be the 

[

aJ
2
/aal aJ21aa2 aJ21aa

3 
aJ2laa4 ] ident~;al representation of E6(S:), [x).Z ... ,x7S ): = BuH, ~m 

a a = !.i 7-,.1 D (Xi)jm X', 1 <i,}<27, D: = (Djm)I<J.m<,n· Then Zk 
J: = det a~6l!; a: II = tr(D k)E Z + (E6(C)),kEN by Lemma 6 in Ref. 1. Obviously 

. hz, = tr [(!.~ ~ I D (hi)h ilk]. Since we know the matrix entries 
aJ12laa l aJ12laa4 D (hi) we compute hz, = !'pEp(f6p.(h l , ... ,h6) ') k,k = 2, 5,6,8, 

Suppose 9, 12, where 

( 
aJ2 aJ2 aJ2 aJ2 ) (aJ 12 aJI2 aJI2 aJ12 ) 

a l aa
l
' aa

2
' aa

3
' aa4 + ... + a4 aa

l
' aa2' aa

3
' aa4 P: = [( - 4, - 5, - 6, - 4, - 2, - 3), 

A C Th 
(- 1, - 5, - 6, - 4, - 2, - 3), 

= , ai' a2, a3, a4 E. en, ( _ 1 _ 2 _ 6 _ 4 _ 2 - 3) 

a
l 

aJ2 + a
2 

aJ6 + a
3 

aJg + a4 aJI2 = 0. (4) ( - 1: - 2: - 3: - 4: - 2: - 3): 
aa

l 
aa l aa l aa l ( - 1, - 2, - 3, - 1, - 2, - 3),( - 1, - 2, - 3, - 1,1, - 3), 
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( - 1, - 2, - 3, - 4, - 2,0), ( - 1, - 2, - 3, - 1, - 2,0), 
( - 1, - 2,0, - 1, - 2,0), ( - 1,1,0, - 1, - 2,0), 
(- 1, - 2, - 3, - 1,1,0), (- 1, - 2,0, - 1,1,0), 
( - 1, - 2,0,2,1,0), ( - 1,1,0, - 1,1,0), ( - 2, - 1,0,1,2,0), 
( - 1,1,0,2,1,0), ( - 1,2,3,2,1,0), (2,1,0, - 1,1,0), 
(2,1,0,2,1,0), (2,1,3,2,1,0), (2,4,3,2,1,0), ( - 1,2,3,2,1,3), 
(2,1,3,2,1,3), (2,4,3,2,1,3), (2,4,6,2,1,3), (2,4,6,5,1,3), 
(2,4,6,5,4,3)). (7) 

Since c5(h;) = - 12ao l<i<6, we have 

Jk = (R oc5 oA, -I)(hz.l 

= 2J~p·(al,a2, ... ,a6)t)\ (8) 
pEp 

where P is as in (7), and JkE Sln,(H *),k = 2,5,6,8,9, 12 by 
Lemma 7 in Ref. 1. With the aid of JJk IJa 1#0, kEN, k~2 
we can prove 

Lemma 5: Let Jk be as in Eq. (8). Then (Jklk = 2, 5, 6, 
8,9, 12) is algebraically independent and generates together 
with I s (H 01 the algebra SIn, (H *). 

By the above we have proved 
Lemma 6: (Zk Ik = 2, 5, 6, 8,9, 12 J is a complete set in 

Z+(E,,(C)). 

Leth;,e;EMS6' l<i<7,asinRef.2,pp.171, 172;Hbe 
the linear span oft h,ll<i<7J, A ==(Ajj)..;;jJ.;;7E M7 as in Ref. 
2, p. 201; a j be linearfunctionals onHwithaj(hj ): = Aj;, 1 <i, 
j<7, 

1(7): = ((0,1,2,1,1,1,1), (1,1,2,1,1,1,1), (0,1,2,2,1,1,1), 
(1,2,2,1,1,1,1), (1,1,2,2,1,1,1), (0,1,2,2,2,1,1), (1,2,2,2,1,1,1), 
(1,1,2,2,2,1,1), (1,2,3,2,1,1,1), (1,2,2,2,2,1,1), (1,2,3,2,1,1,2), 
(1,2,3,2,2,1,1), (1,2,3,2,2,1,2), (1,2,3,3,2,1,1), (1,2,3,3,2,1,2), 
(1,2,4,3,2,1,2), (1,3,4,3,2,1,2), ((2,3,4,3,2,1,2)j, (9) 

W+: = {(al, ... ,as, a 7)·a tlaE 1(6.1) ul(6.2)JuJ(a l , ..• ,as, 
a 7 )·a t + a~aE 1(6.2)Ju{a6 Ju{ (a l, ... ,a7)·a 'laE 1(7)J[see 
Eqs. (5), (6), and (9)],B: = lea, - e~/aEW+ J[ea defined as 
in Eq. (2)], and E7(C) be the linear span of BuB. Then 
E7(C)EE7 with the Lie product [x,y]: = x·y - y·x, x, 
Y E E7(C)' H is a Cartan subalgebra of E7(C)' A is the Cartan 
matrix of E7(C)' (a,l1 <i<7 J is a set of simple roots of E7(C)' 
W + is the set of positive roots, and the elements of Bare 
elements of the rootspaces corresponding to positive and 
negative roots, respectively. 

Lemma 7: Let {Ijlj = 2, 6, 8, 10, 12, 14, 18 J be a set of 
algebraically independent homogeneous elements of 
SIn' (H *) with grad (Ij) = j,j = 2, 6, 8, 10, 12, 14, 18. Then 
the union of {Zlj = 2, 6, 8, 10, 12, 14, 18 J with Is(Hol is a 
generating set of SIn, (H *). 

Now we construct some Casimir operators. For the 
Killing form restricted on H X H we compute 
(Ki/H XH)ldJ<7 = 24Aij' Therefore, we know 
hi = ~J= IKijlH XHhj,1 <i<7. LetD be Qte identical repre­
sentation of E7(C)' {x l , ... ,x 133 J: = BuH, Djm 
= ~:::lp(x;)jmxi,I<j, m<56,ii = (~m)I<j.m';;56' Then 

Zk = tr(D k)E Z +(E7(C)),kEN, by Lemma 6 in Ref. 1. Obvi­
ously hz, = tr [(~; = 1 D (h;)h ilk ]. Since we know the matrix 
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entries D (hi) we compute hZk = ~pEp(-&.p.(h 1, ... ,h7)')k, where 

P: = ((2,4,6,5,4,3,3), (2,4,6,5,4,1,3), (2,4,6,5,2,1,3), 
(2,4,6,3,2,1,3), (2,4,4,3,2,1,3), (2,2,4,3,2,1,3), (0,2,4,3,2,1,3), 
(0,2,4,3,2,1,1), (0,2,2,3,2,1,1), (0,0,2,3,2,1,1), (0,0,2,1,2,1,1), 
(0,0,0,1,2,1,1), (0,0,0,1,0,1,1), (0,0,0, - 1,0,1,1), 
(0,0,0, - 1,0, - 1,1), (0,0,0, - 1, - 2, - 1,1), (0,2,2,1,2,1,1), 
(2,2,2,1,2,1,1), (2,2,2,3,2,1,1), (2,2,4,3,2,1,1), (2,4,4,3,2,1,1), 
(0,2,2,1,0,1,1), (0,2,2,1,0, - 1,1), (0,0,2,1,0, - 1,1), 
(0,0,0,1,0, - 1,1), (0,0,2,1,0,1,1), (2,2,2,1,0,1,1), 
(2,2,2,1,0, - 1,1)J. (10) 

Since c5 (h;) = - 24a;,1<i<7, we have 

J k = (Roc5oA -I)(hz) 

= I(p.(al, ... ,a7)')\ (11) 
pEp 

where Pis as in (10) andJk ESIn, (H *),k = 2,6,8,10, 12,14,18 
by Lemma7in Ref. 1. With the aid of(JJkIJa l) #0, k~2, we 
can prove 

Lemma 8: LetJk be as in Eq. (11). Then !Jklk = 2,6,8, 
10, 12, 14, 18 J is algebraically independent and generates 
together with l s (H*1 the algebra SIn' (H *). 

By the above we have proved 
Lemma 9: {zk1k=2,6,8, 10, 12, 14, 18J is a complete 

set in Z +(E7(C))' 

Remark: There is a mistake in Ref. 2 representing the 
entries (h;)187.187,I<i<8, which would yield as correspond­
ing root 
a: = 2a l + 5a2 + 8a) + 7a4 + 5as + 3a6 + 2a7 + 4ag • 

But a is not a root of Es. In the following we furnish all the 
roots and a basis for a Cartan subalgebra of E 8 • Let 
A :=(A;j)1 <;J<S EMg as in Ref. 2, p. 202, 

1(8): = {(0,1,2,l,I,I,I,I), (1,1,2,1,1,1,1,1), 
(0,1,2,2, I, I, I, 1), (1,2,2,1,1,1,1,1), (1,1,2,2,1,1,1,1), 
(0,1,2,2,2,1,1,1), (1,2,2,2,1,1,1,1), (1,1,2,2,2,1,1,1), 
(0,1,2,2,2,2,1, I), (1,2,3,2,1,1, 1,1), (1,2,2,2,2,1,1,1), 
(1,1,2,2,2,2,1,1), (1,2,3,2,1,1,1,2), (1,2,3,2,2,1,1,1), 
(1,2,2,2,2,2,1,1), (1,2,3,2,2,1,1,2), (1,2,3,3,2,1,1,1), 
(1,2,3,2,2,2,1,1), (1,2,3,3,2,1,1,2), (1,2,3,2,2,2,1,2), 
(1,2,3,3,2,2,1,1), (1,2,4,3,2,1,1,2), (1,2,3,3,2,2,1,2), 
(1,2,3,3,3,2,1,1), (1,3,4,3,2,1,1,2), (1,2,4,3,2,2,1,2), 
(1,2,3,3,3,2,1,2), (2,3,4,3,2,1,1,2), (1,3,4,3,2,2,1,2), 
(1,2,4,3,3,2,1,2), (2,3,4,3,2,2,1,2), (1,3,4,3,3,2,1,2), 
(1,2,4,4,3,2,1,2), (2,3,4,3,3,2,1,2), (1,3,4,4,3,2,1,2), 
(1,3,5,4,3,2,1,2), (2,3,4,4,3,2,1,2), (1,3,5,4,3,2,1,3), 
(2,3,5,4,3,2,1,2), (2,3,5,4,3,2,1,3), (2,4,5,4,3,2,1,2~ 
(2,4,5,4,3,2,1,3), (2,4,6,4,3,2,1,3), (2,4,6,5,3,2,1,3), 
(2,4,6,5,4,2,1,3), (2,4,6,5,4,3,1,3), (2,4,6,5,4,3,2,3))J, (12) 

W +: = {(a l, ... ,as,as)·a'laEl(6.1)u 1(6.2) Jul (ap ... ,as,as)·a' 
+ a6IaEl (6.2) Ju[ a7 Ju[ (a l,· .. ,a6 ,as)·a'l 

aEl (7) J u{ (a 1, ... ,aS ,ag )·a' 
+ a6 + a 7IaEl(6.2) Ju{a6,a6 + a 7 Ju{(a l, .. ·,as)·a'laEl(8)J 

[see Eqs. (5), (6), (9), and (12)), 
1,81' .. ·,,8120):= W+,{PI29,· .. ,,8248J:= {-PIPEW+I,h;E 
M 248 ,1<i<8, with (h;)jj: = Pj(h;),1 <j< 120, 129<j<248, 
(h;)jj: = 0, 121<j< 128, (h;km: = ° for k #m, l<k, m<248, 
and Hbe the linear span of 1 h,ll <i<8). Then A is the Car-
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tan matrix, W+ the set of positive roots, [al, ... ,as} a set of 
simple roots, and H a Cartan subalgebra of a model 
Es(C)EEs. It is standard to construct by the above a canonical 
basis for Es(C) (see Ref. 4, p. 126; physicists caIl it Cartan­
Weyl basis). As mentioned before we need only the basis of H 
explicitly. 

Lemma 10: Let [Ijlj = 2, 8, 12, 14, 18,20,24, 30} be a 
set of algebraicaIly-independent homogeneous elements of 
SInt (H *) with grad(Ij ) = j,j = 2, 8, 12, 14, 18, 20, 24, 30. 
Then the union of [~/j = 2,8, 12, 14, 18,20,24, 30} with 
l SIH .) is a generating set of SInt(H*). 

Let {x l , ... ,x24S} be a canonical basis of Es(C) containing 
[hJ1 <i<8}, D be the identical representation of Es(C) with 
D(XiL = x i,1<i<248, D;m = ~~!~\D(xi1mxi,1~, m<248, 
and D: = (Djm )1<J.m<248' Then Zk = tr(D k)EZ +(Es(C)),kEN, 
by Lemma 6 in Ref. 1. Obviously hz. = tr[(~~ = I D (hi)h ilk ]. 
Since the weights of D are the roots, we have 
(RODOA. -I)(hz.l = ~1<i<120 (J3i)k = :JkESInt(H*) 

129~<248 

by Lemma 7 in Ref. 1. Therefore we can prove by the aid of 
(JJk IJP7)¥-0, k = 2,8, 12, 14, 18,20,24,30 

Lemma 11: Let Jk : = 2~:~ I (J3f Then {Jk I k = 2, 8, 
12, 14, 18,20,24, 30} is algebraicaIly independent and gen­
erates together with l SIH .) the algebra SInt (H *), 

Therefore, we have 
Lemma 12: {zklk = 2,8,12,14,18,20,24, 30} is a 

complete set in Z + (Eg(C)). 
Remark: The lowest dimensional representation of E8 is 

its adjoint representation with the aid of which we construct-

1860 J. Math. Phys., Vol. 22, No.9, September 1981 

ed a complete set for Z + (E8)' This is not always possible. Let 
L be a semisimple Lie algebra and W the set of its roots. Then 
one can construct Casimir operators to each degree kEN by 
the method of Lemma 6 in Ref. 1 using the adjoint represen­
tation. It foIlows that (RODOA. -I)hzk = ~f3EW(J3 t This term 
vanishes for odd k. Therefore, it is obvious that for those Lie 
algebras which have generating elements of their Weyl-in­
variants SInt (H *) of odd degree one cannot hope to get a 
complete set of Casimir operators by the adjoint representa­
tion of L using the above method. For F4 and E7 one gets 
complete sets of Casimir operators using that method by the 
adjoint representation, but we reject its presentation. We de­
clare further that we computed complete sets of Casimir op­
erators in canonical bases. Due to the assertions subsequent 
to Lemma 6 in Ref. lone gets the same complete sets using 
other bases of the Lie algebras under consideration. 
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The analytical properties of the off-shell Tmatrix for infinite rank nonlocal 
separable potentials 

c. Daskaloyannis 
Department o/Theoretical Physics, University o/Thessaloniki, Thessaloniki, Greece 

(Received 29 July 1980; accepted for publication 12 December 1980) 

Anal ytical expression and uniform bounds for the I th partial wave off-shell T matrix are derived 
for infinite rank separable potentials. It is proved that Fredholm's alternative can be used to solve 
the Lipmann-Schwinger equation in some cases of noncom pact nonlocal potentials in the strong 
Lp topology. 
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I. INTRODUCTION 

The analytical properties of the two-body off-shell T 
matrix have been topics of intensive investigation and appli­
cation in several branches of the nuclear physics. I As is well 
known the introduction of the nonlocal rank-N separable 
potentials simplifies considerably the calculations of the 
two- and three-body problem. The T matrix for rank-N sep­
arable potentials is studied by several authors. 2

•
3 

The problems related to the rank-N separable potentials 
can be solved with two methods. One is developed by K. 
Chadan4

,5 and the other is based on the manipulation of N­
dimensional determinants.2

,3 Obviously these methods are 
not generalizable in the case of the nonlocal potentials ex­
pressed as infinite series of separable terms. In our work, 
these potentials are called infinite rank potentials. 

In this paper a method of solution of the Lippmann­
Schwinger (LS) equation is proposed. This method is appli­
cable in the case of both finite- and infinite-rank separable 
potentials. The proposed solution does not require the com­
pactness of the potential in the strong Lp -topology (the po­
tential is not necessarily a Hilbert-Schmidt operator). 

To preserve the analytical properties of the off-shell T 
matrix it has been necessary to study some properties of the 
intersection of the Lipschitz space6-8 and the usual L p -space. 
The necessary mathematical apparatus is given in the Ap­
pendix A. An extension of the notions of the product and the 
determinant introduced above as well as a generalization of 
Hadamard's lemma is introduced for these cases. 

In Sec. II, the analytical expression of the I th wave off­
shell Tmatrix is given and its uniform bounds are found. The 
restrictions imposed on the non local potential are weaker 
than the compactness in the strong Lp -topology, This aim is 
obtained by the use of Fredholm's alternative9

•
10 extended in 

some families of noncompact potentials. The proofs of the 
convergence of Fredholm's series in such cases are studied in 
Appendix B. 

II. SOLUTION OF THE LS EQUATION 

In this paper nonlocal potentials (rl Vir') are used. The 
angle dependence of the potentials that are introduced here 
comes only through the angle between rand r'. The coordi­
nate representation ofthese potentials is given by the relation 

(r/V Ir') = I I (rr')-lv[(r,r')Yr(f)Yr·(f'). 
[=Olml,,[ 

The free wavefunction is normalized as follows: 

(1 ) 

where E = k 2, bn is the solid angle b function, fz = 1, and 
2m = 1. 

The normalization (1) of the I th partial free wave func­
tion implies 

fP[(E,r) = rl/2J[+ 112 (E I12r)/21/2. 

The I th partial wave off-shell T matrix satisfies the off­
shell LS equation II 

T[(E,E ';z) = V[(E,E ') 

+ 1'0 dE" V[(E,E")T,(E ",E';z)/(z-E "), 

where 
(2) 

V[(E,E') = 1" dr 1" dr' fP,(E,r)v,(r,r')fP[(E',r), 

The general form of the I th partial wave potential, in 
our normalization, is assumed to be expressed as a series of 
separable nonlocal potentials: 

V(E,E') = (1I1r) Ifn(E)gn(E'). (3) 
"=1 

In the last equation, as well as in the next, in our notation, the 
I index, which is related to the angular momentum, will be 
omitted for reasons of simplicity. 

The functionsfn and gn are assumed to satisfy the fol­
lowing restrictions: 

Ilfnll<F, and ,!llgnllJ-iP=G<+oo. (4) 
n=1 

Here the norm /1·11 is defined as the sum of the norm /1·11 Lip 

of the Lipschitz space Lip (R + ,d U)0-8 and the usual norm 
11·llp oftheLp(R +) space (R + is the positive real axis). Under 
the restrictions (4) the potential V(E,E ') given by Eq. (3) isnot 
compact in the strong Lp-topology. The operator V(E,E ') 
given by Eq. (3) under the restrictions (4) is a nuclear opera­
tor l2 defined from the Banach space Lp(R +) into the Banach 
space Lip(R+,d U

). 

For a fixed E' the LS equation (2) can be studied as a 
Fredholm's second kind integral equation with kernel 

N(E,E';z) = (lI1T) ,!fn(E)gn(E')/(z - E'). (5) 
"=1 
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In Appendix B these integral equations, obeying the restric­
tions (4), are studied in detail; it is proved that the Fred­
holm's series converge. Therefore, the analytical solution of 
the LS equation is given by the equation 

T (E,E' ,z) = V (E,E ') 

L!n(El[(IhT) Ie dsTnn'(s)/(z - S)]gn' (E') 
+~ n,n 0 , (6) 

1T ['" 
1 + (l/1T) Jo dsp(s)/(z - s) 

where 

(7) 

and 

rg

• 

g,j'n, g,j'n, 
gJ._ 1 

gn)'n' gn/n, gn)'n, gn)'n m (s), (8) 

gnJr gnJn, gnJn, gnJn m 

The o-determinant, which appears in the above equations, is 
a generalization of the usual determinant when the general­
ized o-product go! =g[ + gj'is used. Thegandlare the 
Hilbert transforms 10, J3 of the functions g and! respectively 
(for details see Appendices A and B). The functions pIs) and 
Tnn, (s) are well-defined functions in the space X (R +,a,p). 

The solution (6) of the LS equation can be formulated as 
follows: 

T (E,E ';z) = A (E,E' ;z)/ D (z), 

where 

D(z) = I + (l/1T)Lxo ds p(s)/(z - s). 

(9) 

(10) 

The function D (z) is a hoi om orphic function in the complex z 
plane with a cut on the positive real axis. The roots of this 
function correspond to the bound states of the problem. The 
function A (E,E' ;z), fOf fixed E and E " is an holomorphic 
function with a cut on the real positive axis. So the off-shell T 
matrix is a merom orphic function with a cut on the real 
positive axis. 

The uniform bounds of the function D (z) are given in 
Appendix B: 

IID(. + iO) - III < HI (£.G·D (a,p)), 

liD (. + iy) - 111 <H2(F·G·D (a,p))/lyl, 

(11 ) 

(12) 

where F and G are defined by (4), D (a,p) is a constant which 
depends only on a, andp and HI' H2 are entire functions 
defined by (BIS) and (B16) in Appendix B. 

The inequalities (11) and (12) involve the following as­
ymptotic property: 

lim D(z) = 1. (13) 
Iz ' .. 'X 

By the same way [see formula (B24) in Appendix B] the 
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following bounds are found for the off-shell T matrix: 

IID(. + iO)[T(E,E';. + iO) - V (E,E ')]1 I 

< F.D2(a,p) Ct/n(E)lllgn Ilup ) 

XC~llgn(E')I)H3(F.G'D (a,pj) , (14) 

where H3 is an entire function defined by (B2S) in Appendix 
B. 

The inequality (A2I), of Appendix A, imposes the 
bound 

ID(x + iy)[T(E,E';z) - V(E,E')]I 

F.D 2(a,p)( 00 ) 

< Iyl n~1 I/n(E)I'llgn IILiP 

xC~ Jign (E ') I }H3 (F·G·D (a,p)). ( 15) 

The relations (14), (15), and (16) imply the following asymp­
totic property: 

lim T[(E,E ';z) = V[(E,E '). 
Izl • oc 

III. CONCLUSIONS 

In this paper, Fredholm's alternative is used to solve the 
LS equation for infinite rank separable potentials. Also this 
method can be used to solve the LS equation when the poten­
tial is a finite rank separable one. In the last case all the 
determinants, where the rank is greater than the rank of the 
separable potential, are zero. Consequently the proposed 
method is a generalization of the known methods. 

The analytical expression and the uniform bounds of 
the off-shell T matrix are given. The infinite rank T matrix 
has the same analytic properties as in the case of finite rank 
separable potentials. 

Another result is that the infinite rank potential is not 
necessarily a compact operator in the strong Lp topology but 
it is a nuclear operator (therefore compact) from theLp space 
into a Lipschitz space. 

Osborn 14 and Levinger '5 have proved that for a local 
potential the off-shell T matrix is noncom pact in the strong 
Lp topology. Therefore the convergence of any separable 
approximation for the T matrix from local potentials is im­
possible in this topology. In this paper the convergence of 
separable approximations for the T matrix for some families 
of noncompact potentials in the strong Lp topology is 
proved. This work is not sufficient to explain the sucessful­
ness of the separable approximations to the off-shell T ma­
trix from a local potential because the imposed restrictions 
(4) are not satisfied for a Gaussian or a square-well potential, 
as it can be shown after extensive calculations. 

APPENDIX A 

In this appendix some properties of the functions in the 
space X (R + ,a,p) are studied. This space is defined as the 
following intersection: 

(AI) 
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The space Lip(R +,d a) is the well-known~8 Lipschitz space, 
d is the usual distance d (x,y) = Ix - yl and a is a positive 
number less than 1. This space is complete by the norm 

11·IILip where 

IlfllLip = Ilfll= + Ilfll d ", (A2) 

where 

Ilfll", = max(lf(x) I), (A3) 
XER + 

Ilflld" = sup ([f(x) - f(y)l/da(x,y)). 
x,yER I 

(A4) 

The space Lp(R +), p>2 is the space of real integrable func­
tions with norm 

[
rOO ] lip 

Ilfllp = Jo dx If(xW . (AS) 

The space X (R +,a,p) is a complete (Banach) space as the 
intersection of two complete spaces. In this space, the norm 
11·11 is defined as follows: 

Ilfll = IlfllLiP + Ilfllp · (A6) 

The following properties are necessary to study the space 
X(R+,a,p). 

Property 1: Let g be a function in X(R+,a,p). Then 

(A7) 

Proof Let gm be the minimum of the function Ig(x) I 
when x belongs in the interval 1m = [m,m + 1], where 
m = 0,1, .... Then 

g';" = g';" Lm 
+ Idx < Lm 

+ Idx Ig(xW<llgllp' 

Consequently 

gm<llgllp· 

For every xElm the following inequality holds: 

as one can see from the definition (A4). 
The above inequalities imply 

for every m. Then the relation (A 7) is true. 
Property 2: Let g be a function which belongs in 

Lip(R+,d a
) andfa function in X(R+,a,p). Then 

Ilgfll<llgIILip·llfll < Ilgll·llfll· (A8) 

Proof The above inequality is a direct result of the 
inequalities 

and 

IlgfllLip < IlgllLip ·11 filLip' 

In the next proposition we summarize some useful 
properties of the functions which belong in theX(R+,a,p) 
space. The proofs are given by Titchmarch. 13 

Proposition I: Letfbe a function which belongs in the 
real X (R +,a,p) space. For every Iyl #0 the function 
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$ (x + iy) is defined as follows: 

$ (x + iy) = (Ihr) 100 

d{{(t )I(z - t), 

and 

$ (x + iO) = lim $ (x + iy). 
y--o' 

Then 

(i) 11$ (. + iO)llp = U-+ 00

00 

dxl$ (x + iOW rp 
< Cp II flip, 

(A9) 

where Cp is a constant which depends only on p (Ref. 13, 

Theorem 101, p. 132). 

(ii) 11$ (. + iO)ll d " = sup (1$ (x + iO) - $ (y + iO)l/d a(x,y» 
'<,YER 

(AIO) 

where Fa is a constant which depends only on a (Ref. 13, 
Theorem 106, p. 145). 

(All) 

The last inequality is a result of the Holder's in equal­
ity.12 Property I [Eq. (A 7)] is also valid for the complex 
X (R +,a,p) space. Consequently the function $ (x + iO) be­
longs in the complex X (R +,a,p) space. The relations (A 7), 
(A9), and (AW) imply the following inequality: 

Ilfll < 11$(· + iO)11 <D(a,p)llfll, (AI2) 

where D (a,p) is a constant which depends only on a and p, 
and this constant is greater than 1. 

The study of the integral equations is simplified consid­
erably by the introduction of some kind of product. 

Definition I: Let CfJ I and CfJ2 be functions in the real 
X(R+,a,p) space, then the o-product of these functions is 
defined as follows: 

(CfJIOCfJ2)(X) = CfJI(X)cP2(X) + cPI(X)CfJ2(X), 

where 

cP,(x) = ~P r''' dt CfJ;(t) , 
ff Jo x - t 

is the Hilbert transform 10.13 of the function CfJ;. 

(AI3) 

Property 2 [relation (A8)] implies that CfJ\ 0'P2 is a func­
tion in the X (R + ,a,p) space. By recurrence, the o-product of 
N functions can be defined 

(AI4) 

The o-product is connected with the usual product by Pro­
position 2. 

Proposition 2. If the functions 'PI,CfJ2, ... ,CfJN belong in the 
real X (R + ,a,p) space, then: 

(i) $ (x + iy) = n (~ r''' dt CfJk.(t) ) 
k ~ I ff Jo x + ly - t 

= (lIff) fe dt (o-k~ l'Pk )(t )/(x + iy - t), 

(AIS) 
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and 
N N 

(ii) 11 0
_ n 'Pdl <11ef>('+iO)11 <DN(a,p) n II'Pkll. 
k~' k~1 

(A16) 

The function ef> (z), z = x + iy, is holomorphic in the complex 
z plane with a cut on the positive real axis. 

The proof of the relation (A 15) is trivial in the case 
N = 2, if the imaginary parts of the successive members of 
(AI5) are compared for y-+O+. The generalization by recur­
rence is obvious if the definition (A 14) of the a_product is 
used. The relation (A 16) is proved if the inequalities (AS) and 
(A 12) are combined. 

A natural generalization of Definition 1 is the introduc­
tion of the e-determinant. 

Definition 2: If the functions'P'J' where 1 <;i<N, 1 <J<;N, 
belong in the real X (R + ,a,p) space, then the a-determinant of 
these functions is defined as follows: 

(AI7) 

the sum is extended in all transpositions 

and P is the parity of this transposition. 
The o-determinant has all the linear properties of the 

ordinary determinants, that is to say, it is zero if some col­
umn (row) is the linear combination of others columns 
(rows). A direct result of the Definition 2 is the generaliza­
tion of Proposition 2. 

Proposition 3: If the functions 'Pij' where 1 <;i<;N and 
I <J<;N, belong in the real X (R + ,a,p) space, with p>2, then 

(i) ef> (x + iy) = det(( 1117) fO dt 'Pij(t )f(x + iy - t)) 

= (1117)1= dt (a-detl 'Pij I )(t )f(x + iy - t), 

(AI8) 

(ii) Ile-detl 'Pij lilp < lief> (. + iO)ll p 

< [D(a,p)]Ni~I ct,II'PuW)'/2, (A19) 

(iii) lIo-detl 'Pij llldn < lief> (. + iO)IId" 

< [D(a,p)]N.V, ct, I I 'PI} W)I12, (A20) 

(iv) 11ef>(· + iy)lloo < [D(a,p)]N IT (fll'PijW)'12,(A21) 
Iyl i= I j= 1 

(v) lIo-det['Pij III «N + 2)[D(a,p)]Ni~l(t,II'PijW)112. 
(A22) 

The last inequality is a generalization of Hadamard's lemma 

1864 J. Math. Phys., Vol. 22, No.9, September 1981 

in the case of the a-determinants. 
For simplicity, we define the functions ef>ij(x + iy) as 

follows: 

ef>ij(x + iy) = (1117) f'" dt 'Pu(t )f(x + iy - t). 

Hadamard's lemma applied in the second term ofEq. (A18) 
gives 

Ief>(x + iOW < (tlef>Ij(X + iOW) 

X JI2(tlll ef>ij(' + iO)11 00 2} 
Ifp>2, the functions Ief> (x + iOW and Ief>Jj(x + iOW belong 
in the space Lp/2(R). The Minkowski inequality l2 gives 

lief> (. + iO)II; < (til \ef>lj(' + iO)ll;) 

X i~\(tillef>ij(' + iO)IIe" 2)-
The inequality (A 19) is an obvious result of the last 

relation. 
From the definition of the equation ef> (x + iO) it is clear 

that 

ef> (x + iO) - ef> (x' + iO) 

= 2) - (ef>lk,(x + iO) - ef>lk, (x' + iO)) 

Xef>2k,(X + iO)···ef>Ndx + iO) 

+ IJ - (ef> + k, (x' + iO)( ef>2k, (x + iO) - ef>2k, (x' + iO)) 

X ef>3k, (x + iO)· .. ef>Ndx + iO) + ... 

+ 2) - (ef>lk, (x' + iO)ef>lk, (x' + iO)· .. 

X (ef>nk)X + iO) - ef>nk"(X' + iO). 

The difference ef> (x + iO) - ef> (x' + iO) can be understood as 
a sum of determinants. If we divide the two parts of the last 
equality by Ix - x' I a and Hadamard's lemma is applied for 
each determinant, then we find 

11ef>(·+iO)lld" 

< m~ I [(t, I I ef>mJ (. + iO)II~· )i~l(tlllcPij(.iO)II~ ) r2 

i=l-m 

The inequality (A20) is a trivial result of the last rela­
tion. Property 1 [relation (A 7)] and the inequalities (A 19) 
and (A20) imply the relation (A22). Relation (A21) is a result 
of the inequalities (All) and (AI9). 

APPENDIXB 

In this appendix the following integral equation will be 
studied: 

(Bl) 

where z is a complex number. 
The functionjn and gn are assumed to obey the restric-
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tions 

Ilfn II <F for every n (B2) 

and 

G = ! Ilg n II Lip < + 00. (B3) 
n=l 

In this section we will prove that the sums of both Fred­
holm's series9

•
10 converge in this case. 

The kernel of the integral equation is 

N( t·) - J.. ~ In (u)gn(t ) 
u, ,Z - L . 

1T n=1 z-t 
(B4) 

The first Fredholm's series is given by the formula 

= ( A)m 
D (A;Z) = 1 + L - Cm (z), (BS) 

m=1 m! 

where 

In, (SI)gn, (sd/(z - sd In, (SI)gn, (S2)1(Z - s2)"1njSI)gnjSm )/(Z - Sm) 

X Lin, (S2)gn, (sd/(z - sd Inz (S2)gn, (S2)/(Z - s2)"1njS2)gnjSm )I(z - Sm) (B6) 

For any determinant in Eq. (B6), all the elements of the 
jth column are multiplied by 

gn (Sj )I(z - Sj)' (B7) 

Therefore all these factors could be placed outside of each 
determinant as multiplication factors. After this manipula­
tion the jth row can be multiplied by the factor (B7) and 
finally the formula (B6) is transformed as follows: 

() "d [1 ,OOdgni(tlfn)t)] 
C m Z = L et - Jo t . 

n,.n, •...• n~ 1T 0 Z - t 
(BS) 

The formulas (B6) and (BS) are valid when the series are finite 
sums. In the following we will show that the restrictions (B2) 
and (B3) are sufficient for the convergence of the infinite 
series (BS). 

The equation (A1S) of Appendix A implies the follow­
ing equation: 

(B9) 

The extension of Hadamard's lemma, Eq. (A22), gives the 
following results: 

Ilcm (· + iO)11 «m + 2)[D(a,p)]m 

:'n~.nJ~I(~lllgnlnjW)1/2], (BlO) 

and 

IICm(' + iO)ll p < [D(~f)]m 

X L [i~l( .tlllgnJnjW)1/2]. 
n 1.1J2, ... nm ) -

Formula (AS), in Appendix A, implies 

I Ign,!n, I I < Ilgn,llLip Illnjll· 

(B11) 

(B12) 

Consequently, the first Fredholm's series, (BS), are 
bounded by 
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liD (A,. + iO)11 <HI (1,1 IFGD (a,p)), (B13) 

and 

liD (A,. + iO)11 «1IIyIlH2( 1,1 IFGD (a,p)). (B14) 

The functions HI (z) and H 2(z) are entire functions in the com­
plex z plane, defined as follows: 

Hdz) = ! (m + 2~mm/2 zm, (BlS) 
m=1 m. 

and 

(B16) 

The spaceX(R+,a,p) is a Banach (complete) space. This fact 
and the inequality (B 13) imply the existence of some function 
p(A;S) such that 

D (A;Z) = 1 + J.. i= dtp(A;S) , 
1T 0 z-t 

(B17) 

where 

The second Fredholm's series is defined by the formula 

D(u,t;A;z)=N(u,f;Z)+ I (_A)m Cm(u,f;Z), (B19) 
m=1 m! 

where N (u,f;z) is the kernel (B4) and the functions Cm (u,f;Z) 
take the following form: 

( f. ) __ J..~n(U)gn(f)Cm(Z) 
em u, ,Z L"":" 

1T n z-f 

_ mJ.. L/n(U)[J..i"'dS f~';;),(s) ]gn ,(f). (B20) 
1T n.n, 1T 0 Z - S Z - f 

The functions f ~';;! in the second part ofEq. (B20) are defined 
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as follows: 

g,Jn' g,Jn, ... g,Jn,,, 

gnfn' gnfn, ... gnfnm 

t~'::!(s) = gnJn' gn/n, ···gnJnm 

gnJn,gnJn, "'gn,/n
m 

(s) . 

(B21) 

The extended Hadamard's lemma [see (A22)] when it is ap­
plied to the second part of (B21) gives the following 
inequality: 

Ilt~r;:! II «m + 2)mm12(F.D(a,p))mGm -llign II, 
where F and G are defined by the restrictions (B2) and (B3). 
The above inequality and Eqs. (B20) and (B21) imply the 
following relation: 

D (u,t;A.;z) = N (u,t;z)D (A.;z) 

1 "" f" [1 Loo Tn' (s;A. ) ] gn' (t) + - Lo'n(u) - ds --, 
1r n,n' 1r 0 Z - S Z - t 

(B22) 

where D (A.;z) is the first Fredholm's series given by Eq. (B 17) 
and 

T ,(s;A.) = I (- A. t tim! (s). 
nn m ~ dm _ l)! nn 

(B23) 

The bounds of this function are given by 

II Tnn , (.,A. )11 < 1,,1, IF.D (a,p)H3 ( 1,,1, IF·G·D (a,p)H Ign IILip, 
(B24) 
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where the function H3(Z) is an entire function in the z plane 
such that 

(B25) 

The convergence of the second Fredholm's series im­
plies that Fredholm's alternative is applicable to the case of 
the integral equation (Bl), when the restrictions (B2) and (B3) 
are satisfied. 
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We present a closed form stability criterion for the periodic orbits of two-dimensional 
conservative as well as "dissipative" mappings which are analogous to the Poincare maps of 
dynamical systems. Our stability criterion has a particularly simple form involving a finite, 
symmetric, nearly tridiagonal determinant. Its derivation is based on an extension of the stability 
analysis of Hill's differential equation to difference equations. We apply our criterion and derive a 
sufficient stability condition for a large class of periodic orbits of the widely studied "standard 
mapping" describing a periodically "kicked" free rotator. As another example we also obtain 
explicitly and in closed form the intervals of bounded (and unbounded) solutions of a discrete 
"Schrodinger equation" for the Kronig and Penney crystal model. 

PACS numbers: D2.30.Sa 

I. INTRODUCTION 12 + detH(O) 1 { < 2: . stabil.i~y }, 
= > 2: InstabIlity 

(1.3) 
In the study of dynamical systems mappings of the 

plane onto itself play a significant role l-9
: several properties 

of two-degree-of-freedom Hamiltonian systems have been 
determined by considering only the intersection points of the 
orbits with a two-dimensional "section" of the (three-dimen­
sional) energy surface, often called a "surface of section" or a 
Poincare mapl-6 (cf. Fig. 1). 

in the area-preserving case, cf. Sec. lIB. A similar result is 
derived in Sec. IV for area-contracting mappings, which 
model dissipative systems. 10 

In this paper we present analytical results on the stabil­
ity of periodic orbits of two dimensional mapppings T: 

.{Xt+ I =f(XPYt)} 
T. , t = 0,1,2,.··. 

y, + I = g(x"y,) 
(1.1) 

Such mappings can model conservative or dissipative dyna­
mical systems depending on whether Tis "area-preserving" 
or "area-contracting" respectively.7.lo As usual, in dynami­
cal systems the most innocent-looking nonlinear functions 
f,g (e.g., x;, y;, etc.) may render (1.1) "nonintegrable", i.e., its 
general solution cannot be obtained in closed form or as con­
vergent series. I 

Our main result is a closed form stability criterion for 
periodic orbits of mappings of the type ( 1.1). Periodic orbits 
of arbitrary (integer) period m are repeating sequences of 
points (x t ,Yt) in the x,y plane, i.e., 

(xt+m,Yt+m) = Tm(x"Yt) = (x"y,), (1.2) 

t = 0,1,2,···. We consider the variational equations about a 
given m-periodic solution of (1.1) and ask whether the solu­
tions of these variational equations are bounded or not (for 
all t). This identifies the given periodic solution as stable or 
unstable. Since the variational equations are linear, the (un)­
boundedness of their solutions is decided by the value ofthe 
determinant of an m X m matrix H(D), which depends on the 
coordinates of the given m-periodic orbit, cf. Sec. IIA. For 
every such orbit we derive 

The main advantage of the closed expression (1.3) over 
the usual procedures 7-9 is that it can yield more globar stabil­
ity results of which there is great need. Examples of such 
results are given in Sec. III and Appendix A. 

(al 

( b) 

FIG. I. Surfaces of section for the 2-D-system of Ref. 2. (a) E = 1/24. (b) 
E = 118. Note the "dotted" chaotic regions in (b) where solutions depend 
very sensitively on initial conditions. 
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The study of "nonintegrable" systems has revealed that 
there are large classes of orbits which depend singularly on 
their initial conditions and exhibit a highly "chaotic" and 
"irregular" behavior. 1-9,1 I In fact, this dependence on initial 
conditions is so sensi tive that some properties of certain solu­
tions can be proven to be truly random.6

•
12 The situation is 

not unlike a throw of dice where the outcome depends criti­
cally on how the sharp ("singular") edges of the dice hit the 
table, etc.-a deterministic process resulting in a "random" 
sequence of outcomes. 

Numerical investigations and a number of rigorous re­
sults indicate that there exist two distinct types of motion 1-9: 
Regular or ordered motion, represented in Fig. l(a) and 2(a) 
by the concentric "curves" or "islands" and irregular or cha­
otic motion, represented by regions where the intersections 
of many orbits "scatter" about in a seemingly random and 
area-filling fashion as in Figs. l(b) and 2(b). 

These regions of chaotic behavior are of interest to a 
number of problems in physics: They may be useful in estab­
lishing the ergodic hypothesis 12-14 at least for some noninte­
grable systems, i.e., that almost all orbits cover the energy 
surface densely and uniformly. The presence (or absence) of 
large chaotic regions is also crucial to long-term stability of 
planetary orbits in celestial mechanics, 1-3 the confinement of 
charged particles in fusion devices I5

-
17 and high energy ac­

celerators, 18-19 the dynamics of molecular dissociation20.21 

and other areas of current research. 
The onset of large scale chaotic behavior is associated 

with more and more stable periodic orbits turning unstable 
as one varies the values of the parameters of the prob-
lem. 1,6-9.11 Thus, it is important to determine analytically all 

9 

"' 0 

0 

to 
>-. 

"' 0 
I 

0 
S 

(a) 'I 
-10 -0.5 0.0 0.5 10 

X-

"' ~ 
0 

0 

t~ 
>-. 

"' N 

0 

( b) 0 
0 

o 0525 a 550 0 575 0 600 

X-
FIG. 2. Iterates of the mapping (2.1) for cosa = 0.24. (a) Observe the two 5-
periodic orbits, a stable one (S) and an unstable one (U). (b) A magnification 
of the chaotic region about the point U' of (a), cf. Ref. 7. 
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ranges of parameter values corresponding to stable vs. unsta­
ble behavior. As we demonstrate in Sec. III on the so-called 
standard mapping,9.22 we can now begin to do this with the 
aid of criterion (1.3). 

We have extended these results to dissipative, or area­
contracting mappings, cf. Ref. 1 (1981). Large scale chaotic 
behavior in such mappings is related to the presence of so­
called "strange attractors" and the onset of "turbulent" mo­
tion. 16,10,23 In Sec. IV we derive a stability criterion analo­
gous to (1.3) for dissipative mappings and discuss its depen­
dence on a "damping" parameter b (lb I < I). Finally, 
following the approach of Sec. III, we apply this criterion to 
a dissipative form of the standard mapping and obtain a suf­
ficient stability criterion for its periodic orbits. 

II. STABILITY CRITERIA FOR AREA-PRESERVING 
MAPPINGS 
A. Earlier methods 

We consider here the quadratic mapping 

. {x' + 1 = x,cosa -lY, - X;)Sina,} 
T . 2' 

y, + 1 = x, sma + (y, - x, )cosa 
(2.1) 

t = 0,1,2, .. ·, due to Henon.? Using this example we first re­
view the usual stability analysis ?-9 of periodic orbits and 
point out its limitations. A new stability criterion is derived 
in Sec. lIB. 

The quadratic mapping (2.1) is the simplest nontrivial 
mapping? which exhibits many of the interesting features of 
a nonintegrable Hamiltonian system, cf. Fig. 1 and 2. Elimi­
nating y, between Eqs. (2.1), we obtain the single second­
difference equation 

(2.2) 

Orbits are obtained in the x" x, _ 1 plane by substituting 
X"X'_I in (2.2) starting with some XI' Xo and solving for 
x, + I' etc. 

We consider small variations Ax, about a given m-peri­
odic orbit [x, = x, + m I setting in (2.2) x, = x, + Llx, and 
keep only first order terms in Llx, to find 

Llx,+ 1 + AX'_I - 2(cosa + x,sina)Llx, = O. (2.3) 

In vector form this variational equation becomes 

(
LlX' + I) = (2(COSa + x,sina) - 1)( Llx, ), (2.4a) 

Llx, 1 0 \.:lx, _ I 

or 

Ax,+ I = ¥,Ax,. (2.4b) 

Note that detM, = 1, i.e., (2.1) is area-preserving indeed.? 
Choosing som~ AX 1 = (Ax I' Llxo) and iterating (2.1) m times 
one calculates upon return near (x I' xo) the resulting 
variation 

AXm + 1 = ¥Ax l , (2.5) 

where ¥ is the product of m 2 X 2 matrices: 

¥- n¥,· (2.6) 
,~ 1 

In this analysis one computes the eigenvalues A I' A2 of 
the matrix M and distinguishes two cases: 

(a) ITr ~I < 2, whence A I = A ; complex with 
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, IA II = IA21 = 1; therefore, ..1xt + km rotates with every mth 
return (remaining bounded) and XI is stable or "elliptic", 
e.g., the orbit marked S in Fig. 2(a). 

(b) ITr~1 > 2 whenceA 1,A2 real with, say, JAil < 1 and 
IA21 = IAII--1 > 1. For almost all..1xl> ..1xt + km becomes un­
bounded and xt is unstable or "hyperbolic", e.g., the orbit 
marked f.-L in Fig. 2(a). [The highly exceptional case ITr MI 
= 2 implies A I = A2 = ± 1 and XI is referred to as marg'in­

ally (un)stable or "parabolic".] 

The familiar method outlined above requires cumber­
some algebraic or numerical computations. Furthermore, its 
results are often not transparent and cannot be easily gener­
alized to families of orbits. It amounts, in fact, to an expan­
sion of the determinant in our criterion [see (2.19) and the 
comments below it] and does not offer as easily new analytic 
insight. 

B. A closed form stability criterion 
Our result has an analog in differential equations with 

which the reader may be more familiar: Consider a 1T-period­
ic solution of the differential equation 

d 2x 
dt 2 + F(x) = O. (2.7) 

i.e., an x(t ) with x(t ) = x(t + 1T), whose stability type we wish 
to determine. Letting x = X + 5 in (2.7), we find to first order 
inG 

d 2G 
dt 2 + Q(t )G(t) = 0, (2.8) 

where 
dF 

Q(l) = d) x~x = Q(l + 1T). (2.9) 

Clearly the boundedness properties of the solutions 5 (t ) of 
(2.8) will determine whether nor not x(t) is (linearly) stable 
under small perturbations. 24.25 

Similarly, for our mapping (2.2), we obtained the second 
order linear difference equation (2.5), 

- Llxt + I - Llxt _ I + dtLlxt = 0, 
with 

(2.10) 

d,=2(cosa +x,sina) =d,+m (2.11) 

in analogy with (2.8) and (2.9). 
Floquet's theorem24

•
25 establishes that Hill's equation 

(2.10-2.11) possesses two linearly independent solutions of 
I 

d l 

- I 

o 

_ e+ im/3 

o 

o 

o 

o -I 

Expanding this determinant with respect to its first and last 
columns yields the Floquet exponent explicitly: 

2cos(m/3 ) = 2 + detl}(O), (2.18a) 
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the form 

5 +(t) = ei/3IP(t), G_(t) = e-i/J'P*(t), (2.12) 

in general, whereP (t) is also 1T-periodic (and hence bounded) 
asisQ (t ),i.e.,P(t) = P(t + 1T),cf. (2.9). The so-called Floquet 
characteristic exponent /3 is the important quantity here 
since, as we see from Eq. (2.12), it is the value of /3 real versus 
complex which determines whether the solutions of (2.10) 
are bounded or not. 

The extension of the Floquet theory to difference equa­
tions26 establishes that Eq. (2.10) similarly has two linearly 
independent solutions of the form 

Llx~ + I = ei/Jtp" Llx~ -) = e - i{3tp;, (2.13) 

with Pt = Pt + m • Again the stability type of the periodic or­
bit X, depends on the value of the Floquet exponent /3. 

Inserting Llx~ + ) from (2.13) in (2.10), we find 

_e+ i{3P'+1 -e- i/3P,_1 +dtPt =0, (2.14) 

or in vector form, 

H{/3)P = 0, (2.15) .. 
where 

d l 
_ ei/3 0 0 

_e- i/3 d z 
_ eifJ 

0 _e- i/3 d3 

o 

(2.16) 

and P=col(Pp P2,' .. ,p m). In order for (2.15) to have a nontri­
vial solution, 

detl}{/3) = O. (2.17a) 

From this we can explicitly solve for /3: Multiplying the 
first row ofH{/3 ) by exp(i/3 ) and the first column by exp( - i/3 ) 
leaves detH{/3) invariant. Similarly, multiplying the second 
row by exPl.2i/3) and the second column by exp( - 2i/3), etc., 
finally gives 

_e- im 

o 

=0. (2.17b) 

- 1 

I 
where l!(O) is particularly simple, cf. (2.16). 

Equation (2.18a) allows us to determine whether the /3 
in (2.13) is real or imaginary. Hence, from (2.13) and the 
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discussion below (2.6) we conclude that the periodic orbit X, is 

stable or "elliptic," } 
unstable or "hyperbolic," 

marginally (un)stable, "parabolic." 

(2.18b) 

Our stability cirtierion (2.18) is in closed form and thus lends 
itself more easily to analytic manipulations: It was recently 
used by Greene9 to obtain results for the so-called standard 
mapping. 22 Applying (2.18) to this same mapping, we derive 
additional results in the next section. In Appendix A we use 
(2.18) to obtain the stability intervals for a Hill's difference 
equation driven by a pulse-shaped periodic function. 

The connection between our criterion and that of Sec. 
IIA is given by the simple equation 

2 + detl}(O) = Tr(¥), (2.19) 

where M was defined in (2.6). Equation (2.19) was derived in 
Appendix B of Ref. 9 cf. also Ref. 7 (1978). Since the detH(O) 
can be written as the difference of two tridiagonal deter~i­
nants [see Appendix A, Eq. (AI)] its expansion in terms of 
the elements ofH(O) can be written down, cf. Eq. (4.13). This 
provides us with an expansion for the trace of a product of 
2 X 2 matrices which is of interest to various important prob­
lems of physics, notably the 2-D Ising model in the presence 
of magnetic field. RecentIy,27 in that connection, the trace of 
such a product was given as the integral 

Tr(M) = lim ~ rS 

ds IT ( - ie - ig,s + d, + I _ ieig
, , IS), 

= S '00 s Jo ,~ I 

(2.20) 

where g, = 10gP" P, being the t th prime number. 

III. SUFFICIENT STABILITY CONDITION 

With the aid of(2.18) we obtain below a sufficient stabil­
ity condition for periodic orbits of the so-called standard 
mapping22,18,9 

. {r, + I = r, - (K /21T) sin21T8, } 
TK • , t = 0,1,2, .. ·, (3.1) a, + I = a, + r, + I 

which models the motion of charged particles in toroidal 
magnetic fields l8 and is also used in the study of nonlinear 
resonances. 22 Our result is: If an m-periodic orbit of (3.1) 
exists over a K interval including K = 0, we find a range of K 
values 

° <K<Xm 
over which this periodic orbit is stable. 

For ° < K < 1 "most" orbits of (3.1) exhibit regular be­
havior and the system appears integrable; see Fig. 3(b). Near 
K ~ 1, however, large regions of irregular or chaotic behav­
ior exist, where "most" orbits are unstable (see the discussion 
in Sec. I and Fig. 3 below). 

The mapping (3.1) is invariant under translations of r or 
a by an integer. We therefore, restrict ourselves to the torus 
O<r< 1, 0<8< 1. In addition, (3.1) also preserves area in the r, 
8 plane (its Jacobian is equal to 1). Note that, for K = 0, TK 
reduces to the "twist mapping"6,1 
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T . ,+ I to' (3 2) 
{ 

';0) = ';0) (= nO I) } 

o· 8~Ot 1 = 8~O) + f-,Ot 1 (= 8~) + (t + I))f-gl' . 

t = 0, I ,2,. .. , which generates straight lines r<D) = const. ev­
erywhere in the r, e plane, cf, Fig. 3(a). All lines correspond­
ing to rational r~) 

rlgi = n/m (3.3) 

consist entirely of m-periodic orbits of (3.2). According to a 
theorem by Poincare and Birkhoff, 15,6,1 for any given period 
m there exists a K = K (m) such that for 0 < K < K (m) the 
continuous lines (3.3) break up into an even number of m­
periodic orbits, half of which are stable and half unstable. In 
Appendix B we show in greater detail how the Poincare­
Birkhoff theorem applies here, and compute explicitly the 
first periodic orbits near K = O. 

As K increases the stable periodic orbits turn unstable 
and larger regions appear where nearby orbits separate ex­
ponentially and successive mappings "scatter" about in an 
apparently erratic and chaotic manner, 1,22,9 cf. Fig. 3(c). 

Cal 
o 

t 
r t ~--------------~ 

l b) 

eel 

FlO. 3. Phase plane behavior of the standard mapping (3.1). (a) K = 0, (b) 
o <K<I, and (c) K = 0.97 (taken from Ref. 9). Note the chaotic regions in 
(c). 
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Here we derive an explicit, closed form expression for 
K-intervals (O,Km) over which a stable m-periodic orbit will 
not yet have turned unstable. This provides us with an esti­
mate of the range of K values over which one would not 
expect widespread irregular or chaotic behavior. 

We first write (3.1) in the form of a second-difference 
equation, eliminating r, : 

H==, 

2 - Kcos2rrOl 

-1 

o 

o 
-1 

- 1 

2 - Kcos2rr02 
-1 

0 .. · 

o 
-1 

o 

0, + I + 0, _ I - 20, + (K 12rr) sin2rrO, = 0, (3.4) 

cf. Eq. (2.2). Its variational equation about an m-periodic 
orbit 0, is 

- ..10, + I + (2 - Kcos2rrO, )..10, - ..10,_ I = 0, (3.5) 

cf. (2.9). According to criterion (2.1S) the orbit 0, is stable 
(resp. unstable) iff 12 + detlJl < 2 (resp. > 2), where 

o 

-1 

-1 

o 

o 
- 1 

2-Kcos2rrOm 

(3.6) 

In the remainder of this section we derive upper and lower bounds for the eigenvalues ofH and use them to obtain information 
about its determinant. 

We define the m X m matrices A, B by 

H=A+KB, 
:= := 2: 

where 

2 

o 

o 
- 1 

'" '" 

-1 o o 

2 - 1 

o o - 1 

-1 

o 

o 
-1 

2 

I being the m X m identity matrix and denote the eigenvalues 
of A by A-j(O) and those ofH by A-j(K ),j = 1,2, ... ,m. Since A is 
symmetric, the following 1nequalities hold28 

'" 

lA-j(K) -A-j(O) I <KIII}II, j= 1,2, ... ,m, (3.9) 

where 

IIBII sup IIBXI\, I\XI\=("~IIXj 12)112. 
'" IIXII ~ I '" ~ 

(3.10) 

Hence (3.9) immediately gives 

or 

(3.11) 

Since A is a "circulant" matrix,29 its eigenvalues are well 
known, 

A-j(O) = 2 - 2cos(2rrj/m), 

whence (3.11) becomes 
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(3.12) 

'" 

(3.7) 

, B=(cos2rrOI,· .. ,cos2rrOm,)I 
:= := 

(3.S) 

2 - 2cos(2rrj/m) - K < A-j (K ) < 2 - 2cos(2rrj/m) + K. 
(3.13) 

For 1 <J<m - 1, we make all three parts of(3.13) positive by 
restricting the values of K: 

O<K<2 - 2cos(2rrlm)<2 - 2cos(2rrjlm), (3.14) 

j = 1.2, .... m - 1. With this restriction (3.13) are preserved 
upon taking the products 

0< mlf(2 - 2cos 2rrj _ K) < mil IA-j (K ) 
J~I m J=I 

m I( 2') < III 2 - 2cos ;1 + K . (3.15) 

With the aid of the formulas30 

rrm ( 2rrj ). (mz) . 2-2cos-+K =4smh2 
_, 

J~I m 2 

rrm ( 2rrj ) . (mo) . 2 - 2cos- - K = - 4sm2 
- , 

J~I m 2 
(3.16) 
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where z,o are defined by 
2 coshz =2 + K, 2 cosO =2 - K, (3.17) 

we find that (3.15) gives 

4 (mo) m - I 4 (mz) -sin2 
- < II A-j(K) <-sinh2 

- • 
K 2 j= I K 2 

(3.18) 

I t remains to use inequality (3.13) for the lowest eigenvalue 
A-m (K), i.e., 

-K<A-m(K)<K. (3.19) 

For the stable m-periodic orbits which exist down to K = 0 
we must have 

(3.20) 

since, otherwise, allA-j(K) would be positive, detl}(O) > 0 and 
the orbit would be unstable. Combining (3.20) with (3.18), we 
conclude that these m-periodic orbits remain stable with in­
creasing K at least as long as 

m (mz) O>detl}(O) = JJ/j(K) > - 4sinh2 2 :> - 4, (3.21) 

cf. (2.18b), or as long as sinh2 (mz/2)..;; 1, which is equivalent 
to 

1 ..;;cosh(mz)";;3, (3.22) 

with z as defined in (3.17). This inequality is satisfied by the 
range of K values 

0";;K..;;Km-2cosh[(lIm)cosh-13l-2. (3.23) 
Thus (3.23) constitutes a sufficient condition for the sta­

bility of m-periodic orbits [one should take the intersection 
between (3.23) and (3.14); (3.23) however, is contained in 
(3.14)]. 

It easily follows from (3.23) that Km > Km + l' which 
indicates that the longer the period of the orbit the sooner it 
may turn unstable, as K increases. This is indeed observed to 
be true not only for the mapping (3.1) but for many other 
Hamiltonian systems. However, the estimates of Km ob­
tained from (3.23) are significantly lower than the actual K 
values at which the corresponding orbit turns unstable. For 
instance, for the period 3 orbit, (3.23) yieldsK3~0.355 while 
the actual orbit turns unstable at K ~ 1.52. 

IV. STABILITY CRITERION FOR DISSIPATIVE 
MAPPINGS 

Here the stability results of the previous sections are 
extended to area-contracting or dissipative mappings. Con­
sider for example the quadratic mapping 

X'+l =y, + I-ax;, 

y,+ 1 = - bx" (4.1) 

studied by Henon 10 (with b_ - b ), which "destroys" area if 
Ib 1 < 1. Eliminatingy, in (4.1), we obtain 

x, + 1 + bx, _ I - 1 + ax; = O. (4.2) 

The variational equation of an m-periodic orbit of (4.2) is 

- Llx, + I - bLlx, _ 1 + d,Llx, = 0, 

where 
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(4.3) 

d, =2ax, = d, + m (4.4) 

t = 0,1,2,· ... When b > 0, we define a new real variable Z,: 

(4.5) 

[The case b < 0 is more complicated: Instead of (4.5) one 
writes Llx, = Ib I' 12exp(hrt /2)z, + C.c., with z, complex, 
and solves two equations of the type (4.6) for 
Re(z,) and Im(z,),] Since b < 1, (4.5) is a contracting t-depen­
dent transformation. Inserting (4.5) in (4.3), we find that z, 
satisfies the Hill's difference equation 

-Z,+l -Z,_l +b- 1
/ 2d t z t =0. (4.6) 

As before, in (2.13) the two linearly independent Flo­
quet solutions of (4.6) are 

Zt+ = eif3tPt ,Z,- = e - if3tp; (Pt = Pt + m ), 

for two linearly independent solutions of (4.3) are obtained 

Llx~ +) = e(B + i(3 )tPt , Llx~ -) = e(B - if3ltp~, (4.7) 

where 

(4.8) 

The Floquet exponent /3 may be solved from the stability 
relation (2.18) 

2cosm/3 = 2 + detl}(O), (4.9) 

where 

I}(O)= 
0 

0 

- I 0 .. · 

o 
-1 

0 

o 

- I 

-I 

o 

0 

-1 

(4.10) 

cf. (2.16), (2.11). Clearly /3 can be either real or imaginary. As 
before, /3 real implies stability and X, is a so-called "periodic 
attractor," cf. Ref. I (1981). However, /3 imaginary does not 
necessarily imply instability since this requires, in addition, 
1/31> IB I, cf. (4.7), (4.8). Thus our stability criterion (2.18) is 
generalized to 

12 + detl!(O) I < 2cosh(mB): 

12 + detH(O) I > 2cosh(mB ): 
'" 

Xt stable or "attracting," 

xt unstable or "repelling." 
(4.11) 

Near a stable periodic orbit xt of the dissipative equa­
tion (4.3) solutions are attracted tox" whereas in the conser­
vative case [e.g., Ib I = 1 in (4.3)] nearby solutions forever 
"circle" around x I' 

In the remainder of this section we examine this result 
and point out its usefulness in a number of cases. Factoring 
b - 1/2 out of all the elements ofH(O) and mUltiplying by b m/2, 

we rewrite (4.11) in the more convenient form: 
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( 
< 1 + b m: stability (attractor) ) (4.12) 

i2b m!2 + detHb i 
'" > 1 + b m: instability (repellor) , 

where 

o 

o 
vb o 

o 
o 

o -vb 

- vb 

o 

- vb 

d", 

(4.12') 
m 

In the large dissipation limit b-G, detl!b---+ II d" Eq. 
'~I 

(4.2) becomes a first difference equation and (4.12) reduces to 
the well-known stability condition for such equations31

: 

lI;Id, I < 1 (resp. > 1) implies stability (resp. instability). 

For b > 0, but small, our criterion (4.12) offers a number 
of computational advantages: First, the matrix H b , for 
Ib 1< 1, becomes diagonally dominant, which is a highly at­
tractive feature from the point of view calculating its eigen­
values (and hence its determinant) using a variety ofiterative 
algorithms. 32 We may also approximate detHb byexpand-
ing it in powers of b '" 

detHb = - 4 sin2(m1T14) + So + bSI + b 2S2 + ... , 
'" (4.13) 

where 

So= IT d" 
,~ I 

and Sr=( - IP: [all terms obtained by deleting any pair of 
consecutive d, 's-including the pair of first and last d­
from all the terms of Sr _ I ,] cf. (2.19) and Ref. 33. Of course, 
the number of terms required in (4.13) to achieve a certain 
accuracy depends on the magnitude of b and the "length" of 
orbit, i.e., the value of m. 

Another example where (4.12) can be applied is Chiri­
kov's dissipative mapping34 

r, + I = br, - (K 121T)sin21T(), } _ 
() _() , t-0,1,2, ... , (4.14) 
,+ 1- ,+ r, + I 

cf. (3.1), where, as before, b (with Ib I < 1) is the rate at which 
(4.14) "destroys" area in the r" (), plane. Combining equa­
tions (4.14) into a single second difference equation and lin­
earizing about an m-periodic orbit, we obtain the variational 
equation 

-L!(),+I -bL1()'_1 +(1 +b-Kcos21TO,)L!(), =0, 
(4.15) 

cf. (2.10) and (3.5). Following the same approach as in Sec. 
III and using criterion (4.12), we derive a sufficient stability 
condition for Or analogous to (3.21): 
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[K - (1 - yIF)2]sinh2(mz/2) 

.;;; [K + (1 - ylFf]cosh2(mB 12), 

where z is now defined by 

2coshz-(1 + b + K)IVO 

cf. (3.17) and B is given in (4.8). 

(4.16) 

(4.17) 

The above result guarantees that an m-periodic orbit of 
(4.14) which is stable near K = 0, remains stable at least over 
the range 

(1 - Vli)2.;;;K.;;;Km , (4.18) 

whereKm is theK value at which (4.16) becomes an equality. 
Such orbits exist in the area preserving case b = 1 (see Sec. 
III and Appendix B) and are expected to exist for b < 1 also. 
The condition (4.16)-(4.18) reduces, of course, to (3.21)­
(3.23)atb = I andyieldsbestestimatesKm in the small dissi­
pation limit b S 1. 
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APPENDIX A: AN APPLICATION OF THE STABILITY 
CRITERION (2.18) 

As we have seen in Sec. II, the criterion (2.18) can be 
used to determine the (un)boundedness of the solutions of 
second difference equations of the form 

X'+I +X'_I +(A+Q,)x, =0, (AI) 

where Q, is periodic with period m, i.e., Q, = Q, + m' 

t = 0,1,2,.··, and A is a parameter independent of t [clearly 
(2.10) with - d, = A + Q, is of this type]. 

We obtain in this appendix analytic stability results for 
(AI) with Q, a periodic pulse 

Q,={ - V ~O, t = 1,2, ... ,r,}. (A2) 
0, t-r+ 1, ... ,m 

Thus, (A1)-(A2) may be viewed as the analog of Hill's 
equation 

d 2x 
dt 2 + [A + Q(t)]x = 0 

with 

(A3) 

Q(t)={ - V, o<t<r,}, 
0, r<t<T (A4) 

Q (t + T) = Q (t), which is Schrodinger's equation for a peri­
odic potential in the Kronig-Penney crystal model. Here we 
use our stability criterion to derive analytically the A-inter­
vals for which (A 1 )-(A2) has bounded solutions. The result is 
similar to the corresponding one24 for (A3)-(A4). More sta-
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bility results on mappings (A 1) as well as on thier applicabil­
ity to problems of accelerator physics can be found in Ref. 
3S. 

In Sec. lIB it was derived that the solutions of (A 1) are 
I 

-A- +Y -1 
-1 -A-+V 
o - 1 

o 
-1 

bounded iff 

12 + detH(O) I < 2, 

where, in the present case, 

o 

o 

- 1 

detH(O) = det -1 -A-+V -1 
o -1 A-

-1 

o 

o 

o 
- 1 

o -1 -A­

T columns m-T columns. ] 

Expanding this determinant about its upper right and lower left corner elements gives 

o 
- 1 

detH(O) = ( - It(Kr.m - K, _ I.m _ 2) - 2, 

where the KiJ determinants are defined by 

A -v -1 

A-V' 

o 

Equation (A 7) combined with (AS) gives 

JK r .m -K,_ I.m-2J.;:;2 

o 

A-V 

A­

[ i columns (j-i) columns ] 

(A9) 

as the boundedness criterion for the solutions of (A 1). 
To evaluate the determinant K,.m' we proceed by induc­

tion. Let T = 1; expanding K1.m with respect to its first row, 
we find 

K I.m = (A - V)Km _ I - K m _ 2 , 

where Kj is defined by 

(AlO) o 
j columns 

o 
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Similarly, for 7 = 2 we get 

K 2•m = (A - V)Kl,m_' - Km_ 2 

= [(A - V)2 - 1] K m _ 2 - K m _ 3 • 

Repeating this process for 7 = 3,4 finally yields 

(AI2) 

where U r satisfies 

Ur = (A - V)Ur-' - U7 _ 2 (A13) 

with Uo = 1, U2 = A - V. Defining 8 by 

2 cos8 ==,1, - V, (AI4) 

we can write the general solution of (A 13) as 

Ur = sin(7 + I)8/sin8. (AIS) 

These are trigonometric sines if 1,1, - VI <2 and hyperbolic 
sines if IA - V 1 < 2. 

It is also easy to show that Km _ r in (All) satisfies 

K m _ 7 = AK m _ 7 _, - K m - r - 2 , (AI6) 

with K, = A and Ko = 1. Defining again an angle ifJ by 

A 2 cosifJ, (AI7) 

we write the solution of(AI6) in the form 

Km _ 7 = sin(m - 7 + I)ifJ /sinifJ, (AI8) 

where cos, sin-cosh, sinhiflA I> 2. Putting(AI8)and(AIS) 
in (AI2) and then substituting back in (A9) finally gives the 
stability condition 

I
·· cos8 cosifJ - I I S1078 sm(m - 7)ifJ . . + COS70 cos(m - 7)ifJ) < I. 

sm8smifJ 

(AI9) 

The final result, therefore, is that the solutions of (A I) 
and (A2) are bounded if A is such that (At9) is satisfied and 
are unbounded otherwise. These intervals can be determined 
numerically or graphically, while analytic estimates are also 
easily obtained from (At9), cf. Ref. 3S. 

APPENDIX B: PERIODIC ORBITS OF THE M.APPING {3.1} 
The existence of stable periodic orbits of the standard 

mapping (3.1) down toK = Ois guaranteed by a theorem due 
to Poincare and Birkhoff, cf. Ref. IS, p. 39. As stated there, 
the theorem applies directly to "sufficiently smooth" pertur­
bations of the "twist" mapping 

yl,ol, = r~ol } 
t=OI2,.· 8 101 = 8 101 a(rQI) , , , , , 

,+1 ,+ , 
(Bt) 

where u' (r~OI) # 0, cf. Ref. 1 (1981). Such is the case with the 
mapping (3.t): 

{
r, +! = r, - (K 1217') Sin21T8,} _ 

TK L1 _ L1 ' t - 0,1,2,,,,, (B2) 
u, +! - u, + r, + ! 

where u(r,OI) = r,OI, cf. (Bt). The Poincare-Birkhofftheorem 
states that given any invariant circle of the corresponding 
"twist" mapping (Bt) with rational radius r,OI = n/m, there 
is a range of K values, K E [O,K (m I], over which this circle 
breaks up into an equal number of stable and unstable m­
periodic orbits. 
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Thus the existence of stable periodic orbits of the map­
ping (B2) in a neighborhood of K = ° is established. In par­
ticular, for any m = m*, we have the K interval for which 
stable m-periodic orbits with m..;;m * exist as u:'~ ! [O,K (m I], 
i.e., as the intersection of all intervals of the Poincare-Birk­
hoff theorem with I..;;m..;;m*. Finally, we note that in the 
proof of these statements one needs to restrict r, to some 
annulus, e.g., l..;;r/ ..;;2, whereas in this paper we take O..;;r, 
..;; 1. This is not an important difference since the mapping 
(B2) is invariant under r,_r, + 1. 

We now demonstrate below how one may explicitly 
compute the periodic orbits predicted by the Poincare-Birk­
hoff theorem, near K = 0. We present results for m = 1,2, 
and 3, for which, in fact, the theorem need not apply. '.6 
Clearly, as m increases the calculations, although 
straightfoward, become quite cumbersome. 

According to the symmetry arguments of Greene,9 the 
initial conditions for periodic orbits of TK , cf. (B2), fall in 
either one of two classes: 

Class A: ro arbitrary, 80 = ° or l' 
ClassB: ro arbitrary, 80 = 1ro or 1(ro + 1)' 

There are two m = 1 periodic "orbits" satisfying 

ro = ro - (K /217') sin21TOo, 80 = 00 + ro, 

(B3) 

(ro,Oo) = (0,0) and (O,!), see Fig. 3(b). Their stability is imme­
diately obtained from the variational equations 

(B4) 

cf. (3.S), (2.4) the ( + ) sign corresponding to (O,!) and the ( - ) 
to (0,0). From (B4) 

triM) = 2 ±K, (BS) 

and hence, according to the discussion at th end of Sec. IIA, 
(0,0) is a stable m = 1 periodic "orbit" for 0< K < 4, while 
(O,!) is unstable for all K> 0. 

Consider now the case m = 2. Applying T K once to 
(ro,Oo) yields 

(B6) 

8 1 = 80 + r, = ro 

for the class A, 00 = ° solutions, cf. (B3). Closing the orbit 
upon itself after one more application of T K' we write 

r2 = r l - (K /217') sin21TO! = ro - (K /21T)sin21Tro = ro, (B7) 

82 = 8, + ro = 2ro = 80 = 1, 

since on the unit torus 80 = 1 is equivalent to 80 = 0. From 
(B7), we find ro = ()! = ! and we thus obtain the 2-periodic 
orbit 

(B8) 

This periodic orbit is also stable for ° < K < 4 since a 
calculation of the tr (M) gives tr (M) = 2 - K as in (BS). 
Furthermore, note that the above m = 1 and 2 periodic or­
bits obviously exist down to K = ° since they are indepen­
dent of K. The corresponding unstable 2-periodic solution 
predicted by the Poincare-Birkhoff theorem is obtained 
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starting with class B initial conditions [the class A, (}o = ! 
initial conditions lead to the same orbit (BS)]. 

These results from the m = 2 case are, in fact, common 
to all periodic orbits with even period m = 2k: I.e., class A 
initial conditions yield one and the same stable orbit, while 
class B conditions yield the corresponding unstable one. 

The situation is different for m odd. It turns out that 
m = 2k + I periodic orbits are all given either by class A or 
class B initial conditions. In the case of the class A solutions 
(}o = 0 yields the stable orbits while (}o = ! yields the unstable 
ones. 

Consider, for example, the case m = 3. With (}o = 0 we 
find, as in (B6) and (B7): 

(ro,(}o) = (ro,O),(rt,(}d = (ro,ro), 

(r2'(}2) = (ro - (K /21T) sin21Tro,2ro - (K 121T)sin21Tro). 

To get a periodic orbit of period 3, we require 

r3 = r2 - (K /21T) sin21T02 = ro, (B9) 

03 = O2 + r3 = 3ro - (K /21T)sin21Tro = n, 

where n is a positive integer, prime relative to m and 
1 <n < m, cf. (3.3). 

In the case of the (m = 3)-periodic orbit we fine that (B9) 
is satisfied if 

3ro - (K /21T) sin21Tro = n (BID) 

with n = 1,2. Solving (B 10) numerically we list below several 
values of ro corresponding to different K-values for the case 
n/m = t, (}o = 0: 
K = 0.0 om 0.2 0.5 1.0 

ro~ 0.3333 0.33379 0.34222 0.35436 0.37164 

The stability of the resulting 3-periodic orbit is deter­
mined using our stability criterion of Sec. II. Thus we 
evaluate 

[

2 - K cos21Tro 

detH = det - 1 

- 1 

whence 

detH = K (3 - K cos21Tro) 

-1 

2 - K cos21Tro 
-1 

- 1 1 -1 
2-K' 

(K cos21Tro - 2 cos21Tro - 1). (BII) 

AsK~O ro--+! [cf. (BIO) and the numerical solution below it] 
and to lowest order in K, (BII) yields 

detH~ - K3 <0. (BI2) 

Thus the 00 = 0, 3-periodic orbits are stable, cf. (2.18), for 
sufficiently small K. 

For (}o = !, all the above expressions are preserved, with 
one change only: K~ - K [since letting Ot~Ot +! simply 
switches the sign of the sine term in (BI2)]. Hence (BII) 
becomes 

detH = K (3 + K cos21Tro) 

(K cos21Tro + 2 cos21Tro + 1), (B13) 
which, as K~, and ro--+!, gives to lowest order in K 

detH~ +K 3 >0. (BI4) 
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Hence, these 00 = ! orbits are unstable near K = 0, cf. (3.6b). 
Similar results are obtained for m = 4,5, etc. As m in­

creases, we find that we have to solve r 0 from more and more 
complicated transcendental equations of the type (B 1 0). For 
example, for m = 5 the stable periodic orbits (00 = 0) are 
obtained solving r 0 from 

5ro + (3K /21T) sin21Tro - (K /21T) 

Xsin21T[2ro - (K 121T) sin21Trol = n, 

n = 1,2,3,4. However complicated this equation may ap­
pear, it is easy to solve it numerically and obtain ro (for suffi­
ciently small K) with ro-n/5 as K~. 

We have thus demonstrated how to construct periodic 
orbits of (B2) existing down to K = O. Our results indicate 
that pairs of stable and unstable periodic orbits with any 
period p exist for K;;.O as predicted by the Poincare-Birkhoff 
theorem. 
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In a Riemannian space Vn general formulas are obtained for geodesic first integrals which are mth 
order polynomials in the tangent vector and which are assumed to depend explicitly on the path 
parameter s. It is found that such first integrals must also be polynomials in s. Necessary and 
sufficient conditions are found for the existence of these first integrals. The existence of many 
well-known symmetries such as homothetic motions (scale change), affine collineations, 
conformal motions, projective collineations, conformal collineations, or special curvature 
collineations are shown to be sufficient for the existence of such first integrals with explicit path­
parameter dependence. To illustrate the theory, geodesic first integrals of this type have been 
calculated for four Riemannian space-times of general relativity. 

PACS numbers: 02.40.Ky, 04.20.Me 

I. INTRODUCTION 
The second order differential equations I 

Dui/ds=dui/ds + rjku'U k = 0, ui dXi/ds (1.1) 

which determine the geodesics of a Riemannian space Vn , 

admit 2n functionally independent first integrals of which at 
least one must depend explicitly on the path-parameter s.z In 
this paper we consider for such differential equations the 
problem of determining mth-order (in the tangent vector ui

) 

first integrals 1 1m!, m = 1,2, "', of the form 

11m) M1m,O) + MI.m'liui, + ... + Mlm"!'iui' ••• uim 
II J1"·',.., 

(1.2) 

where the functionsM~~,::,) = M\~':;(x,s) are completely sym­
metric on all indices i I···i,. Such first integrals will in general 
be inhomogeneous in the tangent vector ui and have explicit 
dependence on the path parameter s. 

For indefinite space-times of general relativity the geo­
desics may be separated into two types-those of the null 
type and those of the nonnull type, as characterized by the 
value of ~ in the relation3 

gijuiui =~. (1.3) 

Accordingly, the formulation of the necessary and sufficient 
conditions for the existence of an mth-order geodesic first 
integral with explicit path-parameter dependence will de­
pend upon the assumed type of geodesic. The procedure for 
formulating the conditions which determine such first inte­
grals for geodesics of a specific type involves the use of con­
straints and is generally more complicated than the proce­
dure for formulating first integrals for arbitrary (both types 
at) goedesics. Therefore, in this paper we shall primarily con­
sider the simpler case of arbitrary geodesics and postpone to 
a later paper a systematic investigation of restricted type 
geodesic mth-order first integrals with explicit path-param­
eter dependence. Thus, throughout this paper unless other­
wise stated the term geodesic shall mean arbitrary geodesic. 

For generality in our analysis, unless indicated other­
wise, we shall assume an n-dimensional indefinite Rieman­
nian space Vn • However, for illustrative purposes we shall 
draw our examples from the V4 space-times of general 
relativity. 

For geodesics certain homogeneous first integrals with 
no explicit path-parameter dependence are known to be con­
comitant with the existence in the Vn of specific infinitesimal 
point mappings of the type4

,5 

(1.4) 

The vectors 5 i which define these mappings are determined 
by "symmetry equations" which involve conditions on the 
Lie deformation of the metric tensor of the Vn • Since certain 
of the new first integrals and their associated conditions de­
rived in this paper will be related to some of these known 
cases, we summarize for later reference the pertinent above­
mentioned known "symmetry equations" and associated ho­
mogeneous first integrals in Table I. 

In Sec. II it is shown that every geodesic first integral 
which is an mth-order (in general inhomogeneous) polyno­
mial in the tangent vector u' and has explicit dependence on 
the path-parameter s must be a polynomial in s. Necessary 
and sufficient conditions for the existence of such integrals 
are given. Detailed formulas for these explicit path-param­
eter dependent first integrals through third order are listed 
in tables in Sec, II. 

In Sec, III it is shown that if there exists one mth-order 
first integral with explicit path-parameter dependence, then 
in general there will exist several such integrals of the same 
order. Tables are given which list such related integrals 
through the third order. 

In Sec. IV it is shown that the existence of a parallel 
vector field is necessary and sufficient for the geodesics in a 
Vn to admit a linear first integral with explicit path-param­
eter dependence. 

In Sec. V quadratic first integrals with explicit depen-
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TABLE I. Well-known symmetry conditions and concomitant geodesic homogeneous first integrals with no explicit path-parameter dependence. a 

Defining Concomitant first 
Symmetry Notation equation integral(s) 

(a) Motion M hij =0 s,u' 

(b) Homothetic HM hij = 2u,g'1 O'('giju'zl 

motion 170 = const s,u' (null geodesic only) 

(c) Affine 
collineation AC h'i' = 0 hiju'ul 

(d) Projective 
collineation PC h'1" = 2gij¢J., + gj' ¢J., (h,; - 4¢Jg'1)u'ui 

+ g,k¢J. j 
(e) Special 

projective SPC h'1.' = 2gij¢J., + g" ¢J., (h'1 - 4¢Jg'1)u'ul 

collineation +g"cb.;, ¢J,v = 0 ¢J u' .' 
(f) Conformal 

motion CM hij = 2ug'1 s,u' (null geodesics only) 

(g) Special 
conformal SCM hy = 2ug,; s,u' (null geodesics only) 

motion U"j = 0 a.lu
l 

(h) Conformal 
collineation CONFC hij,' = 2r.,g'1 (hy - 2rgij)u'ui 

(i) Special 
conformal SCONFC hij;, = 2r.,g'j (hij - 2rgij)u'ul 

collineation T,lj =0 T,f UI 

li) Special 
curvature SCC hij;kI = 0 hy;, u'ulu' 
collineation h,u', h ==g'hh,j 

"hy = / ,gy. The symbol Y'; indicates Lie differentiation with respect to vector S '. 

dence on the path-parameter are shown to be of two basic 
types-those based on scalar fields and those based on vec­
tors fields. For each type certain conditions must be satisfied 
by the field. It is shown that the vector condition is satisfied 
by an affine collineation or homothetic motion (scale 
change). Hence the existence of an affine collineation implies 
the existence of an inhomogeneous quadratic first integral 
with explicit dependence on the path-parameter, in addition 
to the well-known homogeneous quadratic first integral with 
no explicit path-parameter dependence. For the case of a 
homothetic motion (which is a subcase of an affine collinea­
tion) the above-mentioned quadratic first integral with ex­
plicit dependence on the path-parameter reduces by means 
of the metrical quadratic integral to an inhomogeneous lin­
ear first integral with explicit path-parameter dependence. 
For the case of a null geodesic this linear integral further 
reduces to the well-known homogeneous linear integral with 
no explicit path-parameter dependence. 

If vectors which define projective collineations or con­
formal collineations are assumed to be solutions of the con­
dition which is necessary and sufficient for the existence of 
the above-mentioned vector-based quadratic first integral 
with explicit path-parameter dependence, we find that both 
types of collineations necessarily reduce to affine collinea­
tions. By a similar analysis conformal motion vectors are 
shown to be limited to homothetic motions. 

For a nonempty space-time of general relativity it is 
shown that if there exists a quadratic first integral with ex­
plicit path-parameter dependence of the vector-based type 
mentioned above, then there will also exist a conserved 4-

1879 J. Math. Phys., Vol. 22, No.9, September 1981 

current which is dependent upon the energy-momentum 
tensor and the vector. 

In Sec. VI cubic first integrals with explicit path-param­
eter dependence are shown to be of three basic types-those 
based on scalar fields, vector fields, or second rank tensor 
fields. It is found that a vector which defines a special curva­
ture collineation will satisfy the condition for the vector­
based type cubic first integral. Such cubic integrals reduce to 
quadratic first integrals with explicit path-parameter depen­
dence for the cases in which the vector field is either a special 
projective collineation or a special conformal collineation 
(both collineations being subcases of special curvature col­
lineations). In a like manner the cubic integrals associated 
with a special conformal motion reduce to linear first inte­
grals with explicit dependence on the path-parameter. 

In Sec. VII it is shown that a null geodesic inhomoge­
neous quadratic first integral with explicit path-parameter 
dependence (which was derived in Sec. VI as a degenerate 
cubic first integral concomitant with the existence of either 
special projective or special conformal collineations) will ex­
ist whenever the space-time admits any (i.e., not necessarily 
special) projective collineation, conformal collineation, or 
seminull geodesic collineation. It is of particular interest to 
note that this new type of quadratic integral will exist in 
addition to the well-known homogeneous quadratic first in­
tegrals associated with these symmetries. 

To illustrate several of the theorems, we obtain geodesic 
first integrals with explicit path-parameter dependence for 
the following space-times: gravitational plane wave, Ein­
stein static, a perfect fluid, and a Friedmann-Lemaitre. 

G. H. Katzin and J. Levine 1879 



                                                                                                                                    

II. TYPES OF MTH-ORDER FIRST INTEGRALS WITH 
EXPLICIT PATH-PARAMETER DEPENDENCE 

In this section we determine the types of mth-order first 
integrals with explicit dependence on the path-parameter s 
which could possibly be admitted by the geodesics in a Rie­
mannian space Vn and then obtain necessary and sufficient 
conditions for the existence of such integrals. 

We thus assume the geodesics admit an mth-order first 
integral of the form [1m

) given by (1.2) and proceed to deter­
mine what restrictions must be placed on the coefficients 
MI'::!, 1 = O,l, .. ·,m, by requiring that along the geodesicso 

D Jim) ~O. 
ds 

(2.1) 

By substituting (1.2) into (2.1) and carrying out the indi-
cated differentiation [with use of (1.1)] we obtain 

~ [M1mJ). ui""U
i
, C '+ M1m,n uil"'Ui,] ~ O. (2.2) 

.L...t '1'''',,'/ + I I,"""S 

1=0 

In (2.2) the terms may be regrouped to give 

MlmO) + ~ [Mlm,l-lI. +Mlm,l) ]Ui, ... u i, 
,5 "'-' '.""1_ ,;1/ '.'··',.s 

1= I 

+ Mlm,m).. Ui''''U im , I ~ O. 
1.'··'m,l rn + L 

(2.3) 

Since (2.3) must hold for arbitrary geodesics, we require 
that (2.3) be identically zero in the tangent vectors ui and 
obtain (after symmetrization 7) the following necessary con­
ditions on the functions MI':':! for the existence of an mth­
order integral (1.2): 

M;;'O) =0, 

Mimi-I).) + Mimi) = 0, 1 = I, ... ,m, 
{II"'J} _ ,;'1 ','··'/.S 

(2.4) 

(2.5) 

(2.6) 

Equations (2.4)-(2.6) are to be regarded as differential equa­
tions in the n + 1 independent variables Xi,S. 

The set of m + 1 equations given by (2.4) and (2.5) may 
be integrated in sequence with respect to s to yield 

I ( )I-a 
Mlm,l) =" - S clm,a) .. (27) 

',"", ~ (/_)f 1',· .. ,,,;,,,+ I"",)' • 
a=O a. 

where the a-rank tensors (a = O,l, ... ,m) c\mf) = C;".'.'.f)(x), 
I (7 I (Z 

which arise from the process of integration, are completely 
symmetric on all indices i I· .. ia· 

By use of (2. 7) in (2.6) we obtain 

~ (_s)m-a clma). . =0. 
~ ( )f ('.''''0;10 + ,"" m + Jl 

a=O m-a. 
(2.8) 

From (2.8) it follows that 

C~~. . =0 a-Ol m 
(1.""

0
;10' ~ I""m + d ' -, ,.,., • (2.9) 

Hence a necessary condition that [1m
) of the form (1.2) 

be a first integral of the geodesics is that the coefficients 
M;~.~:;(x,s) of(1.2) be expressible in the form (2.7), where the 

coefficients C\':~f:(x) occurring in (2.7) satisfy (2.9). 
Substitution of(2.7) into (1.2) shows that/1m

) must have 
the form 8 

(2.1O) 
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[where the C}':~f!. satisfy (2.9)]' 
By regrouping the terms in (2.10) we may express the 

mth-order first integral [1m
) in the form 

[1m ) = f [Im,a), (2.11) 
a=O 

where 

a = O,l, ... ,m. (2.12) 

Each set of Eqs. (2.9) determined by a given a (say 
a = a') does not involve C's defined by other choices of a. It 
follows that (2.9) may be satisfied by choosing all the C-ten­
sors equal to zero except the one defined by a = a'. In this 
case [1m) reduces to [1m) = [Im,a'), which implies [Im,a') is a 
first integral for a' = 0, l,2, ... ,m. It also follows that a neces­
sary condition for [Ima') to be a mth-order first integral is 
that (2.9) be satisfied for a = a'. 

To show that for a given m and a that (2.9) is sufficient 
for [Im,a) of (2.12) to be a first integral, one may calculate 
D[ Im,a)/ ds and observe that all terms cancel in pairs except a 
term associated with 1 = m - a, which vanishes by use of 
(2.9). It thus follows that (2.9) is also sufficient for [Iml of 
(2.10) to be a first integral. 

We summarize the above in the following theorems and 
corollary. 

Theorem 2.1: In a Riemannian space Vn a necessary 
and sufficient condition for the geodesic equations 

Dui/ds = 0, ui=dxi/ds 

to admit an mth-order first integral of the form 

[1m ) = ~ Mlm:ll(x s)Ui''''U i, L.. J I"'ll' , 

1=0 

(1.1') 

( 1.2') 

(which in general is inhomogeneous in the tangent vectors u i 

and has explicit dependence on the path parameter s) is that 
the coefficients M~~::} must be polynomials in s which have 
the form 

I ( )I-a 
M lmdl_ L - S c(m,a) I 0 I . . - (. .. '1' =, , ... ,m, 

l,"'ll (/_)1 1,"'la;C,{ 1""'/ 

a=O a. 
(2,7') 

where the a-rank symmetric tensors C ~~.'f~(x) are functions 
of Xi which satisfy 

(2.9') 

Theorem 2.2: For a given r the expression 

m -r ( S)I 
[Im:r) = " -=--c(mor). . Ui''''U i

" I (O<r<m), 
I~O 11 '1"'1,.;1,.11"",.+ I 

(2.12') 

TABLE II. Case m = I. Linear first integrals. 1111 = 1
1101 + 11111. 

III) MII:OI MI.I:1)U;' 

" 
Condition 

1 11 :01 C IIOI -sC!~.l»)U" .', 
1 11 :1) CI.I:IIU ' J 

" 
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TABLE III. Case m = 2. Quadratic first integrals. 
/'21 = /,2 01 + /,2,', + /'21'. 

/12' 

[12:0\ C I2 :O) (S2 /2!)C :~,~'UI'UI, 

C I21I U" 
I, 

/12:21 

Condition 

will be an mth-order first integral of the goedesics if and only 
if the r-rank symmetric tensor C ~~.~~;(x) satisfies 

(2.13) 

Corollary 2.A: The integral 1 1m) of Theorem 2.1 can be 
represented in the form 

m 
1 1m ) = L 1 1m,,), (2.11') 

r= 0 

where 1 1m,,) are mth-order first integrals as defined in Theo­
rem 2.2. 

For illustration purposes and later reference we give in 
Tables II, III, and IV for the cases m = 1,2,3 respectively the 
detailed expansions of the formulas occurring in Theorems 
2.1,2.2, and Corollary 2.A. 

Remarks concerning Tables II, III, IV: In each table the 
sum of the terms in the row (excluding the entry in the "con­
dition" column) markedl lm:

r
) corresponds to (2, 12') ofTheo­

rem 2.2. For example, from Table III we read (for m = 2, 
r= 1) 

(2.14) 

Also in each table the sum of terms in the column headed 
M)~,~;/)U""'Ui, (for a given m and I) corresponds to a term in 
(1.2') of Theorem 2.1. For example, from Table III we read 

MI2:2)U i'U i, = (£.CI2:0)_ SCI2:1) + CIZ:2))U i'Ui2 . (2.15) 
'l'~ 2! ,1"2 ']>'2 ','2 

An entry in the last column marked "condition" corre­
sponds to (2.13) of Theorem 2.2. For example, in Table III 
the equation 

(2.16) 

represents the necessary and sufficient condition that I 12: 1) be 
a quadratic first integral. 

III. SPECIAL MTH-ORDER FIRST INTEGRALS 
We now shall show how the existence of an mth-order 

first integral I lmr) (O<r<m - 1) of the type described by 

(2.12') of Theorem 2.2 implies the existence of additional 
mth-order first integrals which we shall call special mth­
order first integrals. 

Assume then that for some r (O<r<m - 1) there exists 
an r-rank symmetric tensor C \~.:~; such that (2,13) of Theo­
rem 2.2 is satisfied and hence an mth-order first integral 
I lm:r) (2.12') exists. Based upon this C\.~~~; we define a sym­
metric tensor *C\~:~,:~) of rank r + k (l<k<m - r) by the 
relationship 

*C1m:r+k)=Clm:r!. . . (31) 
',"",.-+ k (""",. ;1,,+ 1"",.+ I,) • 

From (3.1) we observe that covariant differentiation of 
*C )~.:.~,: ~) followed by symmetrization yields 

*C I?,:r.+ k '. . = C Im:r). " '. (3 2) 
(1""',+k;lr+k-+I""rnt,1 (ll""r;lr-+I""~-tkl"+k+I""m+l) • 

By the above assumption that C\~.~~; satisfies (2.13) it 
follows the right-hand side of(3.2) is zero and hence so also is 
the left-hand side, i.e., 

(3.3) 

By comparison of(3.3) with (2.13) it is observed that the 
(r + k )-ranksymmetric tensor *C\~:~,:~) defined by(3.1)will 
satisfy (2.13) with r replaced by r + k. By Theorem 2.2 Eq. 
(3.3) is a necessary and sufficient condition for the expression 
* I Im:r + k) defined by 

m -f+ k) ( S)I . *llm:r+k)= ~*Clm:~+k) . ui''''U1nk-t1 
- 1=0 It ',"'lr+k;l,,-+ k+ ,"·',..+-k+/ 

(l<k<m - r, O<r<m - 1), (3.4) 

to be an mth-order first integral. By use of (3.1) this integral 
can be rewritten in the form 

*1 Im:r + k) = __ s_C I.m:r) .' . . Ui, ... U " + k + I 
m-f+k)( - )1 . 

1=0 I! ',"",.,lrl_I'··',.+k'··',.+k+-1 

(/<k<m - r), O<r<m - 1), (3.5) 

which we refer to as a special mth-order first integral o/type 
(r+k). 

The above discussion leads to the following theorem 
and corollaries. 

Theorem 3.1: In a Riemannian space Vn the condition 

C lm:r) - 0 0/';;;: 1 
(i,···i, ;i,+ I,,·im + d -, """r""m - , 

on the symmetric r-rank tensor C)~.~~;(x) is necessary and 
sufficient for the existence of each of the N = m - r + 1 
mth-order geodesic first integrals 

m -r( S)I . 
1 1m,,)=: L ~clm:r).. . ui'· .. u'n I (O<r<m - 1), 

1=0 I! l •••• lr,lr+ \"'lr t I 

(3.6) 

TABLE IV. Case m = 3. Cubic first integrals.['" = [11:01 + [,., Ii + [In! + [,.I,". 

IIJI 

/ 1'01 

/ 1.1:]1 

1881 

M 1JO) 
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- SC~~ii~)Ui'Uil 

C;·:il2IUiIUil 

- (sJ/3!)C:;l,:i~L Ui'Ui1U" 

Is2 /2!)C j~i/l;l Ui'U'lU(' 

- sC ~~il~;' ui
'U' ly i, 

C!.3:3)U i'U'lu l , 
,,121, 

Condition 

G. H. Katzin and J. Levine 1881 



                                                                                                                                    

TABLE V. Linear first integrals concomitant with I" 0'. 

Type First integrals with nee. and suff. 
condo C"'" = 0 ,/,' ~ 

(O<r<m - 1, k = 1, ... ,m - r). 

k 11 01 

kilO II 

(3.5') 

Corollary 3A: If the geodesics in a Vn admit at least one 
of the set 

S lrnorl={Ilm,rl'*Ilm,r+ II *Ilmor+ 21 *Ilmor+ (m ~ rll} - , , , ... , 
of N = m - r + 1 mth-order first integrals (described in 
Theorem 3.1), then the geodesics will admit all N of the inte­
grals in the set Sirnori. 

We illustrate Theorem 3.1 and Corollary 3.A for the 
values m = 1,2,3 and all applicable values of k and r by 
means of Tables V-x. 

Remarks concerning Tables V-X: In each of the Tables 
V-X the row I(m,rl, which represents an integral II",orl, 

r = O, ... m - 1, has been selected from either Table II, III, or 
IV, depending upon the vaue of m. The remaining rows in 
Tables V-X are special first integrals and are designated by 
*Ilmor+ kl, k = 1, ... ,m - r, as described in Theorem 3.1. For 
each row the entry in the column headed " ~ " represents 
the numerical value which the integral in that row assumes 
along a geodesic. Note that all the integrals in a given table 
have the same necessary and sufficient condition as de­
scribed in Theorem 3.1. This implies that if any row of a 
given table is known to be a first integral then all rows in that 
table will be first integrals as set forth in Corollaries 3.A and 
3.B. 

With reference to Tables V-X we shall now show how 
each set of mth-order first integrals associated with a par­
ticular necessary and sufficient condition may be expressed 
in a simplified alternative form. We shall illustrate this pro­
cedure for the set of integrals in Table VIII. 

From Table vln by means of the integral *1(3,0 +- 31 the 
integral *1 i3'0 + 21 may be expressed in the form * j (3,0 + 31, 

where 
* j(3,0 + 21=C(3,0IU"Ui! _ sk (M + 3) ~ k 13 ,0 + 21. (3.7) 

,I It ~ 

By means of *1 (3,0 + 3) and (3.7) the integral *1 (30 + II may be 

expressed in the form *j(3,0 r II, where 
* j(30 + II=C (3,0)U i, _ sk (3,0 + 2) _ (s2/2!)k 13,0 ~ 31 = k (3,0 + I I . 

• 1, (3.8) 

T ABLE VI. Quadratic first integrals concomitant with I" "'. 

Type 

IIJ()I 

1882 

First integrals with nee. and suff. 
condo C~~:'(I);i'l = 0 
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k 12:01 

k [20 j II 

TABLE VII. Quadratic first integrals concomitant with /,' ". 

Type 

[12 II 

'* l'~ I II 

First integrals with nee. and suff. 

condo C::, :;,,' = 0 

C1211U" 
" 

- SC!l I'U"U" ',,/, 

C I2I 'U i ,U" 
i,!, 

k'" , 

Finally by means of*I(3,0 + 31, (3.7), and (3.8) the integral I(HII 

may be expressed in the form * jl301, where 

* jl3,01=C (HII _ sk (30 + II _ (s2/2!)k IHI + 21 _ (s.l/3!)k (.10 I " 

= k(3,01. (3.9) 

By a similar procedure the set of integrals in each of the 
Tables V-X may be rewritten to obtain Tables VA-XA, 
respecti vel y. 

With reference to the integrals in Tables V A-XA we 
next point out an alternative interpretation, which is sug­
gested as a consequence of transposing to the right-hand side 
of the equal marks all terms in which s appears explicitly. 
For example, ifin (3.8) (refer to Table vln A) the terms 
involving s are transposed to the right-hand side, the result­
ing equation has the form 

C:;,OIU" ~ k (30 + I) + sk (30 + 2) + (s2/2!)k 130 + 31. (3.10) 

The left-hand side of(3.1O) may be regarded as a "pseudolin­
ear first integral" in the sense that, although it is not constant 
along the geodesic, its variation along the geodesic is ex­
pressible as a (quadratic) polynomial (with constant coeffi­
cients) in the path parameter s. Similarly the leading term of 
each * j or j type first integral in Tables V A-XA may be 
expressed as a pseudofirst integral. For example, from Table 
IXA we obtain from *i131 ~ II the pseudoquadratic first inte­
gral C;~:/)Ui'UI! in that 

(3.11 ) 

(We note this pseudoquadratic first integral varies linearly 
with s along a geodesic.) 

I t is of interest to observe that the derivative D / ds 
(along a geodesic) of a pseudofirst integral associated with 
row r of an A Table will give a pseudofirst (or first) integral 
associated with row r + 1 of the table. For example, from the 
pseudo-integral (3.10) which is associated with row two of 
Table VIllA we obtain by differentiation the pseudo­
integral 

(3.12) 

associated with row three. 
It is clear how the Tables in Secs. 2 and 3 based on 

m = 1,2,3 and the above remarks concerning pseudofirst in­
tegrals can be extended to general values of m. 

IV. LINEAR FIRST INTEGRALS WITH EXPLICIT PATH­
PARAMETER DEPENDENCE 

In this section we shall elaborate on linear first integrals 
of the type /(10) (m = 1, r = 0) which appear in Table V. 
Such integrals are based on a scalar C (I 'Ol(x). A necessary and 
sufficient condition for the existence of these integrals is 
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TABLE VIII. Cubic first integrals concomitant with 11.101. 

Type First integrals with nee. and suff. condo C 'i~,~:,.i'l = 0 

Ill!)) (05' 12!)C ';',::'u"u l
, _ (s.1/3!)C:;',:::. ui'U"Ui• 

(s'/2!)C ';',:::. u"ui,u" 

k1.H1 ) 

*/'\() j II 

(4.1) 

Equation (4.1) is recognized as the condition that the vector 
C ~~Ol defines a parallel field. Hence we may state the 
theorem. 

Theorem 4.1: A necessary and sufficient condition that 
the geodesic equation (1.1) of a Vn admit a linear first integral 
with explicit dependence on the path parameter s is that the 
Vn admit a field of parallel vectors C ~l'O). Such integrals have 
the form 

(4.2) 

As is well known, every parallel vector field defines a 
motion (Killing vector) and hence the term C ~:'O)Ui appearing 
in (4.2) is also a linear first integral [refer to (a), Table I]. (This 
integral is denoted in Tables V and VA by */(1,0 + I).) Hence 
[11,0) of (4.2) can be expressed in the form ilia) of Table VA. 

We illustrate the above by means of the following exam­
ple from general relativity. Consider the gravitational plane­
wave space-time V4 defined by the line element9 

d¢J 2 = _ (dxl)2 _ (dX2)2 _ (dX3)2 + (dX4)2 

+ 2j(Xt,X2,Z) (dX3 - dX4)2, (4.3) 

whereZ =X3 - X4 and the functionjsatisfies/I I +/22 = 0. 
Based on the scalar C(1,01=x4 

- X3 a (null) parallel vector 
field with components C ~:Ol = (0,0, - 1,1) exists in this 
space-time. 

The geodesic equations ( 1.1) in this V4 take the form 

(4.4) 

(4.5) 

TABLE IX. Cubic first integrals concomitant with I"". 

kIJ:O' II 

k(.1..0! 21 

(4.6) 

(4.7) 

For the plane-wave space-time being considered the 
linear first integral with explicit path-parameter dependence 
(4.2) takes the form 

(4.8) 

and the first integral */(1,0 + II of Table V takes the form 

(4.9) 

Direct verification that (4.8) and (4.9) are first integralS 
follows immediately by use of the relation 

du4 du 3 d 4 3 c 

---=-(u - u) ='=0, 
ds ds ds 

(4.10) 

obtained from the geodesic equations (4.6) and (4.7). 

Type First integrals with nee. and suff. condo C:;~.:;i.'" = 0 

(52 /2!)C ;.~'.'i~:, UI'UilU" k(J:', 

_ SCi.' .11, UilUllUi, 
/,1 1:1, 

k (.,'1 + 21 
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TABLE X. Cubic first integrals concomitant with 11321. 

Type First integrals with nee. and suff. 
condo Cu." = 0 (I, 'l:'.I~t 

v. QUADRATIC FIRST INTEGRALS WITH EXPLICIT 
PATH·PARAMETER DEPENDENCE 

In this section we shall first examine more closely the 
explicit path-parameter dependent quadratic first integrals 
of the geodesics ofa Vn • We observe from Tables VI and VII 
that the existence of such integrals depends upon the exis­
tence of certain scalar or vector fields. 

With reference to Table VII we first consider the neces­
sary and sufficient condition 

QU2) =0 (5.1) 

which the vector field C~2'1) must satisfy in order that the 
geodesics admit the quadratic first integrals [(21) and 
* [12, I + I) of the above-stated type. 

When the indicated symmetrization in (5.1) is carried 
out, the six terms which result may be grouped into three 
pairs in such a way that (5.1) is expressible in the equivalent 
form 10 

hij'k + hjk'i + hki,j = O,hij-% c,21Igij' 

Alternatively, by use of the identity I I 

C12,l) + C12,1) + CI2'.lI=CI2,1) + CI2;1) + C12,1) I,jk j,kl k,y I,kj j;lk k'jI' 

(5.2) 

(5.3) 

Eq. (5.1) [and hence (5.2)] can be given the equivalent form 

(5.4) 

We combine in the theorem to follow the above results 
related to the vector-based quadratic first integrals of Table 
VII with the information related to scalar-based quadratic 
first integrals of Table VI. 

Theorem 5.1: If the geodesics (1.1) in a Vn admit qua­
dratic first integrals with explicit dependence on the path 
parameter s, then such integrals may be divided into two 
classes: 

(i) those based upon the existence of a scalar C I2,O)(X) 

which satisfies a necessary and sufficient condition 

C:~j~)) = 0, 

in which case the integrals are of the form 

[12,O)=C 12,0) _ sC 12,O)U i + (S2 /2)C 12;0)u iui 
,l ;y' 

TABLE VA. Combined linear first integrals concomitant with I,I"'. 

Type 

*/1101 11 

1884 

Combined first integrals with nee. and 
suff. con. C~('i~(:!l = 0 

C(IO) _skllOtll k 11 :01 

kil.O I II 
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(5.5) 

(5.6) 

(5.7) 

TABLE VIA. Combined quadratic first integrals concomitant with 1 ,20
). 

Type Combined first integrals with nee. 
and sutf. condo C:ii,(:~i'l = 0 

jlHlI C".OI _Sk(2.0 I II 

C~~'())U" 

_ (s2/2!)k 12.0 , 21 

_ Sk{2:0 I 21 *j(2:0+ 11 
.'. 

*1(2;0 t- 2) C {~'O)Ul, u" :',/, 

k (2:01 

k12:O 111 

k12:O I 2) 

(ii) those based upon the existence of a vector C~21)(X) 
which satisfies either of the equivalent necessary and suffi­
cient conditions 

hij'k + hjk'i + hki,j = 0, hij=S£' Cll I)gij' 

or 

CllI) + C12,1) + C12,1) = ° 
l; Jk J;kl k;lJ ' 

in which case the integrals are of the form 

(5.2') 

(5.4') 

[(21)=C ~2'I)Ui _ sC ~~/)uizJ. (5.8) 

We now consider two important special solutions of 
(5.2') for vectors C~21) which define well-known geometric 
symmetries mentioned in Table I. By inspection of (b) and (c) 
of Table I it is seen that a proper homothetic motion or a 
proper affine collineation vector will satisfy (5.2') in that for 
such vectors hij'k = 0. Hence by Theorem 5.1 (ii) each of 
these vectors will define a quadratic first integral with explic­
it path-parameter dependence in addition to the well-known 
concomitant first integral with no explicit path-parameter 
dependence given in Table I. We may therefore state the 
theorem which follows: 

Theorem 5.2: If a Vn admits either 
(i) a proper affine collineation in that there exists a vec­

tor S i(AC) such that hij'k = 0, hij=% slAClgij #0, or 
(ii) a proper homothetic motion in that there exists a 

vector S i(HM) such that hij = 2urgij' uo-const#O, 
hij_JE' sIHM)gij' then the geodesics (1.1) of the V" will admit 
an inhomogeneous quadratic first integral with explicit de­
pendence on the path parameter S. In either case (i) or (ii) this 
integral is expressible in the form 

(5.9) 

where in case (i) 5 i s i(AC), and in case (ii) S i=S i(HM). 
By use of the relation JE'sgU=SiJ + Sj,i Eq. (5.9) is ex­

pressible in the form 

[12,1) = tui - ¥(JE' sgij)uizi. (5.10) 

It then follows for case (ii), in which S i defines a proper 
homothetic motion, that (5.10) can be written in the form 

(5.1 I) 

TABLE VIlA. Combined quadratic first integrals concomitant with / 12
1). 

Type 

j12:11 

*/12:1 + 11 

Combined first integrals with nee. and 
suff. condo C:;.~~i.1 = 0 

_ skill + II k i21i 

k 12, 1 ~ 1\ 
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TABLE VIllA. Combined cubic first integrals concomitant with [1 3,0). 

Type Combined first integrals with nee. and sulf. condo C:i/,~;i,i,) = 0 

i I3 ,O) 

• j(3:0 I II 

_SkI3,0+ I] 

C::,O)ui, 
• j(3'0+ 21 

*]IJ:O f .'1 

By use of (1.3) in (5.11) we are led to the following corollary 
to Theorem 5.2 (ii). 

Corollary 5.A: If a Vn admits a homothetic motion 
[S i = S i(HM), defined by (b) Table I] the expression 

L (HM) = Si(HM)ui - E(J'cp (5.12) 

will be a linear first integral of nonnull geodesics when 
E = ± 1 (in which case the parameter s is the arclength, or a 
linear first integral of null geodesics when E = O. The inte­
gral L (HM) is a degenerate form of the quadratic first inte­
gral I(Z,I) of Theorem 5.2.12 

To illustrate Theorem 5.2(ii) and Corollary 5.A we con­
sider the space-time with line element 13 

d<p 2 = (X4)2ao[(dx 1f + (dX2)2 + (dX3)2] 

(5.13) 

This space-time admits a homothetic motion defined by the 
vector S i(HM) with components 

sV(HM)=(l-ao)xV, v= 1,2,3, S4(HM)=x4,(5.14) 

and scale factor (J'o = 1. For this space-time the geodesic 
equations (1.1) take the form 

du v Ids + 2ao(x4)-luVu4 = 0, v = 1,2,3, (5.15) 

du41ds + ao(x4fa,,-,uVuv = O. (5.16) 

Based on the homothetic motion vector (5.14) and scale 
factor (J'o given above, we have from (5.12) that the geodesic 
equations (5.15) and (5.16) admit the first integral 

J~~ =(1-ao)(x4)2aoxVuv_x4u4_Es. (5.17) 

It is easily verified that I~~ is a first integral by showing 
d/~~/ds ~ 0 with the aid of (5.15), (5.16) and the metrical 
first integral (x4)2aouvuv _ U4U4 ="= E. 

Another illustration of parameter-dependent quadratic 
first integrals is contained in the example given at the end of 
Sec. VI. 

We now continue the investigation which led to Theo­
rem 5.2 to determine if vectors S i which define certain sym­
metries (refer to Table I) other than the above discussed af­
fine collineation and homothetic motions could also satisfy 

TABLE IXA. Combined cubic first integrals concomitant with [13,1). 

_ (s2/2!)k 130 + 2) 

_ sk 13,0 r 2) 

C I30)U i,ui • 
,I,,: 

_ (s3/3!)k 130 r 3) 

_ (S2 /2!)k )3.0 .. 3) 

_Sk I3,0+31 

C(~:()l. U"U':U/' 
:, I'~I, 

k l.Hl) 

k13,O + I) 

k 13,0+ 21 

k (3:0 +- J) 

(5.2') [or equivalently (5.4')] of Theorem 5.1. 
First we consider whether or not (5.2') could be satisfied 

by a vector C\2:1)==Si(PC) which defines a projective collin­
eation [refer to (d), Table I]. For this case it would be neces­
sary that (5.2') and the projective collineation condition 

hij;k = 2gij<P.k + gjk<P.i + gik<P. j , hij=Y s(PC)gij,(5.18) 

be satisfied by the same vector 5 i. When hij;k as determined 
by (5.18) is used in (5.2'), we find that <P,i = 0, which implies 
that hij;k = 0, and hence the assumed projective collineation 
is reduced to an affine collineation. 

In a similar fashion it can be shown that if a conformal 
collineation [refer to (h), Table I] vector 5 i(CONFC) is to 
satisfy (5.2'), the conformal collineation is reduced to an af­
fine collineation. 

It is also easily shown that if (5.2') is to be satisfied by a 
conformal motion vector S i(CM) [refer to (f), Table I], then 
the conformal motion reduces to a homothetic motion 
(which is a subcase of an affine collineation). 

As discussed above every affine collineation vector will 
satisfy condition (5.2'). Hence we may state the following 
theorems: 

Theorem 5.3: In a Vn a vector S i(pC) which defines a 
projective collineation (refer to Table I) will also be a solution 
to (5.2') of Theorem 5.1 if and only if the projective collinea­
tion is an affine collineation. 

Theorem 5.4: In a Vn a vector S i(CONFC) which de­
fines a conformal collineation (refer to Table I) will also be a 
solution to (5.2') of Theorem 5.1 ifand only if the conformal 
collineation is an affine collineation. 

Theorem 5.5: In a Vn a vector 5 i(CM) which defines a 
conformal motion (refer to Table I) will also be a solution to 
(5.2') of Theorem 5.1 if and only if the conformal motion is a 
homothetic motion. 

To conclude our discussion of the relationships of cer­
tain well-known symmetries to those vectors which satisfy 
(5.2'), we now determine a necessary condition which must 
be satisfied by a curvature collineation vector in order for it 
to satisfy (5.2'). 

Type Combined first integrals with nee: and sulf. condo C::,:~;i,i'l = 0 

j 13.11 

*iI3:1 + I) 

*[(3.1 t- 21 
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_SkI3'1 + I) 

C(.3.:.I)Ui'UI~ 
",l~ 

_ (s2/2!)k 13,1 + 21 

_ sk 13d +21 

Ct.):.l), Ui'Ui~UI\ 
I,;I~I \ 

k 13 ,11 

k13,1 + I) 

kin + 21 
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TABLE XA. Combined cubic first integrals concomitant with JI'21. 

Type Combined first integrals with nee. and suff. eond. C:;,'i~:i.i.1 = 0 

jl}21 

*JlH+11 

A curvature collineation is defined by a vector S i(CC) 
which satisfies the conditionS 

(5.19) 

It can be shown that a necessary condition for a curvature 
coUineation is 

hij;kl - hij;lk = 0, hij=it" sgij' 

We first use the identityl4 

it" sr;k =y!il (hjl;k + hk/;j - hjk;/) 

to express (5.2') in the equivalent form 

(5.20) 

(5.21) 

it"t;r;k = -i'hjk;/. (5.22) 

By useof(5.22) in (5.19) we find that if a vectors i is to define 
a curvature collineation and also satisfy (5.2'), then it must 
satisfy 

h1k;ij - hjk;iI = 0. (5.23) 

By covariant differentiation of (5.2') we obtain 

hij;kl + hjk;iI + hki;j1 = O. (5.24) 

From (5.24) by use of(5.20), (5.23), and the fact that hij = hp 
we find the curvature collineation must satisfy 

hij;k/ = 0, (5.25) 

which [refer to (j) of Table I] is the condition for a special 
curvature collineation. We may thus state the following 
theorem: 

Theorem 5.6: In a Vn a necessary condition for a curva­
ture collineation vector S i(CC) to be a solution of (5.2') of 
Theorem 5.1 is that the vector S I(CC) define a special curva­
ture collineation (refer to Table I). 

We continue our analysis of (5.2') by showing how the 
existence in Riemannian space-time of a vector S i which 
satisfies (5.2') implies the existence of a concomitant con­
served 4-current. 

It follows by use of(5.22) [the above-derived equivalent 
form of(5.2')] in the identity given in (5.19) that a necessary 
condition for a vector S i to satisfy (5.2') is 

it" sR ~/j = gim(h1k;mj - hjk;ml)' 

Contraction of i and j in (5.26) gives 

(5.26) 

it" sRkl = im(h,k;ml - hik;ml)' (5.27) 

By use of(5.24) with a suitable change of indices we may 
rewrite (5.27) in the form 

1886 

it" sRkl = - gim(hkm.li + hml;ki + hik;ml)' 

From (5.28) we obtain the equation 

gklit"sRkl = - 3h~il' 

By use of (5.29) in the known identity 15 
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(5.28) 

(5.29) 

_SkIH+II k 13>21 

k(},2 t II 

(5.30) 

we obtain as a necessary condition for a vector S I to satisfy 
(5.2') 

(5.31) 

By means of the Einstein field equations in the form 16 

R ~ = T~ - ~To~ (5.32) 

condition (5.31) is expressible in the form of conserved 4-
current 

J;I =0, (5.33) 

where the current vector JI is defined by 

J 1 == (T ~ - ~ ToUS k + ~h ~i . (5.34) 

An alternative form for J I will now be obtained. From 
the identity h kl gkiglmhim and the definition hij==-Si;j + Sj;i 
we obtain the identity 

(5.35) 

By of contraction of (5.4') with i k [and the notational 
change C~21) = S;] we obtain 

02Sm + S ~mk + S ~km = O. (5.36) 

Use of(5.36) in (5.35) gives 

h'J = - ims ~m' (5.37) 

By meansof(5.37) and (5.34) we obtain the above-mentioned 
alternative form of J I: 

JI = (T~ - ~To~ )Sk - ~lmS~km' (5.38) 

We summarize the above in the theorem to follow: 
Theorem 5.7: Ifthe geodesics (1.1) in a Riemannian 

space-time of general relativity admit a quadratic first inte­
gral (with explicit dependence on the path parameter s) of the 
form 

as described in Theorem 5.1(ii), then the space-time will ad­
mit a conserved 4-current J 1 (x) in that J ~I = 0, where J 1 is 
defined in terms of the energy-momentum tensor T; and the 
vector S I by (5.38) [or equivalently (5.34)]. 

Remark: We note that for the case in which the vector 
St of Theorem 5.7 defines an affine collineation (hij;k = 0) 
then the current vector J I reduces to a form discussed 
elsewhere. 15 

Remark: By use of the Ricci identity the necessary con­
dition (5.36) for the existence of a solution to (5.4') may be 
expressed in the form 17 

2 k f:kR 0 o S m + 2S ;km - !:o km = . (5.39) 
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VI. CUBIC FIRST INTEGRALS WITH EXPLICIT PATH­
PARAMETER DEPENDENCE 

In this section we examine in detail the explicit path­
parameter dependent cubic first integrals of the geodesics 
which are given in Tables VIII, IX, and X. From these tables 
it is observed that the existence of such cubic integrals de­
pends on the existence of certain scalar, vector, or second 
order tensor fields. 

With reference to Table IX we first consider the neces­
sary and sufficient condition 

C(31) ° li;)1.1I = (6.1) 

which the vector field C ~31) must satisfy in order that the 
geodesics admit the cubic first integrals 1 (31 ) and *1 13 ,1 + lI. 

The 24 terms in the expansion of (6.1) can be grouped 
into 12 pairs which may be written in the form 

hij;kl + hlj;lk + h,k;jI + hik;1j + hil;jk + hil;kj + hik;1i 

+ hjk;il + hil;ki + hjl;lk + hkl;lj + hkl;j, = 0, hlj=,!/' C" "gij' 

(6.2) 

By use of the identity II 
C I3;1) + CI3;1) + CP;II=CI3,1) + C(31) + C(3;1) 

I; jkl j;kll k;ij/ - I;kjl j;,kl k; P/ (6.3) 

Eq. (6.1) [and hence (6.2)] can be expressed in the equivalent 
form 
C13,11 + CI3,1) + CI3,1) + CI3,1) + C(3,1) + C I3;1) + C 13 ,11 

f;l.h I.,ljl I;jk, k;lij I"kj I;klj I;ijk 

+ CI3 II + C(3,11 + C(3,1) + C(3,1) + C 13 ,11 - ° 
l; )11. j;lik I; jkl j;kll k;ij/ - . (6.4) 

The above results relating to the vector-based cubic first 
integrals of Table IX may be combined with information 
obtained from Tables VIII and X (relating respectively to 
scalar-based and tensor-based cubic first integrals) into the 
following theorem. 

Theorem 6.1: If the geodesics (1.1) in a Vn admit cubic 
first integrals with explicit dependence on the path param­
eter s, then such integrals may be divided into three classes: 

(i) those based upon the existence of a scalar C (30)(x) 
which satisfies a necessary and sufficient condition 

CIH)) ° :11)1.:1) = , 

in which case the integrals are of the forms 

/ 130,=c 13,01 _ sC 13;01U I + (S2 /2)C 130)ului 
,I ,IJ 

- (s3/6)C~t2IUluiu\ 

*1 (3;0 + I )-C (3;O)UI _ sC 13 ;0)u lui + (s2/2)C (3.;O)U iu'· k 
,I;lj ;lJk U , 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(ii) those based upon the existence of a vector C\31)(X) 

which satisfies either of the equivalent necessary and suffi­
cient conditions 

hij;kl + hU'/k + hlk;j/ + hlk;1j + hil;jk + hil;kj + hjk;1i 

+ hjk;iI + h}/;ki + hjlJk + hkl;u + hkl;p = 0, hu=St' cn "gu' 

(6.2') 

or 

Cli)1 + CI311 + CI31 1 + C 131) + CI3;1) + CI],I) + C(3,1) 
f' , k;ll' I;fkl k;li} Uki l;kl; I;Uk 

+ C(·l,n + CI-',I) + CI.l,I) + C13;11 + C(3,1) - ° (6.4') I;)'" J~"k I; ;kl j;kil k;ljl - , 

in which case the integrals are of the forms 
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* 1(31 + l)=CI;'/uiui - sC;~jl)uiuiuk; (6.10) 

(iii) those based upon the existence of a symmetric ten­
sor C IJ 2)(x) which satisfies a necessary and sufficient 
condition 

C :t:~)/ I = 0, 

in which case the integral is of the form 

/1 3,2) C 1],2)u iui _ sC 13:2)u luiu k 
I) I);/.:.' 

(6.11) 

(6.12) 

By inspection of Table I we observe that any vector 
S I(SCC) which defines a (proper) special curvature collinea­
tion will be a solution to (6.2') in that S i(SCC) vectors satisfy 
hU;kl = 0. Hence by Theorem 6.l(ii) such vectors will define 
cubic first integrals with explicit path-parameter depen­
dence. These integrals are in addition to the known concomi­
tant first integrals with no explicit path parameter depen­
dence given in Table I. We may therefore state the theorem 
which follows. 

Theorem 6.2: If a V" admits a proper special curvature 
collineation in that there exists a vector S i(SCC) such that 
h ij;kl = 0, h U;k # 0, h ij = JE' !; ISCc) g u, then the geodesics (1.1 ) 
of the V" will admit the inhomogeneous cubic first integrals 
(with explicit dependence on the path parameter s) of the 
types 

/131)=SiUi - SSi:jUiu' + (s2/2)Sr;}kUiuiuk, 

*/(3:1 + 1)=k.Uiu'· _ Sk Ulu'U k 
~I:) ~'-,jk , 

where in each integral Si =Sr (SCC). 
We now investigate whether vectors S i(PC), 

(6.13) 

(6.14) 

S '(CONFC), or S '(CM) which define projective collineation, 
conformal collineations, or conformal motions, respectively, 
(refer to Table I) could be solutions to (6.21), and thus deter­
mine cubic first integrals with explicit path-parameter 
dependence. 

We start with the assumption that the Vn admits a pro­
jective collineation determined by a vector S i(pC) which 
hence satisfies the defining relation (5.18). Use of (5.18) in 
(6.2') leads to 

gU¢;kl + gjk¢;il + gik¢;jl + gjl¢;ik + gll¢;kj + gk/¢;ij = 0. 
(6.15) 

By contraction of (6.15) it follows that ¢;u = 0; hence the 
projective collineation must be a special projective collinea­
tion5 [(e), Table IJ. With ¢;u = 0, it follows from (5.18) that 
hij;k/ = 0. Thus a sufficient condition for (6.2') to be satisfied 
is for the vector S 1 to define a special projective collineation. 
We state this in the form of a theorem. 

Theorem 6.3: In a Vn a necessary and sufficient condi­
tion that a (proper) projective collineation vector [(d), Table 
I] satisfy (6.2') of Theorem 6.1 is that the vector be a special 
projective collineation vector [(e), Table I]. 

By referring to [0), Table I] it is seen from the discussion 
preceeding Theorem 6.3 that every special projective collin­
eat ion vector [(e), Table I] is a special curvature collineation 
vector. Theorem 6.2 is therefore applicable for associating 
cubic first integrals which have explicit path-parameter de­
pendence with the existence of special projective 
collineations. 
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By means of (5.18) the cubic expression Si;jk UiUjU k oc­
curring in the last term of both cubic integrals (6.l3) and 
(6.14) may be expressed in the form 2cP.kUkgijUi~. With use of 
the metrical first integral] gijUi~ ~ £ this cubic expression 
reduces to 2£cP.kUk

• This leads us to the theorem: 
Theorem 6.4: If a Riemannian space-time admits a spe­

cial projective collineation [S i=S i(SPC) defined by (e), Table 
I] the functions 

Q(SPC) = (Si + £S2cP,i)U i - SSi;jUi~, 

*Q (SPC) = - 2£s"'ui + f:.Ui~ 'fJ,1 !J I;j , 

(6.16) 

(6.17) 

will be quadratic first integrals of non null geodesics when 
£ = ± 1 (in which case the parameter s is the arc length) or 
quadratic first integrals of null geodesics when £ = O. The 
integrals Q (SPC) and *Q (SPC) are degenerate forms of the 
cubic first integralsI(3,1) and *1(31), respectively, of Theorem 
6.2. 

Remark: Note that *Q (SPC) reduces to an integral with 
no explicit path-parameter dependence when £ = 0 [refer to 
the quadratic integral obtained from (e), Table I for null 
geodesics]. 

In a like manner results similar to those obtained above 
for projective collineations which satisfy (6.2') may be shown 
to hold for conformal collineations [(h), Table I] or confor­
mal motions [If), Table I] which satisfy (6.2'). These results 
are given in the theorems below. 

Theorem 6.5: In a Vn a necessary and sufficient condi­
tion that a (proper) conformal collineation vector [(h), Table 
I] satisfy (6.2') of Theorem 6.1 is that the vector be a special 
conformal collineation vector [(i), Table I]. 

Theorem 6.6: If a Riemannian space-time admits a spe­
cial conformal collineation [S i -S i(SCONFC) defined by (i) 
of Table I], the functions 

Q(SCONFC) = [5; (£/2)S27,i lUi - SSi;jUi~, (6.18) 

(6.19) 

will be quadratic first integrals of nonnull geodesics when 
£ = ± 1 (in which case the parameter S is the arc length) or 
quadratic first integrals of null geodesics when £ = O. The 
integrals Q (SCONFC) and *Q (SCONFC) are degenerate 
forms of the cubic first integrals I (31) and *1 (31), respectively, 
of Theorem 6.2. 

Remark: It is noted that *Q (SCONFC) reduces to an 
integral with no explicit path-parameter dependence when 
£ = 0 [refer to the quadratic integral obtained from [(i), Ta­
ble I] for null geodesics. 

Since every conformal motion is a conformal collinea­
tion [in which case 7==:a; refer to (f) and (h) of Table I] we 
have the following theorem. 

Theorem 6.7: In a V" a necessary and sufficient condi­
tion that a (proper) conformal motion vector [If), Table I] 
satisfy (6.2') of Theorem 6.1 is that the vector be a special 
conformal motion vector [(g), Table I]. 

By use of the conformal motion condition [If), Table I] 
the quadratic expression Si;jUi~ occurring in (6.18) and 
(6.19) may be expressed in the form agijui~. We may thus 
state the theorem to follow. 

Theorem 6.8: If a Riemannian space-time admits a spe-

1888 J. Math. Phys., Vol. 22, No.9, September 1981 

cial conformal motion [Si=si(SMC) defined by (g) of Table 
I], the functions 

L (SCM)==: - £sa + [Si + £(s2/2)a.i lUi, (6.20) 

*L(SCM)=£(a-sa.iut (6.21) 

will be linear first integrals of nonnull geodesics when 
£ = ± 1 (in which case the parameter s is the arc length) or 
linear first integrals of null geodesics when £ = O. The inte­
grals L (SCM) and * L (SCM) are degenerate forms of the cu­
bic first integrals 1(31) and *1(3'1), respectively, of Theorem 
6.2. 

Remark: For the case in which a = ao = const (i.e., the 
special conformal motion is taken to be a homothetic mo­
tion) the integralL (SCM) [(6.20)] reduces toL (HM) [(5.12)]' 

Remark: For the case £ = 0 it is noted that *L (SCM) is 
trivial and L (SCM) reduces to the well-known integral with 
no explicit path-parameter dependence [refer to (g), Table I]. 

Remark: With reference to Theorems 6.4, 6.6, and 6.8 
th!! existence of a special projective collineation, a special 
conformal collineation, or a special conformal motion im­
plies the existence of the respective parallel vector fields 
cP.i' 7.i, or a,i' Hence by Theorem 4.1 there will exist in each 
case a concomitant linear first integral of the form (4.2), 
which for the case of the special conformal motion is equiv­
alent to the integral (6.21), *L (SCM), of Theorem 6.8 (with 
£= ± 1). 

We conclude this section with an example that illus­
trates Theorems 6.1 and 6.2 of this section in addition to 
several of the theorems contained in preceeding sections. 
Consider then the Einstein cosomological space-time 

dcP 2 = _ ¢-2[(dx l )2 + (dx 2f + (dX 3 )2] + (dX4)2,(6.22) 

where 

¢=1 + (Ko/4)[(XI)2 + (X2)2 + (X3)2]. (6.23) 

The geodesics in this space-time take the form 

f.1,v= 1,2,3, 

du4 

-=0. 
ds 

(6.24) 

(6.25) 

In order to formulate the various first integrals with 
explicit dependence on the path parameter s that illustrates 
the above-mentioned theorems, we first summarize the re­
quired prerequisite symmetries which are admitted by the 
space-time (6.22). 

In addition to the Killing vector 

c (I,O)i = b8~, b = const, (6.26) 

which is a parallel vector field based on the scalar C(I,O), 

C(IO)=bx4 , C:~O) = 0, (6.27) 

this space-time admits a six-parameter group of motions de­
fined by the vectors 

si(M)=[77 I,77 2 ,77 3,Q], (6.28) 

where the three-dimensional vectors 771-' (parameters 
cd:, = - w;; al-';f.1, v = 1,2,3) 

(6.29) 
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define a six-parameter group of motions in the constant cur­
vature subspace K3 with line element 

dl 2 = tP- 2[(dx1)2 + (dx2f + (dX3)2]. (6.30) 

It can also be shownl8 that the V4 (6.22) admits a (prop­
er) special curvature coIlineation based on the vector 

S i(SCC)= [-It ,a 1 (X4)2 + /31X4 + Y I], 

a l #0, a l ,{3I'YI = const, (6.31) 

in that 
hij;kf = O,hij;k = 4a 18i8J8t,hij>=% s(scqgij' (6.32) 

It is also easily verified that the V4 (6.22) admits a (proper) 
affine collineation based on the vector 

si(AC)=[-It,a~4 +/32],a2#O, a 2,/32 = const, (6.33) 

in that 
hij;k = 0, hij = 2a28i8J, hij=% s(ACigij' (6.34) 

In both (6.31) and (6.33) rt is the motion vector (6.29) of the 
subspace K). 

The space-time (6.22) admits scalars C(2:0) and C(3:0), 

where 

C I2:0)=a3(x
4 )2 + /33x4 + Y3' a 3 #O, 

C I2:0) - 0 C(2:0) - 2a "4,,4. (6.35) 
,ijk -, ;ij - 3U I0) , 

C(3:0)=a4(x4f + /34(X4
)2 + Y4X4 + 84 , a 4 #0, 

C (3:0) - 0 C(3:0) - 6a 848484 
;ijkl -, ;ijk - 4 i J k' (6.36) 

where a3' /33' Y3 and a 4, (34' Y4' 84 are constants. 
With reference to the above symmetries we may now 

formulate certain integrals with explicit path-parameter de­
pendence which exemplify the various theorems. 

Based on the existence of the parallel field given by 
(6.26), (6.27) we obtain by means of Theorem 4.1 the linear 
first integral 

(6.37) 

As a consequence of the existence of the scalar C (2:0) 

given in (6.35) we obtain the quadratic integrals 1 12:
0

) and 
*1(2:0 + II described by Theorem 5.1. These can be expressed 
in the forms 

1 12
:
0

) = a 3(x4 - su4f - /33(X4 - su4) + Y3' (6.38) 

"'1 12
:
0 + II = 2a3(x

4 
- SU4)U4 + /33U

4. (6.39) 

Concomitant with the existence of the affine collinea-
tion vector (6.33) we obtain by Theorem 5.2(i) [by use of 
(6.28), (6.29), (6.34)] the quadratic integral19 

1 12:
1

) = a 2(x4 
- SU4

)U
4 + /32U

4 + SfL(M)ufL , a 2#0. 
(6.40) 

As a result of the existence of the scalar C (3:0) given by 
(6.36) we may obtain the cubic integrals 1 13 :0 ), *1(3:0 + 1), and 
*1 13

:
0 + 2) described in Theorem 6.l(i). These integrals can be 

expressed in the forms 

1889 

1(3:0) = _ a4(x4 - su4 f + /34(X4 _ SU4)2 

+ Y4(X4 
- su4

) + 84 , (6.41) 

"'1 13
:
0 + II = [3a4(x4 _ SU4

)2 + 2/34 (X4 - su4
) + Y4]U 4

, 

(6.42) 

"'1 130 
+ 2) = [6a4(x4 _ su4 ) + 2/34] U 4 U 4 • (6.43) 
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From the existence of the special curvature collineation 
vector (6.31) we evaluate [with use of (6.32)] the cubic inte­
grals Jl31) and "'1 13 :

1 + I) given by Theorem 6.1. (ii). These 
integrals may be expressed in the forms 19 

1 (31
) = [a 1(x

4 
- SU4

)2 + (3,(x4 
- su4

) + YI]U 4 + SJ,(M)ul', 

(6.44) 

",/131 + I) = [2adx4 -su4) +/31]U4U4. (6.45) 

Associated with the seven Killing vectors (6.26) and 
(6.28) it is easily shown [refer to (a), Table I} that the well­
known concomitant linear first integrals without explicit 
path-parameter dependence take the form 

/(b) = u4
, (6.46) 

I((tl,~,a,,) = S",(M)u v
• (6.47) 

Inspection of the explicit path-parameter dependent in-
tegrals (6.38)-(6.45) obtained above shows that they are func­
tions of the linear integrals (6.46), (6.47), and (6.37). In gener­
al such a functional dependence will not occur. 

VII. NUL.L GEODESIC QUADRATIC FIRST INTEGRALS 
WITH EXPLICIT DEPENDENCE ON THE PATH· 
PARAMETER 

In this section we shall examine in more detail the null­
geodesic quadratic first integrals of the form 

i i' f:-~() Q -SiU - SSi;jU II, !:>i=~i x, (7.1) 

which were shown to arise [refer to (6.16) of Theorem 6.4 and 
(6.18) of Theorem 6.6] as degenerate cubic first integrals 
(based on special curvature collineations) whenever the 
space-time admits special projective collineations [(e), Table 
I] or special conformal collineations ((i), Table I]. 

By forming the absolute derivative of Q along a null 
geodesic we immediately obtain 

~; ~ ~h';;kU'uiuk, hij=% sgij = Si;) + S);i' (7.2) 

Since on null geodesicsgijuill = 0, it follows that h;);kUiuiuk 
vanishes for those hij based upon either projective collinea­
tion vectors Si=Si(PC) [refer to (d), Table I] or conformal 
collineation vectors Si=Si(CONFC], [see (h), Table I]. Itis 
noted that these collineations are more general than the spe­
cial projective collineations or special conformal collinea­
tions which lead to Theorems 6.4 or 6.6, respectively. 

In a similar manner (7.2) will vanish if the space-time 
admits a seminull geodesic collineation. Such collineation 
map null geodesics into non null geodesic and are defined by 
vectors which satisfy the condition4 

hij;k =g)ktP,i + gik tPJ' hij=Y?ISNGCjgij' (7.3) 

We summarize the above in the theorem to follow. 
Theorem 7.1: The null geodesics (1.1) in a Riemannian 

space-time will admit a quadratic first integral (with explicit 
dependence on the path parameter s) of the form 

(7.1') 

if the space-time admits 
(i) a projective collineation [defined by the vector 

S;(PC), (d), Table I] in which case Si -S;(PC) in (7.1 '), or 
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(ii) a conformal collineation [defined by the vector 
SACONFC), (h), Table I] in which case S;':'=Si(CONFC) in 
(7.1'), or 

(iii) a seminull geodesic collineation [defined by the vec­
tor Si(SNGC), (7.3)] in which case Si Si(SNGC) in (7.1 '). 

As an illustration of Theorem 7.1 we shall formulate the 
null geodesic quadratic first integral with explicit depen­
dence on the path parameter (7.1') for a Friedmann-Le­
maitre cosmological space-time which admits a projective 
collineation. 

Consider the space-time with fundamental form 
_ e - x"/ao 

d¢J 2 = [(dx 1)2 + (dX2)2 + (dX3)2] + (dX4)2 
W 2 ' 

(7.4) 

where 

W =1 + Kor, r=(xl)2 + (x2f + (X3)2, (7.5) 

and Ko and ao are constant, ao~O. 
The null geodesics for this space-time are given by 

dUll 2KoXil 4K I _ + ___ uvuv ___ 0 XVUVu/l _ _ UllU4 = 0, (7.6) 
ds W W ao 

du 4 e - x4/ao v v 
----u u =0, (7.7) 
ds 2aoW2 

where the tangent vector to the null geodesic ui = dxilds 
satisfies the null vector condition gijuiui = 0, which by (7.4) 
takes the form 

_ e-x"lao 

____ uvuv + U4U 4 = 0. (7.8) 
W2 

By use of(7.8) the geodesics equation (7.7) may be re-
duced to 

du
4 

_ _ 1_u4 u4 = O. (7.9) 
ds 2ao 
It is a straightforward calculation to verify that this 

space-time admits a (proper) projective collineation defined 
by the vector20

.
21 

S i(pC) = (O,O,O,ao e - x'lao), (7.10) 

and that this projective collineation is not a special projective 
collineation, in that ¢J:ij ~O [with reference to (5.18) it may be 
shown by contraction with gij that ¢J.k =!5 ;ik (PC)). 

Based on the vector (7.10), the quadratic integral (7.1 ') 
for the null geodesics of the space-time (7.4) takes the form 

(7.11) 

With use of the null-vector condition (7.8) this integral 
is reducible to the form 

(7.12) 

VIII. CONCLUSION 
For arbitrary geodesics in Riemannian spaces Vn we 

have found the basic forms of all mth-order (in general inho­
mogeneous in the tangent vector) first integrals with explicit 
dependence on the path parameter and obtained necessary 
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and sufficient conditions for the existence of such integrals. 
It was shown that these integrals must have polynomial 
structure in the path parameter. If one mth-order first inte­
gral with explicit dependence on the path parameter existed, 
then it was shown in general there would exist a whole family 
of these mth-order integrals, all associated with the same 
"symmetry condition." 

It was observed that the existence of some well-known 
symmetries such as homothetic motions (scale change), af­
fine collineations, conformal motions, projective collinea­
tions, special curvature collineations, etc. was sufficient for 
the existence of certain of the first integrals of the above­
mentioned type. We find this result to be of particular inter­
est in that previously it was only known that such geometric 
symmetries led to homogeneous first integrals without ex­
plicit path-parameter dependence. 

Aside from the four given examples of space-times 
which were known to admit some of the above well-known 
symmetries, we have made no systematic attempt to solve 
(for a particular space-time) any of the necessary and suffi­
cient conditions for the existence of mth-order first integrals 
with explicit dependence on the path parameter. There is 
thus the possibility that general solutions to some of the nec­
essary and sufficient conditions exist and can be obtained for 
those space-times we considered, as well as for other space­
times of physical interest-possibly even for those space­
times which do not admit any of the well-known geometric 
symmetries. 

As yet, we have made no attempt to interpret physically 
those integrals with explicit path-parameter dependence 
which we derived for illustration purposes. However, such 
interpretations appear to be possible particularly for the ex­
amples based upon the cosmological space-times. 

In this paper we considered the problem of obtaining 
integrals with explicit path-parameter dependence primarily 
for arbitrary geodesics. With reference to Riemannian 
space-times this led to integrals for both null and nonnull 
geodesics. However, in certain portions of our analysis some 
immediate results were obtained concerning the existence of 
first integrals with explicit dependence on the path param­
eter for restricted type geodesics (i.e., either null or nonull). 
Of particular interest is the result that null geodesics admit a 
quadratic first integral with explicit path-parameter depen­
dence whenever the space-time admits a projective collinea­
tion. At the present time we are making a detailed analysis of 
the restricted geodesic case. 

An additional investigation of interest would be to ap­
ply the Noether theoretical approach to the problem of ob­
taining geodesic first integrals with explicit path-parameter 
dependence. By means of this approach we have analyzed (in 
a separate investigation) the related problem of determining 
explicit path-parameter (time-) dependent quadratic and lin­
ear first integrals of dynamical systems with simple velocity­
dependent potentials in Riemannian configuration space, 
and have derived necessary and sufficient conditions for the 
existence of such integrals along with the form of the associ­
ated Noether symmetry mappings. It is clear that the geode­
sic case for linear and quadratic integrals is included in the 
above-mentioned Noether analysis. 
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The (nonlinear) sigma model is defined as a field theory whose configurations are sections of a 
nontrivial fiber bundle over space-time. The action functional is a generalization of the "energy" 
used in the theory of harmonic maps. This definition requires minimal coupling to a Yang-Mills 
field, and the solutions of the coupled equations exhibit spontaneous symmetry breaking. It is 
shown that in a Higgs phenomenon making use of a sigma model instead of the Higgs fields, no 
scalars would survive symmetry breaking. 
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1. INTRODUCTION 

The main motivation for this paper was the belief that at 
least at the classical level, nature should be described in geo­
metrical terms. This philosophy I is substantiated by the ob­
servation that the two most successful physical theories, gen­
eral relativity (describing the spin-2 sector) and gauge 
theories (describing the spin-1 sector), are both of essentially 
geometric character. Thus it would seem natural to try to 
construct a realistic theory in which the bosonic sector is 
totally geometrized; this is the case if the scalars in the theory 
are sigma fields, whose self-interaction is due to the Rieman­
nian structure of the internal space. 

In the first part of the paper, I give a global definition of 
sigma model, which allows the existence of so-called "twist­
ed,,2 field configurations. The logical necessity of introduc­
ing twisted fields can be made clear by means of the follow­
ing simple argument. Let us take a very general attitude and 
regard a field configuration simply as a mapping tp:X_Y 
where X is space-time and Y some "internal" space (the field 
space). To any such mapping there is associated another 
mapping (the "graph" of tp) (J': X-X X Y defined by 

(J'(x) = (x,tp (x)) \:JxEX, (1.1) 

which is a cross section of the trivial bundle X X Y. If we 
focus our attention on the graph (J' instead of tp, it becomes 
natural to generalize the definition of field configuration in 
order to include sections of nontrivial bundles: these are the 
so-called twisted fields. 

Another motivation comes from the fiber bundle for­
mulation of gauge theories3

: if we regard a Yang-Mills field 
as a connection in a principal fiber bundle over space-time, 
the minimally coupled matter fields are naturally interpret­
ed as sections of associated fiber bundles. 

Twisted scalar (Y = R or C) and spinor (Y = 1(;2) fields 
have been studied in some detail both from the classical and 
the quantum viewpoints4

; besides their intrinsic simplicity, 
this choice was motivated by two facts: (1) vector bundles 
always admit sections and (2) in the case of the scalars, the 
structure group is Z2 and thus there is no need of introducing 
connections. While these special features allowed to perform 
explicit computations, it might be of some interest to begin 
studying the properties of more complicated or more general 
models which do not share them; it is precisely the purpose 

of this paper to examine the case when Y is a Riemannian 
homogeneous space. The possibility of doing this has already 
been noticed [Refs. (1) and (2)]; although the procedure to be 
followed proves fairly straightforward, there are some inter­
esting facts which I believe are worth being spelled out in 
detail. As a by-product, I obtain the recipe for coupling mini­
mally a G / H-valued sigma model to a G Yang-Mills field. 
This might be of some interest in itself as is shown by the 
sigma-model-induced Higgs phenomenon, mentioned in 
Sec. 4; the fact that there are no scalar fields in the theory 
when the symmetry has been broken might be of some use in 
bringing order in the jungle of grand-unified theories. 

Throughout this paper, I will use the following termin­
ology: by "sigma model" I mean a nonlinear sigma model, 
and by a "linear theory" I mean a theory for which Y is a 
linear vector space, irrespective of any interaction term in 
the Lagrangian. 

2. PRELIMINARIES 
I will collect here the terminology and some facts on 

fiber bundles; the reader is referred to the classical texts5 for 
more information. A differentiable fiber bundle with total 
space B, base space X, projection {3:B-X, fiber Y, and struc­
ture group G will be denoted (B,{3,x; Y,G) or simply B; the 
associated principal bundle is (P,1T ,x;G). The principal map 
is X:P X Y-B; fixing the first entery we have a map Xp: 
Y-{3 - 1(1T(P)) defined by Xp( y) = X (p,y) and fixing the sec­
ond entry we have a bundle homomorphism Xy :P_B de­
fined by Xy(P) = X (p,y). If! UA 1 is a family of coordinate . 
neighborhoods for P and t/J A: UA X G-1T - I( UA ) are local tn­
vializations of P, the principal map can be used to induce 
local trivializations of B ¢A :UA X Y-{3 - I(UA) in the fol­
lowing way: if p = t/J A (x,g)EP and b = X (p,y)EB, then 
b = ¢A (x,gy). A local trivialization of Pta local gauge) can be 
fixed giving a local section SA :UA _1T - I( UA) and requiring 
that it has the form SA (x) = t/J A (x,e), where XEUA and e is the 
identity of G. A gauge transformation is a change of triviali­
zation, i.e., a change of local section 

SA (x)_S~ (x) = Rg(xdsA (x)). (2.1) 

If (j) is a connection form in P, the YM potential in the gauge 
defined by SA i86 

(2.2) 
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Similarly, if n = !iJOJ is the curvature form of the 
connection, 

FA = FA iei = s::n, (2.3) 

is the YM field strength. Under (2.1) they transform in the 
well-known way 

B~ =g-IBAg+g-ldg, 
(2.4) 

F~ =g-IFAg. 

The sections O':X ---+B are in one-to-one correspondence with 
G-equivariant mappings a:P---+ Y (Husemoller in Ref. S, p. 
46): 

aORg = L g- loa. (2.5) 

Given a, 0' is defined by 

0'(1T(P)) = X (p,ii(p)), (2.6) 

The local representative of a on UA is tp A: UA ---+ Y defined by 

tpA=aosA· 

Choosingp = SA (x) in (2.6) we find 

u(x) = ¢A (X,tpA (x)), 

(2.7) 

(2.8) 
and thus tp A is also a local representative for 0'. Under (2.1) 
tp A transforms as 

(2.9) 

The left action L:G X Y ---+ Yis represented in coordinates6 by 
functions7 

(Lg(y)t = L U(g',yP). (2.10) 

The generators of G realized on Y have components 

L fly) = aL U(g,y) I . 
ag' g=e 

(2.11) 

3. TWISTED SIGMA MODELS 
Let Y = G I H, be a homogeneous space with a left-G 

invariant Riemannian structure h, and X be space-time, 
with a Riemannian structure g. Afield configuration for a 
locally G I H-valued sigma model is a section O':X ---+B of a 
fiber bundle (B./3,x;G IH,G). When B is trivial, the energy of 
the configuration 0' is given by8 

E [0'] = ~ ((dtp,dtp )'11, 
2 Jx (3.1) 

where tp:X ---+G I H is related to 0' by (1.1), 11 is the volume 

element ~detgdx I 1\ dX2 1\ dX3 1\ dx4 canonically defined by g 
and (dtp,dtp) = g'val-'tp uavtp /3h a /3.6 In order to generalize this 
to the case when B is nontrivial, we haveto define in a sensi­
ble way the derivative of a cross section; this is well known in 
the case of vector bundles but not for general fiber bundles, 
so I will outline the procedure. If r is a connection in the 
principal bundle (P,1T ,x;G ) associated to B, the vertical and 
horizontal subspaces Vb and Hb of Tb(B) are defined as the 
images of the vertical and horizontal subspaces V and H of p p 

Tp(P) under the map Xo ... :Tp(P)---+Tb(B), where b = Xo(P) 
and a is the "origin" ofG IH, Le., the distinct point whose 
isotropy group is H. Thus r defines a parallelism in B: if e(t ), 
O,,;;;t< 1 is a curve in X with e(O) = 1T(P) = {3 (b) = x and 
e( 1) = x' we can define the horizontal lift of e(t ) in B, cIt ), 
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O<t< 1 with C(O) = b and the pointc(I)E/3 - I(X') will be called 
the parallel translate of b along e(t ). Varying b we obtain thus 
a diffeomorphism between fibers: Te(X,X'):/3 - I(X)---+/3 - I(X'). 
Let O':X---+B be a cross section and v be the vector 
v = (d Idt )e(t )1, = 0 tangent to e(t) atx. Varying t, O'(e(t)) is a 
curve in Band Te(e(t ),e(O)).O'(e(t)) is a curve in the fiber 
{3 - I(X); we define the covariant derivative of 0' atx along v to 
be the vertical vector 

!iJ vO' = ~ Te(e(t ),x)O'(e(t)) I . 
dt '=0 

(3.2) 

It is clear how this definition at a point x has to be general­
ized to all of X: if v is a vector field on X, g;" 0'1 x = g; v(x) 0' 
and !iJ v 0' is a section of the vertical bundle V = UbEB Vb 
k T(B). If B were a vector bundle, Vwould be canonically 
isomorphic to B and thus !iJ vO' would be another section of 
B. 

Formula (3.2) is not very practical in order to obtain an 
explicit form, so we turn to the equivariant mapping 
a:P---+G I H associated to 0'. The covariant differential of a is 
defined by 

!iJa = horda:Hp---+T Cijp)(G IH), (3.3) 

and the covariant derivative of a along vETp (P) 

!iJ va = !iJii(v) = dii(horv)ET Cijp)(G IH). (3.4) 

The definitions (3.4) and (3.2) are related by 

!iJ vO' = XP ... !iJ ,;ii. (3.5) 

where Xp ... :T Cijp)(G IH)-Vxp(Cijp)) = Voj17jp)) and v = 1T.V. The 
proof of this is the direct generalization of the proof of the 
lemma on p. 116, Vol. I of Kobayashi and Nomizu.5 From 
(3.4) one obtains an explicit formula; defining g; vtp A 
=!iJ s "a,!iJ" =!iJ e ,andBA '" =BAi(e/l ) we have 

A. r- It r-

!iJl-'tp~ =a'ltp~ +B/~,L7(tpA)' (3.6) 

wheretp ~ are the coordinates of the image of tp A' The explic­
it computation is given elsewhere. 9 Since tp A is also a repre­
sentative for 0', we may regard (3.6) as the explicit form of 
!iJ0'. 

In the familiar case when Y is a vector space supporting 
a representationp:G_GL (Y), 

Lf(tpA)=(T,)~tp~, (3.7) 

where T, = (d Idt )p(expte,) I, ~ 0 are the images of the gener­
ators ei under p. 

The transformation law of fj) 0' under (2.1) is easily 
found from Eq. (3.3); from the differential of (2.5) and HRg(p) 

= Rg ... Hp we have !iJaoRg ... = L g-;;.lo,9a, and thus 

(3.8) 

as expected. This could also be checked directly using (2.4) 
and the properties of the auxiliary functions L ;'. 

Having done this, it is now simple to find the generaliza­
tion of (3.1). Let qJ A and qJB be local representatives of 0' on 
UA ~nd UB respectively: O'(x) I U

A 
= ¢A (x,qJ A (x)), O'(X) I Un 

= tPB(X,qJB(X)) where qJB(X) = gBA (X)qJA (x) 'rJxEUAnUB· 
Then the transformation law (3.8) and the fact that G is an 
isometry group for Y imply 

(!iJqJA,!iJtpA) = (.!iJqJB,!iJqJB)' 
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Therefore, if I fA l is a partition of unity subordinate to the 
covering I UA l, we define 

E [a] = ~ L ( fA(DcpA,DcpA)·7]· 
2 A JUA 

Symbolically, we will also write 

E [a] = ~ i(Da,Da)'7]. 
2 x 

(3.9) 

(3.10) 

The minima of E [a] in the space of sections for a given con­
nection rin Pwill be called harmonic sections of B. Physical­
ly, it is natural to suppose that the Yang-Mills field is also 
dynamically active, so we can add to (3.10) the term 

E [(tJ] = - ~ igl'vg"aF~pFjvaYij'7]. (3.11) 
4 x 

Following de Witt,6 the YM coupling constant has been ab­
sorbed into the scalar product y in the Lie algebra .'1. 

4. SYMMETRY BREAKING 
In the previous sections we assumed implicitly that the 

fiber bundle B admits cross sections; indeed, it is obvious 
from physical considerations that B must admit continuous, 
global cross sections ifit has to be physically interesting. But 
not all fiber bundles do admit global cross sections; the key 
theorem is the following (in Ref. 5 see Husemoller, p. 71; 
Kobayashi and Nomizu Vol. 1, p. 57): 

Theorem: The bundle (B,[3,X;G / H,G ) admits a cross 
section if and only if the associated principal bundle 
(P,rr ,x;G) admits a reduction to a principal bundle 
(P ',rr' ,x;H); in this case, B is associated to P '. Furthermore, 
there is a one-to-one correspondence between cross sections 
of B and reduced bundles. 

Let us see how P' is defined. First of all we have the 
commutative diagram 

P...!.-B 

rr' 1[3 
X 

(4.1) 

where r:P-B = PmodH is the natural projection (Huse­
moIler p. 70; Kobayashi and Nomizu p. 57).5 P' is the inverse 
image of the section a under r 

P' = r - I (a(X )) = [pEP Ir(p) = a(rr(p)) I, (4.2) 

and rr' is the restriction of rr to P '. (P, r,B;H) is a principal H­
bundle and P , can be regarded as the pull-back of this bundle 
to X induced by a. In fact 

a*(P-B) = [(x,p)EX xP la(x) = r(p)l, (4.3) 

and the projection of a*(P-B) maps (x,p) f---+x. But 
a(x) = r(p) implies x = rr(p) and therefore (4.3) coincides 
with (4.2). 

Since homotopic mapsX -B induce X-isomorphic bun­
dles, the topology of the reduced bundle P , depends only on 
the topology of P and on the homotopy class of the section a. 
The classification of principal H-bundles over four dimen­
sional manifolds is dealt with in Ref. 10. In physical terms, 
the theorem above asserts that every solution (indeed, every 
configuration) of the sigma model leads to a spontaneous 
breaking of the symmetry (gauge) group from G to H. 
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When solving the equations of motion deriving from 
(3.10) and (3.11) one can think from the outset thatthe Yang­
Mills potential B is a connection in the reduced bundle P '. 

Let us now consider two special cases in which a con­
nection in the bundle P plays a role. 

Let (tJ be a connection form in P; by a well-known theo­
rem (Kobayashi and Nomizu Vol. 1, p. 88)5 the restriction (tJ' 

of (tJ to P , defines a connection in P , if and only if the section 
a:X_B related to the reduction from P to P' is covariantly 
constant with respect to the connection (tJ, i.e., 

gJa=O. 

In this case a is a minimum for (3.10); if (tJ is a solution of the 
YM field equations, so is (tJ' and thus ((tJ' ,a) is a solution of the 
coupled YM-sigma field equations. An explicit example of 
these solutions is given elsewhere. II 

The second example is a sigma-model version of the 
Higgs phenomenon. Start with a G-YM field and suppose we 
want to break down the gauge symmetry to H. To this end, 
couple minimally the YM field to a G / H-valued sigma mod­
el as in Eqs. (3.10) and (3.11). 

We require G /H to be a (weakly) reductive homogen­
eous space; 12 that is to say, there exists an Ad, (H) invariant 
linear subspace ,':;/' ~ [9 such that ;g = ,r Ell ,(~. Then, we 
can identify [/j" with To(G /H) (0 being the coset H ) and ifyis 
an inner product in .(9, we can take h to be the unique left­
invariant metric in G / H that coincides with the restriction of 
y to :/j" at O. L :' is then the ath component of the ith Killing 
vector of G / H in the metric h. Let lei I be a basis for .'1 such 
that ei,i = 1, ... ,d form a basis for :/j" and eili = d + 1, ... ,n 
form a basis for ,W'. The first d Killing vectors form a field of 
bases on G /H: 

h"fJL fL j = Yij i, j = 1,2, ... ,d. 

We are now ready to break the symmetry. Choose the "con­
stant" global section CPA = 0 VA; then 

E [a] = 2- L 1 iAt"'B ~IIB~vL f(O)L j(O)h,,(3(0)7]. 
2 A u A 

It is always possible to perform local gauge transformations 
by elements of H, such that B A has vanishing components on 
the subspace ,W (this is the "unitary" gauge); then, by the 
discussion above 

E [a] = 2- L 1 fA gl'vii,jB ~IIB~vYij7] 
2 A u A I 

has become a pure mass term for the 9 -components of the 
YM field. The remarkable fact here is that unlike in the usual 
case there are no scalar fields surviving the symmetry break­
ing. The condition of (weak) reductivity holds in anyone of 
the following cases: H is discrete, H is compact, His semi­
simple and connected. 

Ie. W. Misner. Phys. Rev. D 18,4510 (1978). Of course, the idea is much 
older and goes back at least to Riemann. 

2e. J. Isham, Proc. R. Soc. London Ser. A 362,383 (1978). 
'w. Drechsler and M. E. Mayer, "Fiber bundle techniques in Gauge The­
ories," Lecture Notes in Physics (Springer-Verlag, Berlin 1977). Vol. 67; A. 
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We consider the inverse problem of the calculus of variations for any system by writing its 
differential equations of motion in first-order form. We provide a way of constructing infinitely 
many Lagrangians for such a system in terms of its constants of motion using a covariant 
geometrical approach. We present examples of first-order Lagrangians for systems for which no 
second-order Lagrangians exist. The Hamiltonian theory for first-order (degenerate) Lagrangians 
is constructed using Dirac's method for singular Lagrangians. 

PACS numbers: 03.20. + i 

1. INTRODUCTION 

Even though in classical mechanics the dynamical evo­
lution of a system is completely characterized by Newton's 
equations, the idea of formulating the theory in terms of a 
variational principle (Lagrangian or Hamiltonian approach) 
has proved to be very useful in suggesting very effective simi­
lar constructions in other areas of physics like quantum me­
chanics or field theory. It is also well known that the stan­
dard prescription L = T - V for constructing the 
Lagrangian only works either for conservative systems 
(where the potential energy Vis a function of position only) 
or for some very special velocity-dependent forces like the 
Lorentz force in electromagnetism. There still remains a 
great many classical systems which do not correspond to the 
above-mentioned cases and which are consequently lacking 
a variational formulation. I 

Having in mind possible extensions to systems possess­
ing some kind of gauge freedom like the classical relativistic 
particle (or the electromagnetic field), for example, where it 
is impossible to solve for the acceleration in the equations of 
motion and recover a Newton-like equation of the form 
x = F(x,x,t), one realizes that it is also convenient to enlarge 
the class of dynamical differential equations under discus­
sion. To this end, we will pursue the idea that a mechanical 
system is characterized by a complete set of trajectories in 
configuration space and we will consider as perfectly admis­
sible any dynamical set of differential equations which re­
produces the given orbits as the complete set of their solu­
tions. Let us remark that this point of view defines a class of 
equivalent Lagrange functions which is broader than the 
usual one where its elements differ only by the total time 
derivative of an arbitrary function. These are the so-called s­
equivalent Lagrangians and they have been studied recently 
by several authors. z- 6 

It is worth reminding the reader that two Lagrangians 
which are related by a total time derivative yield the same set 
of differential equations. On the other hand, s-equivalent La­
grangians2

,4,5 give rise to families of differential equations, 
which in general are not the same, but their complete set of 
solutions coincide. 

A closely related (although wider) subject is that of the 
inverse problem of the calculus of variations, which consists 
essentially in trying to find all Lagrangians that under vari-

ation will give rise to a system of differential equations with a 
given complete set of solutions. Much work along this line 
has been published lately?,n-II 

In this note we consider the inverse problem of the cal­
culus of variations for any system of differential equations in 
which the highest derivatives can be algebraically solved for. 
In other words, we restrict ourselves to regular (i,e" non­
gauge, nonconstrained) systems only, 12 and we look for La­
grangians which reproduce such systems of equations when 
written in first-order form. 

The inverse problem of the calculus of variations was 
solved for the one-dimensional case by Darboux in 1894'-' 
and the extension to two dimensions was carried on by 
Douglas in 1941, I They both considered a second-order for­
mulation of the differential equations and Douglas exhibited 
some examples of them for which the Lagrangian simply did 
not exist. 

Recently Havas, 14 SantillV Sarlet/' and others started 
looking at this problem using a first-order formalism for the 
differential equations which, of course, leads to first-order 
(degenerate) Lagrangians, 

We emphasize that the use of first-order Lagrangians is 
widespread in physics, even though they are degenerate. As a 
matter of fact, in some cases they are more convenient than 
the corresponding second-order versions. One of these in­
stances is found in the success and simplicity of the first­
order version of super gravity, 15 Some other well-known ex­
amples of their use are the description of fermionic degrees 
of freedom, the so called Palatini variational principle, and 
Schwinger's action principle in quantum mechanics, It is 
also worth mentioning the fact that even for such degenerate 
Lagrangians it is possible to construct a Hamiltonian theory 
by using Dirac's method for singular Lagrangians. 1h

,17 

As is well known, any system of differential equations 
can always be equivalently written in first-order form by 
introducing an adequate number of new variables, which are 
functions of the first derivatives of the initial variables. h A 
familiar example of this procedure is the Hamiltonian for­
mulation of classical mechanics where the momenta are the 
new variables needed, Another possible choice of new varia­
bles is the velocities themselves. 

Havas 14 has shown that when a given system of differ­
ential equations is written in first-order form it is possible to 
find more than one Lagrangian which reproduces the corre-
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sponding set of solutions. Our work can be regarded as a 
continuation and further elaboration of Havas's paper. 

The work contained in Refs. 3 and 6 is restricted to the 
so-called self-adjoint systems and for such cases an algo­
rithm to construct the Lagrangian is provided. Only for 
some particular cases is it shown how to write a system in 
self-adjoint form and a general prescription to perform this 
transformation is not given. 

In Sec. 2 we discuss different variational principles used 
in physics and we justify the adoption of the so-called 
Weiss's principle for first-order Lagrangians. 

Section 3 of this paper is devoted to the construction of 
a first-order formulation for second-order dynamical sys­
tems. There we establish our notation and also make contact 
with some previous work along this line done by other 
authors. 

In Sec. 4 we present a different approach to the inverse 
problem of the calculus of variations in its first-order form. 
The central objects of our formulation are the constants of 
motion associated with the differential equations together 
with a (covariant) geometrical interpretation related to the 
fact that the dynamics for a given system is uniquely deter­
mined by a given vector which corresponds to the direction 
of the tangent to the solution curve in some specified space. 
In terms of the constants of motion, whose existence is guar­
anteed by some very general assumptions (but whose explicit 
construction might usually prove difficult in practice), we 
provide an explicit local method for constructing infinitely 
many first-order Lagrangians for a given system of curves. 

Section 5 contains two examples of first-order Lagran­
gians for systems for which no second-order Lagrangian 
exists. 

Section 6 is a summary of the work together with some 
comments related to the further use of these ideas and 
methods. 

Finally, the Appendix deals with the construction of the 
Hamiltonian theory for first-order Lagrangians using Dir­
ac's method. 16,17 

2. VARIATIONAL PRINCIPLES 

To describe a physical system one may define different 
variational principles. Two of them are the so-called Hamil­
ton's and Weiss's principles, the latter being also known as 
Schwinger'S action principle in its quantum-mechanical 
version. 

Hamilton's (or fixed end points) principle establishes 
that the desired equations of motion are obtained from a 
given action S, 

i
t. 

S = L (qi,i/,t ) dt, 
t, 

by requiring 

8S=0 
for arbitrary 

8qi(t), tl<t<t2 
and 

(2.1) 

(2.2) 

(2.3) 

8qi(t) = 0, (2.4) 
for t = t 1 and t = t2 • The equations of motion have the well-
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known form 

.:!-. ( JL ) _ JL = 0 
dt Jqi Jqi ' 

(2.5) 

and conditions (2.4) agree with the boundary conditions 
needed for the integration of system (2.5) for a nondegener­
ate Lagrangian detWL IJqiJi/) =1=0. 

On the other hand, Weiss's principle requires 8S to be a 
function of the end points only and identifies the coefficients 
of 8qi and Or, at the end points, with the momenta (Pi) conju­
gated to qi and (minus) the Hamiltonian ( - H), respectively. 
The equations of motion obtained are the same as before, i.e., 
system (2.5). The definitions of Pi and H coincide with the 
ones usually adopted for the transition from the Lagrangian 
to the Hamiltonian theory. 17 

Consider now the first-order action principle which is 
used for defining the usual Hamiltonian theory, i.e., 

Pi =JLIJqi, 

H = H (qi,Pj,t ) = pAi - L (qi,qi,t ), 

(2.6) 

(2.7) 

L = L(qi,qi,PJ,t) =pAi -H (qi,pj,t). (2.8) 
The new action principle defined by Lis now based on 2n 

independent variables qi and Pj and the equations of motion 
are obtained by requiring 

8S=0 
for arbitrary 

8qi(t), 8pj(t), tl <t <t2 
and 

(2.9) 

(2.10) 

8qi(t) = 0, (2.11) 
for t = t ( and t = t2• This variational principle yields the 
well-known Hamilton's equations 

(2.12) 

Nevertheless it is worth noting that, strictly speaking, Ham­
ilton's principle is not wide enough to allow canonical trans­
formations in the Hamiltonian theory. In fact, a canonical 
transformation to variables Q i,Pj , 

Q i = Q i(q,p,t) , Pj = Pj (q,p,t) , (2.13) 

implies the definition of a new Hamiltonian H / and a new 
Lagrangian L /, 

L / = Q iPi - H / (Q,P,t ) 

= q~i - H (q,p,t ) + dF (q,p,t )/dt. (2.14) 

It is clear that in order to get the equations of motion for Q i 
and Pj we must require 

8S' = 0 (2.15) 

for arbitrary 

(2.16) 

and 

8Qi(t) = 0, (2.17) 

for t = t( and t = t2• Ifwe consider a nontrivial transforma­
tion, the conditions (2.11) and (2.17) are not equivalent, ac­
cording to Eq. (2.13). Therefore, using Hamilton's principle 
in a strict sense does not allow for nontrivial canonical trans­
formations (i.e., those for which JQ ilJpj =1=0). 
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In order to be able to perform canonical transforma­
tions it is more convenient to adopt Weiss's principle. Due to 
the fact that Lagrangians (2.8) and (2.14) are first order (the 
same kind we are going to be dealing with in this work) we 
prefer to choose Weiss's principle to get the equations of 
motion. 

In the appendix we prove that the definitions of the 
momenta and Hamiltonian obtained from this first-order 
principle can be used to construct a sound Hamiltonian the­
or~ based on I?irac's method for degenerate Lagrangians. In 
t~lS way we :"lll pr~ve that Weiss's variational principle pro­
vIdes ~ startmg pomt for constructing infinitely many La­
granglans (and Hamiltonian theories) for any system of dif­
ferential equations. 

3. FIRST-ORDER FORMULATION FOR DYNAMICAL 
SYSTEMS 

Any system of differential equations in which the high­
est derivatives can be solved for algebraically may be written 
in a first-order form. 18.19 For purposes of exposition we con­
sider a general system of n coupled second-order differential 
equations 

Fi (i/,(/,q\t ) = 0, i,k = 1, ... ,n, (3.1) 

with qk being generalized coordinates and the dots denoting 
total derivatives with respect to the time t. We assume that 
Eq. (3.1) can be solved for i/o It is always possible to define n 
new variables qn + k in such a way that the system (3.1) re­
duces to the first-order form 

(/ = ai(qk,q" + k,t ), 

Fi (q n + \q\qn + \t ) = 0. 

(3.2) 

(3.3) 

We require now that Eq. (3.2) is such that we can solve for the 
generalized coordinates q" + k and therefore Eqs. (3.2) and 
(3.3) can be written in compact form 

(3.4) 

which is equivalent to Eg. (3.1). We note in passing that a 
Newtonian system with arbitrary velocity-dependent forces 
can be brought to form (3.4). One can always choose the 
function ai in such a way that qn + k = l. We adopt this 
choice from now on. 

lt is worth noticing that any curve qi = qi(t) in configu­
ration space can be naturally mapped in a curve of the form 
qa = h a(t), where h i(t) = gi(t) for a = i = 1, ... n and 
h n + i(t) = gi(t) for a = n + i = n + 1, ... ,2n. With this pre­
scription the state of a given physical system at time t is 
characterized by a point qa(t) and its time evolution will gen­
erate a one-parameter family of trajectories in this 2n-dimen­
sional space. In other words, the dynamics is defined by the 
tangent vectorfa(qb,t ), which in some sense plays the role of 
the generator of time displacements. Any two trajectories 
having the same dynamics but different initial conditions 
will never intersect in this space and thus the set of all possi­
ble solutions to a given problem can be imagined as an infi­
nite collection of curves filling the whole space. 

From now on, we restrict ourselves to equations of mo­
tion which can be written in the form (3.4). In order to have a 
Lagrangian system equivalent to that represented by Eq. 

1898 J. Math. Phys., Vol. 22, No.9, September 1981 

(3.4), it is necessary that 

a2L laqaaqh==o, "ia,b,qa,qa,t. (3.5) 
In fact, the left-hand side of the Euler-Lagrangian equations 
for a Lagrangian L = L (qa,qa,t ) is 

L =~( aL) _ aL 
U dt Jqu aqu 

(3.6) 

_ a
2
L "b + a

2
L'b a2L aL 

=--q --q + -- --, (37) 
aquaqb aitaqb aqaat aqa . 

which in general contains accelerations. Therefore, Eq. (3.5) 
has to be fulfilled in order to reproduce Eq. (3.4). That is to 
say, L must be at most linear in the velocities having the form 

L = la (qh,t )qU + 10 (l,t ). (3.8) 

The corresponding Euler-Lagrange equations are 

(alalaqb - alblaqa)qu = alolaqh - alblat (3.9) 
and if we require systems (3.9) and (3.4) to be equivalent it is 
necessary to assume that (alalaqb - alblaqU) is invertible 
and to find the solutions la and 10 to the following system of 
partial differential equations: 

(alJaqh - alblaqa)fa(q,t ) = a/o/aqh - alb lat.{3.1O) 

Using Koenig's theorem 14,20 it can proved that, for any given 
10 , a solution for la exists. As a matter offact, Havas consid­
ered a system closely related to Egs. (3.10) [see Eqs. (BI2) of 
this paper] and he proved the existence of solutions. In other 
words, the inverse problem of the calculus of variations al­
ways has a solution when formulated using first-order differ­
ential equations for the time evolution. Nevertheless, there is 
no general prescription on how to solve system (3,10) and one 
does not know of any possible relationship among the differ­
ent Lagrangians that will arise. We remind the reader that 
when using a second-order formulation for the dynamics. 
the existence of a Lagrange function is not guaranteed at all. 
In particular, there are explicit examples in which the La­
grangian simply does not exist. 1.21 

In the next section we present a different approach 
which solves the inverse problem of the calculus of vari­
ations in its first-order form for an arbitrary set of complete 
trajectories characterized by a given dynamics. We give a 
definite prescription on how to construct all possible La­
grangians that arise and we also show that they are infinite in 
number. 

4. THE INVERSE PROBLEM OF THE CALCULUS OF 
VARIATION IN FIRST-ORDER FORM 

It will be convenient for our purposes to consider the 
time as another coordinate by enlarging our space to 2n + 1 
dimensions with the notation XO = t (T),XU = qUIT). The com­
plete set of trajectories corresponding to a given dynamics is 
characterized now by the tangent 

dX"ldT =/,,(x), f1 = 0,1, ... ,2n, (4.1) 

where the ratiosf" Ifo are given functions andfo = dt IdT is 
arbitrary. The action is written in general as 

f dxl' 
S= I,,(x)- dT, 

d, 
(4.2) 

where the freedom in the T-parametrization is self-evident. 
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We can always choose our parameter l' as the time t and this 
is equivalent to the normalizationfO(x) = 1. The equations of 
motion obtained from (4.2) are then written as 

(all,/ax" - al,,!axl' )dxV IdT MI'"dx" IdT = O. (4.3) 

Due to the antisymmetry of Ml'l' (= - Ml'l') together 
with the odd dimensionality of the space considered, the de­
terminant of Ml'l' vanishes. We assumed in Sec. 3 that 

detMab #0; (4.4) 

therefore the rank of Ml'l' is 2n. Thus, Eq. (4.3) implies that 
dx" IdT is the only eigenvector of MI,l' with zero eigenvalue. 
The eigenvector with zero eigenvalue of an antisymmetric 
matrix M

I
,,, in a space with an odd number of dimensions is 

proportional to the vector 

(4.5) 

If two Lagrangians ares-equivalent (i.e., their complete set of 
solutions coincides), the eigenvectors with zero eigenvalues 
associated with them are then parallel (not necessarily equal) 
to each other in order to define the same solution. Further­
more, the freedom of T-parametrization does not allow us to 
compute dxl'l dT from the Lagrangian only; therefore, this 
vector is parallel to v", 

dxl'ldT = A (1')1 (x)vI', (4.6) 

where A (1') is related to the T-parametrization and I (x) de­
pends on which s-equivalent Lagrangian is chosen. Never-' 
theless, the physical velocity is well defined, 

dxl' dxl' dxl'ldT c'""·M···M 

dt = dxo = dxoldT = €o"·M ... M· 
(4.7) 

Using this notation, the inverse problem of the calculus 
of variations reduces to finding all the possible functions 
(, (x) such that the extremal requirement 8S = 0 reproduces 
Eqs. (4.3) with the given direction defined by the vectorjl'(x). 
In order to construct the most general Lagrangian we con­
sider III to be a covariant vector in this (2n + I)-dimensional 
space, where the only explicitly defined direction is that of 
the tangent vector fi'(x). The problem thus arises of con­
structing a suitable basis in this space. In particular, it is 
necessary to define the subspace orthogonal to the given tan­
gent to the solution curve. A very natural basis for this sub­
space is the one generated by the 2n constants of motion 
associated with Eq.(4.1). Let us remark that system (4.1) pos­
sesses 2n independent functions Cia), which depend upon the 
coordinates Xl' and that correspond to the initial values X U

( To) 
which completely specify the curves for a given dynamics. 22 

These constants of motion can be obtained by inverting the 
solutions x a = X

U
( Clb ),1') of the system (4.1) and they satisfy 

the conservation equations. 

aCla) P'(x) = aCla) dxl' = dCla) = O. (4.8) 
axl' axl' dT dT 

In other words, we have generated 2n vectors C la).1' 

= aClu)laxl', which are orthogonal tofl'(x). 

We choose Cla)(xl') to be 2n independent functions so 
that the determinant of the matrix Cla).b is different from 
zero, implying that the 2n vectors C la).1' are linearly indepen-
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dent. Thus, the set I C la).1' l constitutes a basis for the sub­
space orthogonal tofl'(x). The vectorCIOI,1' where CIO) = t, is 
such that 

det Ir'la) ) = det (C (a) ) # o. 
~ .1' ,b (4.9) 

This means that the 2n + 1 vectors C lal'I' are linearly inde­
pendent and constitute a basis for the 2n + 1 dimensional 
space considered. 

The most general vector 1;, (x) can be written as a linear 
combination of the basis vectors C lal.

l
, . For our purposes, it 

is more convenient to consider the coefficients of this linear 
combination to be functions of the 2n + 1 functionally inde­
pendent "new coordinates" C la)(x). Therefore, we write 

r = r (Clb) CIOI)Cla) + r (Clb) CIO)CIO). (4.10) 
Ii (a)' .11 0' 41. 

Among all s-equivalent Lagrangians there are some which 
are trivially related by a total time derivative which, in terms 
of 1;" means the gradient of an arbitrary function A. Without 
losing generality, we can then consider 

I 1- a A -1- Cia) 1- CIO) ~ Cia) 
I' = I' - I' - la) ,I' + 0 .1' - ac la) .1' 

~CIO) 
aCiD) ,I' 

(4.11) 

and choose 

~(Clbl CIO) = r (Clb) CIO) (4.12) 
aCIO) , 0" 

which implies that 

I =(r (C1b)C10))_ ~(ClbICIOI))Cla) (4.13) 
I' lal' ac la)' .1' 

=1 (Clb) CIOI)Cla) (4.14) 
-(a)' ,}t' 

where Ila) still depends on the 2n + 1 variables Cia). 

The next step in the construction is to require that the 
Euler-Lagrange equations arising from (4.2) are satisfied by 
virtue of the equations of motion (4.1). That is to say, we 
require 

L = ~ (I Cia) ) _ ~ (I Cia) ) dx" 
I' dT la) ·1' axl' la) ," dT (4.15) 

alia) Cia) dC Ib) + _a_I_Ial_ C 10) 

ac Ib) .1' dT ac (0) ,I' 

dCIO) 

dT 

d v at dClal dx" I Cia) X _ __ Ia)_ Clhl __ -I clal + la) ,I'" dT aC1b) ·1' dT lal .VI' dT 

(4.16) 
to be zero. In Eq. (4.16) the third and fifth terms cancel each 
other and the first and fourth terms vanish due to Eqs. (4.8). 
Then we are left with 

al dCIO) __ Ia)_ (Clb),CIO)Cla) __ = o. 
aCIO) ,I' dT (4.17) 

The factor dC (Oil dT can never be zero for any proper parame­
trization (dClOlldT = dt IdT). The matrix c(a),I' has rank 2n; 
therefore, we have 2n equations. 

al 
_Ia_) (Clb) CIO)) = 0 (4.18) 
aC(O)' , 

which imply that Ila) are arbitrary functions of the constants 
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of motion C lbl only. Thus the most general Lagrangian can 
be written as 

d I' 
L = I (Clb)Cla) ~. 

lal .1' dT (4.19) 

It is worth mentioning that L vanishes when the equations of 
motion hold. 

There is still one more condition on the components Ila) 
which is derived by examining the converse problem of ob­
taining the equations of motion (4.1) from the stationary con­
dition on the action (4.2). In other words, we demand that 

( 
a/lal _ a/lb )) Cia) Clb) dx

v = 0 (4.20) 
aClbl aCla) .1' ,v dT 

implies dC lall dT = ° [which is equivalent to Eqs. (4.1)). Be­
cause the vectors c(a)'fJ- are linearly independent, Eq. (4.20) 
tells us that 

( 
a/lal _ a/(b)) dClb) = O. 

aClb) acral dT 
(4.21) 

In order to recover the equations of motion (4.1) we must 
construct the functions Ila) in such a way that the determi­
nant of the 2n X 2n antisymmetrical matrix 

1/la)(bl = a/la/aC(b) - a/lbl/aclal (4.22) 

is different from zero. Then we can deduce 

dClhl dxl' 
-- =Clbl -=0 

dT .1' dT 
(4.23) 

from Eq. (4.21). Recalling that the vectors C1b)'fJ- satisfy 

Clb).IJfJ-(x) = ° (4.24) 

and that the rank of C IVI.fJ- is 2n, we finally conclude from 
(4.23) and (4.24) that 

(4.25) 

which is equivalent to Eq. (4.1). 
The condition upon det 1/lallb I can be implemented in an 

infinite number of ways. We can see this by considering a 
subclass of all possible ways of constructing the functions 
Iial' Let us first remind the reader that the determinant of an 
antisymmetric matrix 1/ in a space of even dimensionality is 
proportional to the square of its Pfaffian, 

(4.26) 

Therefore, it is enough to require that Pf1/ is different from 
zero to ensure det 1/-0. Equation (4.26) suggests the follow­
ing construction for the functions Iial : 

I = __ 1_ (Cla+ 1)2p + 1 +p cla+ 1). 

la\ 2p + 1 la\' 

a = 1,3,oo.,2n - 1, 

la = 0, a = 2,4,oo.,2n, (4.27) 

where p is an arbitrary integer and Pia) are positive numbers. 
The only matrix elements different from zero are then 

(C I2k+21)2p ° 
1/12k+ 1112k+21 = +PI2k+ 1\ > , 

k = O,I,oo.,n - 1, (4.28) 

which ensure that expression (4.26) is strictly positive. In this 
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way we have provided a prescription to construct an infinite­
ly denumerable set of Lagrangians which reproduce the 
equations of motion (4.1) and which obviously do not cover 
all the possible ways of defining adequate functions Iial . 

As can be seen from Eq. (4.19), our method is useful 
whenever a system.of differential equations can be equiv­
alently written as Cia) = 0, where clal are 2n functionally 
independent constants of motion of the original system. 
There may be cases (whenfa is singular) where the constants 
of motion are not well defined everywhere and in such cases 
our method will not be directly applicable. Although the 
method is based on a local (i.e., nonglobal) approach its con­
tent is nontrivial, as shown by the fact that we are able to 
present in the next section examples of first-order Lagran­
gians for two systems which do not possess second-order 
Lagrangians. 

Finally, a comment may be added regarding the matrix 
Aa b given by 

La =AabLb' 

which relates .!.,he equations of motion of two s-equivalent 
Lagrangians Land L.5 The expressions for ~ and Lb are 
defined by Eq. (3.6). Using Eqs. (4.3), (4.19), and (4.20) it can 
be proved directly that tr (A k) are constants of motion for 
any integer k, with Aa b = Mac (M -1 )cb. This theorem is the 
first-order counterpart of the one for second-order Lagran­
gians presented in Ref. 5. 
5. EXAMPLES 

In this section we are going to construct first-order La­
grangians for two systems of second-order differential equa­
tions for which no second-order Lagrangian exists. The con­
struction is based on the method developed in Sec. 4. 

Example 1: Consider the system of two differential 
equations for the variables x = x(t) andy = y(t), 

x +y=O, 

ji+y=O. (5.1) 

It may be easily proved that system (5.1) corresponds to the 
case III-b of Douglas's classification and therefore has no 
second-order Lagrangian?' Nevertheless, a first-order La­
grangian for such a set of equations can be found by writing it 
in first-order form with the definitions 

In this notation system (5.1) becomes 

XI =x3, Xl =x4 , 

X, = - x 4 ' X4 = - x 2 , 

and its general solution is 

Xl = - A sint + B cost + Ct + D, 

x 2 = A cost + B sint, 

x~ = - A cost - B sint + C, 

X 4 = - A sint + B cost. 

(5.2) 

(5.3) 

(5.4) 

The constants of motion A, B, C, and D can be explicitly 
written in terms ofx"x2,x"x4 and t: 
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A = X 2cost - x 4sint, 

B = x 2sint + x 4cost, 

C=X2 +X3' 

D = X \ - X4 - (X2 + x 3 )t. 

One possible Lagrangian for the system is 

L = ~(AB - BA + CD - DC), 

(5.5) 

(5.6) 

where we have used Eq. (4.27) withP(a) = ° andp = O. The 
Lagrangian (5.6) expressed in terms ofx\,x2,x3,x4 and their 
time derivatives becomes (up to a total time derivative) 

L = (X2 + X3)X I + X4X3 + Hx~ - 2x2x 3 - x;). (5.7) 

In fact, varying x I'X2,X3 , and X4 we obtain the equations of 
motion 

X2 + X3 = 0, 

-x, +x3 =0, 

- X I + x4 + X 2 + X3 = 0, 

-X3 -X4 =0, 

which are equivalent to the system (5.3). 

(5.8) 

We have, therefore, found a first-order Lagrangian for 
the set of equations (5.1) or (5.3) which cannot be obtained 
from a usual (second-order) Lagrangian. 

It is worth noting that in the Lagrangian (5.7) only half 
of the time derivatives of the variables (i.e., X, and x3 ) occur. 
This is exactly the same situation encountered in Lagrangian 
(2.8), where only the time derivatives of the coordinates (and 
not the ones of the momenta) appear. 

Example 2: Now let us consider the system of differen­
tial equations 

XI + 2Ylx, + wix, - 5x2 = 0, 

x2 + 2Y2X2 + W~X2 - Tfx, = 0, 
(5.9) 

which describes two coupled damped oscillators with differ­
ent frequencies and friction coefficients. As mentioned in 
Ref. 21 such a system is not derivable from a second-order 
Lagrangian when the condition 

5Tf(Y, - Y2)(W~ - Tt + w~ - rl )#0 (5.10) 

is met. This last equation says that the system under consid­
eration is type IV in the Douglas classification. 

In order to exhibit a relatively simple example of a first­
order Lagrangian that reproduces a set of equations like (5.9) 
we have considered the case 

XI - !x2 = 0, 

x2 + ~xz - jx I = 0, 
(5.11) 

which corresponds to the choice of parameters 
Y\ = W, = Wz = O'Yl = ~,Tf = !, and 5 =! that obviously 
satisfy the condition (5.10). 

Writing the system (5.11) in first-order form, 

1901 J. Math. Phys., Vol. 22, No.9, September 1981 

X \ = X 3, XZ = x 4 , 

X3 = !xl , (5.12) 

X4= -1X4+tX" 

and using a procedure similar to that of Example 1, we ob­
tain the following first-order Lagrangian (up to a total time 
derivative): 

L = e' [(6X4 -x2)x j + (2x3 + l2x4 - 3xdxz 

+ (18x4 - 4x 1)X3 + (6X3 + 3X2)X4 + x~ + !x~ 
- 2x~ -1X;] 
+ e'/3[(3xl + 2x4)XI + (x, + 6X3 - 4X4)X2 

+ (4x\ + 2x4)X3 + (6X3 - 3XZ )X4 (5.13) 

It is straightforward to show that upon variations we obtain 
the equations of motion 

e' [6x4 - X 2 - 2x1 + li2 + 6i4 + 4x3 ] 

'13[ 2 2 '"I'" 4 . '"I'" ] ° + e Xl + 3X4 - 'jX' + .oW\.z - X3 +.oW\.4 = , 

e' [2x3 + 12x4 - 3x\ - ~X2 - li\ + 9X4 + 2x3 ] 

+ e'/3[ 2X3 -1X4 + tXI - ~X2 - li\ - x4 + 6x3] = 0, 

e' [4X3 + 18x4 - 4x\ - 4x\ - li2 + 12x4] (5.14) 

+ e'/3[ - 4X3 + ~X4 + 1x, + 4x\ - 6x2 - 4X4] = 0, 

e' [6X3 + 9x4 + 3xz - 6i\ - 9X2 - lli3 ] 

+ e'I3[2x3 - X4 - X2 - li\ + Xl + 4x3] = 0. 
Now, in order to prove the equivalence of (5.14) with (5.12), 
we have to solve for the time derivatives Xu (a = 1,2,3,4). 
This can be done because the matrix of the coefficients has a 
non vanishing determinant and the result is indeed system 
(5.12). 

With these examples we have shown that there are in­
stances where, in spite of the local nature of the method, 
first-order Lagrangians can be found for systems which are 
not derivable from usual second-order Lagrangians. We in­
terpret this fact as a clear indication of the advantages of 
using a first-order formulation for the variational principle. 

6. SUMMARY AND CONCLUSIONS 

The main results of this paper are contained in Sec. 4, 
where we show how to construct infinitely many first-order 
Lagrangians for any given system of differential equations 
such that the highest derivatives can be algebraically solved 
for. The construction is achieved by rewriting such a system, 
introducing a suitable definition of new variables, in an 
equivalent form which consists of first-order differential 
equations only. The Lagrangian is then found using very 
simple geometrical arguments. 

The first step is to map the general solution to the origi­
nal system in the space defined by the original coordinates, 
their velocities, and the time (in the case the original system 
was second-order). In this space the solution is defined by the 
direction of its tangent vector at each point. 

When the constants of motion related to the original 
system are globally well defined, this method guarantees 
that the construction of the Lagrangian [Eq. (4.19)] may al-
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ways be achieved in infinitely many different ways. Howev­
er, the explicit construction can only be performed when all 
the (functionally independent) constants of motion are 
known. Therefore, the method presented here should not be 
viewed only as a practical constructive procedure but rather 
as an explicit existence theorem which clearly shows the re­
lationship among the infinitely many different first-order 
Lagrangians of a system. This situation is in contrast with 
the usual prescription (L = T - V) for second-order Lagran­
gians where the knowledge of the total energy (T + V) is 
enough to construct L. Nevertheless, for the second-order 
case, this prescription does not always work 1.21 and, in any 
case, provides only one of the many possible equivalent 
Lagrangians.I-3.5.13 

Section 5 illustrates one way of explicitly constructing 
first-order Lagrangians for system for which no second-or­
der Lagrangian exists. This fact seems to indicate that a first­
order formulation of the variational principle has some ad­
vantages over the usual second-order one. 

We should perhaps note in passing that Eq. (4.19) im­
plies that any set of differential equations may be regarded as 
a variational problem. Furthermore, Eq. (4.2) constitutes a 
geometrization of the problem in the sense that Eqs. (4.3) are 
the geodesics equations of a degenerate Finsler space defined 
by the metric vector I" (x). 

It is also worth noting that the geometrical approach 
developed in this paper is fully covariant under arbitrary 
coordinate transformations of the form X'I' = x'I'(x'l 

We further remark that the whole family of Lagran­
gians represented by Eq. (4.19) does not depend on the choice 
of the set of constants of motion. In fact, if one chooses a 
different set D (al = D (a)(e Ib)), say,then 

_ (bl (ul _ aD(u) (b) _ - Ibl 
I" - I(a) (D )D ,I' - I(al ae Ib I e .1' - I(b I e .1' , 

where 

[ = I (D ICI)aD (a)/ae 111) 
(II) (a) , 

are still constants of motion and can be written in terms of 
the original set e (u l. 

The Hamiltonian theory associated with (degenerate) 
first-order Lagrangians is constructed in the Appendix using 
Dirac's method. 16.17 There we prove that the Euler-La­
grange and Hamiltonian equations of motion for those La­
grangians agree. Furthermore, the Hamiltonian theory of 
one of the first-order Lagrangians agree with the usual one, 
when a second-order Lagrangian exists for the system under 
consideration. 

FinaJly, a comment on the problem of quantization. In 
the second-order formalism, the existence of a Lagrangian is 
not guaranteed. On the other hand, in the first-order formu­
lation there are infinitely many of them. It is known 10.23 that 
the usual quantization procedure gives rise to nonequivalent 
quantum theories when using different (classically) s-equiv­
alent Lagrangians. Therefore, one needs either a criterion to 
single out one among infinitely many Lagrangians (in the 
first-order formalism) or a quantum theory which is not 
based on the Lagrangians (which are not physically-measur­
able entities) but on other objects that remain invariant un-
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der the change of Lagrangians. One possible choice of such 
objects is the set of all curves which satisfy Eq. (4.1) [and/or 
Eq. (4.1) itself]. Such a quantum theory would be, by defini­
tion, invariant under the change of Lagrangians and would, 
in principle, allow one to quantize systems whose equations 
of motion cannot be derived from a (second-order) 
Lagrangian. 
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APPENDIX 

We construct here the Hamiltonian theory for the (de­
generate) Lagrangian (3.8), 

L = Ia (qb )qlu) + 10 (qll), (A. 1 ) 
using Dirac's method. For simplicity, we have dropped the 
explicit time dependence of Ia and 10 , 

From Weiss's principle (or the usual definitions), it is 
straightforward to obtain the canonical momenta 1Tq" and 
the Hamiltonian h, 

1Tq" 1Ta = la(qb), (A.2) 

h = -lo(qh). (A.3) 
Due to the fact that Eqs. (A.2) do not contain the veloci-

ties qa at all, there are 2n primary constraints ifJ a' 
ifJa = 1Ta - Uqb);::;O. (A.4) 

The Hamiltonian h has to be modified in order to get the 
right equations of motion with the usual Poisson brackets. 
The modified Hamiltonian hT is given by 

(A.5) 

where A a are Lagrange multipliers. The Poisson brackets are 

(A.6) 

The consistency requirement for the constraints is that their 
time derivatives vanish, 

¢h = [ifJh,hT];:::::O. (A.7) 
Condition (A.7) implies 

(a1a/aqb - aib/aqa)A. a + alo/aqb = 0, (A.8) 

i.e., 

AU=(M-I)ab(_alo/aqb), (A.9) 
where M is the nonsingular antisymmetric matrix defined in 
Eq. (4.3). There are no secondary constraints in the theory. 
The Lagrange multipliers A a are determined by Eq. (A.9), 
which means that no arbitrary (gauge) functions appear in 
the theory. The equations of motion forqb can be obtained in 
the usual way 

qb = [qb,hr] 

= [qb,-lo(qa)+A a(1Ta -la)(qC)] 

= A b, (A.1O) 

and they agree with Eqs. (3.9), obtained directly from the 

S. Hoiman and L. F. Urrutia 1902 



                                                                                                                                    

Lagrangian (AI), when Eqs. (A 9) are used. We now prove 
that all the <Pa constraints are second class. In fact, 

[<Pa'<Pb] = [1Ta -lu(q),1Tb -Ib(q)] 
= alblaqa - JlulJqb = Mba 

= -Mab' (All) 

Therefore, the matrix [<Pa ,<Pb ] is invertible and no linear 
combination of the <Pa's is first class. 

The Dirac bracket for any two functionsf = f(g,t) and 
q = q(g,t ) is defined by 

[J,g] '" = [J,g] - [f,<pu ] ( - M - I )ub [<Pb,q], (A.12) 

[(,g]* = (M - I )ab af Jq , 
Jqu Jqb 

(A.l3) 

which agrees with the results found (in a different way) in 
Ref. 17. Let us mention that it is enough to consider only 
functions of qa and t because the momenta 1T u can be com­
pletely written in terms of the coordinates qb due to the fact 
that the 2n Eqs. (A4) now become strong equations with the 
Dirac brackets. The equations of motion (A. 10) remain the 
same because hT is first class, i.e., 

(AI4) 

Of course the numerical values of hT and h coincide. 
In this way we have proved that Weiss's principle gives 

rise to the desired equations of motion together with a rea­
sonable Hamiltonian theory. 

The results obtained above can be used to prove that 
when a second-order, nondegenerate, Lagrangian for a sys­
tem of n variables Q i exists, then its usual Hamiltonian the­
ory defined by 

Pi =JLlaQ', 
H = H(Qi,Pj,t) = (JL IJQi)Qi -L (Qi,Qi,t), (AI5) 

agrees with the one obtained (in the way we have just done) 
from the first-order Lagrangian with 2n variables Q i,Pj giv­
en by 

L =L(Qi,Qi,pj,t) 

= QiPi - H (Qi,Pj,t). (A.16) 

One has, for this case, 

qD=Pa, la=O, fora=n+l, ..... ,2n 

(A.17) 

10 = - H. 

The canonical momenta conjugate to Q i and Pj are 

1Tq,,=1Ta = Pa for a = 1,2, .... n. 

1Tq"==-1Ta = 0 for a = n + 1, ... ,2n. (A.lS) 

The constraints are 
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<Pa = 1Ta - Pa::::::O for a = 1, 2, ... ,n, 

<Pa = 1Ta ~O for a = n + 1 ..... 2n. 

and the nonsingular matrix [<Pa ,<Pb] is 

Therefore, the Dirac brackets for f = f(Q.p,t ) and 
g = g(Q.p,t ) are 

(A.19) 

(A.20) 

'" _ af Jg Jf Jg 
[(,g] - JQi JP

i 
- JP

i 
JQi' (A.21) 

the equations of motion are Hamilton's, and hT andH coin­
cide numerically. In this way. we have proved not only that 
the Hamiltonian and Euler-Lagrange theories constructed 
from first-order Lagrangians agree, but also that one of the 
Hamiltonian theories obtained from first-order Lagrangians 
coincide with the usual Hamiltonian theory when a second 
order Lagrangian for the system exists. 
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Dynamical Noether invariants for time-dependent nonlinear systems 
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Dynamical invariants are derived for time-dependent systems with nonlinear equations of motion 
including nonharmonic damped systems. The concept of a dynamical algebra is discussed and its 
utility for the construction of dynamical invariants for nonharmonic systems is demonstrated. 
Finally we show the existence of dynamical invariants for some nonlinear quantum systems. 

PACS numbers: 03.20. + i, 03.65. - w 

1. INTRODUCTION 

The study of time-dependent oscillator systems has at­
tracted considerable interest in the literature, both in classi­
call-\} and quantum 11-15 mechanics. The origin of this devel­
opment was no doubt the discovery of an exact invariant by 
Lewis,2.11 which was previously known as an approximate 
adiabatic invariant. I The existence of a conserved quantity, 
i.e., an invariant, is of importance in many physical prob­
lems. For example, its utility for the motion of charged parti­
cles in time varying electromagnetic fields has already been 
known for a long time, and very recently the invariant has 
been applied to some models for cosmological particle 
production. 16 

Since the basic work by Lewis2.11 various derivations of 
the dynamic invariant have been presented in the literature. 
Gunther and Leach 13 and Leach5

•
6 used time-dependent ca­

nonical transformations, Lutzky7 applied Noether's theo­
rem, and Ray and Reid8

•
9 obtained the invariant by Erma­

kov's technique. Very recently one of the present authors 
constructed the invariant by means of the dynamical alge­
bra. 10 This algebraic technique provides a direct and unso­
phisticated derivation of the dynamical invariant. Further­
more, it allows a straightforward transition from classical to 
quantum systems, because in the algebraic treatment the for­
mulation of classical and quantum dynamics is almost iden­
tical. 17 

The existence of invariants for nonharmonic systems3.6 

was recently demonstrated by Ray and Reid,8.9 who derived 
a family of invariants for a special class of systems with non­
linear equations of motion. It is obvious, however, that the 
study of invariants for nonharmonic time-dependent sys­
tems is only beginning and is far from being understood. In 
Sec. 2 we give a short discussion of Ray and Reid's8.9 results 
for nonharmonic systems and extend them to the case of 
time-dependent damped oscillators. In Sec. 3 an alternative 
treatment of nonharmonic systems is presented, which is 
based on the dynamical algebra. 10 This approach allows -
contrary to Noether's theorem - a direct extension to more 
general systems of a type recently investigated by Ray and 
Reid.x•9 In Sec. 4 we show that dynamical invariants for non­
harmonic systems can also be constructed in quantum me­
chanics. Section 5 concludes with a short summary. 

"IA. v. Humboldt foundation fellow on leave from Ramjas College, Univer­
sity of Delhi, Delhi-II 0007, India. 

2. NOETHER'S THEOREM FOR DAMPED, TIME­
DEPENDENT SYSTEMS 

A formulation of Noether's theorem in terms of one­
parameter Lie groups has been recently considered by 
Lutzky.7 This method, when applied to the time-dependent 
harmonic oscillator, was not only found 8

•
9 to be simpler for 

obtaining the dynamical invariant, 

I = Uk (q/p)2 + rPq - pq)2] (2.1) 

for the system described by 

ij + m2(t)q = 0, (2.2) 

but has also offered a clue to solve the nonlinear differential 
equations of the type 

Ii + m2(t)p = k /p3. (2.3) 

In fact, the invariant I plays the role of providing a link 
between the solutions to (2.2) and (2.3). 

The construction of the invariant for time-dependent 
harmonic systems has a long history 1-15 and almost all the 
approaches used in the past deal with rather involved meth­
ods. More recently, Ray and Reid9 have applied Lutzky's 
method to the Lagrangian (note the change of notations from 
that of Ray and Reid) 

L = H'? - m2(t )q2 + 2g(t )G (q)], (2.4) 

and have shown that the invariant obtained in this way is a 
special case of their earlier8 results obtained by generalizing 
Ermakov's method. As a matter of fact, an account of the 
damping term in the equation of motion may as well provide 
the solution to a more general type of nonlinear equations in 
terms of solutions to a linear system. In this section, we ac­
count for such a term and list more general results. In Sec. 3, 
we shall return to a further, simpler method (dynamical alge­
bra approach) for the construction of the invariants, which 
will also enable us to look into other general cases when (i) q­
and t-dependence in the third term of(2.4) is nonseparable or 
(ii) this term contains p-dependence (p is the conjugate of q) 
instead of q-dependence, however, again in a separate form. 

In order to account for the damping we start with the 
Lagrangian 

L = !es(t I[tf - m2(t )q2 + 2g(t)G (q)], 

which yields the equation of motion as 

(2.5) 

ij + b (t )q + m2(t )q = g(t)G '(q), [b (t) = dB /dt ].(2.6) 

Note that the factor eS
(! I in (2.5) leads to the damping term in 

(2.6). Now, following the same steps as those of Ray and 
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Reid,9 the auxiliary equation in this case turns out to be 

p + b (t),O + cu2(t)p = (k /p3)e ~ 2BIII. (2.7) 

Note that this nonlinear equation is independent of the term 
g(t)G (q) in (2.5), which must be of the form 

G (q) = Goq ~ 2m, GO = const, 

g(t) = gop2m ~ 2e ~ 2BIII. 

The invariant now becomes 

(2.8) 

(2.9) 

I = H(c/m)(p/q)2m + k (q/p)2 + fPq - pq)2e2Bltl], (2.10) 

where c = - 2mGogo is an arbitrary constant. This result 
reduces for B (t ) = 0 to that of Ray and Reid9 and for c = 0 to 
that of Eliezer and Gray.4 

Alternatively, linear friction can be introduced into the 
equations of motion by changing the independent variable 
dt-e ~ BII Idt and the invariant (2.10) and the auxiliary equa­
tion (2.7) can be derived from the nondamped case dealt with 
by Ray and Reid9 by means of the transformation 

dt-e~Bdt, (2.11) 

d B d --e -, 
dt dt 

g-e2Bg. 

3. DYNAMICAL ALGEBRA 

Recently one of the authors lO presented a simple and 
straightforward derivation of the dynamical invariant for 
the time-dependent forced and damped harmonic osciI1ator. 
This approach makes use of an algebraic treatment, which is 
generally more common in quantum mechanics. 14,15 For the 
Hamiltonian 

H= Ihn(t)rn!p,q) (3.1) 
N 

a dynamical Lie algebra of phase-space functions rn is con­
structed which is closed with respect to the Poisson bracket, 

(3.2) 

[this may, of course, introduce new r k , which are originally 
absent in the Hamiltonian; these new r k can be formally 
included in (3.1) by setting hdt) = 0]. Now the invariant 
dl/dt = 0 is written as a member of the dynamical algebra 

(3.3) 

and by means of 

0= dl/dt = {l,H} + al fat (3.4) 

and comparison of coefficients a system of first-order linear 
differential equations for the unknown A, in (3.3) is obtained 

(3.5) 

where the structure constants C ~m of the Lie algebra are 
defined in (3.2). 

For the damped harmonic oscillator 

(3.6) 
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this approach leads to a finite algebra 10 containing only 

r l = y,2, r 2 = pq, r3 = !q2, 

with the Poisson brackets 

(3.7) 

[rl ,r2 1 = - 2r2 , [r2,r3 1 = - 2r3 , [r3,rd = r 2 · 

(3.8) 

The differential equations (3.5) read in this case 

A I = - 2e ~ B I' IA2, 

A2 = cu2(t )eBIIIAI - e ~ B(lIA3, 

A3 = 2cu2(t )eBIIIA2' 

which can be simplified by setting 

AI =p2 

to give [b (t) = dB /dt] 

P + b (t lP + cu2p = (k / p3)e ~ 2B 

and 

A3 = p 2e2B. 

The invariant can be written in the form (q = pe ~ B) 

(3.9) 

(3.10) 

(3.11 ) 

(3.12) 

I = Hk (q/p)2 + (pq - pqfe2B ]. (3.13) 

A. Application to non harmonic systems 

Here we apply the dynamical algebra approach de­
scribed above to the case discussed in Sec. 2. 

Let us consider the nonharmonic system (2.9), 

H = He ~ Blllp2 + cu 2(t )eB (llq2 - 2g(t )eB(IIG (q)] 

= e - B(lirl + cu2(t )eBlllr2 - g(t )eBlllr4' (3.14) 

with 

r4 = G(q). 

The Poisson brackets are in the first round, 

Irl,r4 1 = -pG'(q), 

{r2,r4 1 = -qG'(q), 

[r3,r4 J = 0, 

(3.15) 

(3.16) 

so that pG '(q) and qG '(q) must be included in the dynamical 
algebra. In the next step one obtains p2G " ,pqG " , q2G " , 
G ,2 + qG 'G" asadditionalelementsofthealgebra,andsoon. 
With the exception of some rare cases the dynamical algebra 
becomes infinite. As an example the infinite dynamical alge­
bra generated by G = q4 (harmonic oscillator with quartic 
anharmonicity) is discussed in some detail in Appendix A. 
An exceptional example which leads to a finite dynamical 
algebra is presented in Appendix B. In the general case the 
system of linear differential equations (3.5), which deter­
mines the invariant l, is infinite and there are questions of 
convergence and existence of solutions, which are related to 
the existence or nonexistence of dynamical invariants. These 
problems may be solved in the future, but for the moment we 
confine ourselves to a more modest question: Are there spe­
cial choices of g(t ) and G (q), which yield a closed finite set of 
coupled differential equations (3.5) for the Av ? Assuming 
that an invariant can be constructed in the subset 
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4 

I = I Ar(t)To (3.17) 
r =- I 

we obtain 
4 

I ,( rr = {H,I} 
r---'-O 

= -2e- BAzr l + (u/eBA) -e- BA3)r2 
+ 2(j)2eBAzr, + (e- BA4 +geBA d{r1,r4 } 

+geBAz{rZ,r4 }. (3.18) 

This equation can only be satisfied if 

(3.19) 

and if the Poisson bracket {r 2,r 4} is a linear combination of 
r

" 
.... ,r4 • From (3.16) we see that !r2,r4 1 = - qG'(q) isa 

function of q only, so that we get {rZ,r4 } - r3 or 
{rZ,r4 } - r 4 • The first possibility leads to G' -q, i.e., 
G_!q2, which is nothing new as it is already in the algebra. 
The second possibility gives qG '(q) - G, a relation analogous 
toEq. (2.8), which provides 

(3.20) 

for an arbitrary constant m. It may be emphasized that the 
form (3.20) was obtained after several manipulations in the 
approach of Ray and Reid9 (cf.Sec.2), whereas here it ap­
pears in quite a natural way as a restricted closure property 
of a dynamical algebra subset. Comparison of coefficients in 
(3.18) gives 

AI = - 2e BIIIAz, 

Az = (j)2e 8 (1IAI - e'" HUlA." 

A., = 2(j)2eBIIIAz' 

A4 = 2mg(t jeBII IAz . 

(3.21a) 

(3.2Ib) 

(3.2Ic) 

(3.2Id) 

The last equation is decoupled from the other three equa­
tions, which are identical to (3.9) and lead again to the auxil­
iary differential equation (3.11) for p. Using (3.19) to elimi­
nate g from (3.2Id) and expressing Az,A, in terms of p by 
(3.10) and (3.12) we obtain 

(3.22) 

l.e, 

(3.23) 

with an arbitrary constant c and the invariant 

1= H(clm)(plqfm + k (qlp)2 + (prj - pq)Ze2BIII],(3.24) 

in agreement with (2.10). Finally, g can be obtained from 
(3.21d) 

g(t 1 = - (cl2m)e .2Bp2m 2 

and the Hamiltonian (3.14) reads 

H = ~ [e - HI/Ii + (j)2(t )eBI / Iq2 

+ (clm)e - Bli I( l/p2)lplq)2m], 

(3.25) 

(3.26) 

in complete agreement with the result ofSec.2. Thus we see 
that the dynamical invariant is obtained here using a simpler 
and more straightforward approach of dynamical algebras, 
which may perhaps provide more physical insight. 

In the special case m = 1 the Hamiltonian becomes in-
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dependent of p and the invariant (3.24) agrees with the invar­
iant (B 6) derived for this case in a different manner in Ap­
pendix B. 

The Hamiltonian (3.26) can, of course, be generalized to 
include a sum of terms with different values of m and c, 

H = ![e - Bp2 + (j)2e Bq2 +...!.. I ~ - Bt.plq)2m,] (3.27) 
p i m i 

(see also Ray and Reid" and the discussion at the end of 
Sec.2). 

B. More general cases 

In Subsec. 3A we considered the case when the time and 
coordinate dependences in the nonharmonic term are sep­
arable. Here we extend the application of the dynamical al­
gebra approach to more general cases. For simplicity we re­
strict ourselves to the undamped case. Let us consider the 
Hamiltonian 

H = ~ [p2 + (j)2(t )qZ + ¢> (q,t)] 

= r l + (j)2(t )r, + r 4 (3.28) 

with r4 = !¢>. The Poisson brackets now become 

{T I,r4 } = -!JP a¢> laq, 

{rZ,r4 } = -!q a¢> laq, 

{r3,r4 } = O. (3.29) 

Assuming that an invariant can be constructed in the subset 
(TI,Tz,T"T4)ofthe dynamical algebra, Eqs. (3.3) and (3.4) 
[in analogy with (3.17) and (3.18)] imply 

aI = i Avrv + Yi4 a¢ = {H,I} at \~ 1 - at 
= - 2A zT, + ((j)2AI - AJ)T2 + 2(j)ZAzrl 

+ Az{T4,rJ + (A I - A4 ){r4,rl }. (3.30) 

This Equation can only be satisfied if A, = A4 • Now, 
when we equate the coefficients of r i on either side of this 
equation the results for i = 1,2,3 will lead to the auxiliary 
equation p + (j)2(t)p = k I p\ whereas for i = 4 we obtain 

. a¢ { } 
A4r4 + Yi4 -a = Az r4,rZ 

- t 

or (3.31 ) 

AI¢> + Ala¢> lat = A2qa¢ laq. 

Now setting A I = p2 (as before) and using A ) = 2pp and 
A2 = - pp, we are left with a partial differential equation 

p(2¢ + qar! laq) + patfJ lat = 0, (3.32) 

whose solution would provide r! as r! (q,p,p,t ). For the choice 
¢> (q,t) = ¢> (q,p(t)), whichimpliesthata¢ lat = p a¢ lap, Eq. 
(3.32) becomes 

2tfJ + qa¢> laq + pa¢> lap = o. (3.33) 

For an ansatz ¢> (q,p) = (1!p2)tb(q,p), this equation reduces to 
the form 

qatblaq = - patblJp, (3.34) 

which is satisfied by the functional form tblplq). Thus for the 
Hamiltonian 
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H = Hp2 + (i/(t)q2 + (l/p2)¢to/q)), 

the corresponding invariant becomes 

1= Hk (q/p)2 + ¢to/q) + toP _ pq)2] 

and the equation of motion is given by 

q + w2(t)q = (l/pq2)¢'to/q)· 

(3.35) 

(3.36) 

(3.37) 

Another general case which can be outlined briefly here 
is that in which the nonharmonic terms in (3.28) are momen­
tum dependent instead of q dependent. We assume, however, 
that they are separable in p and t, i.e., of the type 

H = Hp2 + wI(t )q2 + n(t)G (P)]. 

In this case, in order that an invariant can be constructed in 
the subset of the dynamical algebra as before it turns out that 
G (P)-p- 2m, where m is an arbitrary constant. Finally, for 
the Hamiltonian 

H = ~ [pZ + w2(t )q2 + Cw2(t)(k /p2 + p2t - Ip - 2m], (3.38) 

where C is an integration constant, the invariant turns out to 
be 

1= Hk (q/p)2 + C (k /p2 + pZ)mp - 2m 

+ k(q/p)2 + top _pq)2]. (3.39) 

For a specific ~hoice of ¢ (i.e., power form), the results 
obtained above for the first general case are similar to those 
of Ray and ReidM obtained by using a different method. 
However, it may be remarked that the present method pro­
vides some justification for this specific functional depen­
dence of ¢ onp/ q, instead of choosing it in an ad hoc manner 
as was done by Ray and Reid in their generalization of Eqs. 
(2.2) and (2.3). Further, for the second general case discussed 
above, their method is not very transparent. 

4. QUANTUM INVARIANTS 

It is well known II-IS that for the harmonic oscillator 
dynamical invariants do also exist in quantum mechanics. In 
fact they are identical to the classical invariants (2.1), where 
p = q and q are simply replaced by the corresponding quan­
tum operators p and g (we denote quantum operators by a 
caret) 

(4.1) 

(To simplify the discussion we consider only the undamped 
case in this section.) The origin of this correspondence is the 
identity between the classical dynamical algebra (3.7) of 
phase-space functions and the quantum mechanical opera­
tor algebra 

A. A A. 

T I ~2 Til'" - A A) T I A2 
I = 'iP ' 2 = z\yq + qp , 3 = zq , (4.2) 

where the Lie bracket is the commutator [ , ] 

[f\.r1 ] = - 2ifzfl' 

(4.3) 

For the more general Hamiltonian corresponding to the 
classical Ray and Reid ansatz (3.14), 

Ii = UP + w2(t W - 2g(t )G (g)], (4.4) 
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the one-to-one correspondence breaks down. 
In this section the treatment of Sec. 3 will be carried 

over to the quantum case. Introducing 

T'4=G@, (4.5) 

we obtain the Hamiltonian 
A A. A. A 

H = TI + WZ(t )T3 - g(t )T4 (4.6) 

and the commutators 
A A. ~ A. 

[F],F4] = - (ifz/2)(ftG /(q) + G /(q)p), 

[rz.T4[ = - ifzqG /(g), 

[T'3.T4] = O. (4.7) 

With 

and 

0= ii/dt = (l/ifz)[l,H] + a/jat, (4.8) 

one finds 

±ArT'r = - 2A zr , + (w2A\ -A3)r2 
r=O 

+ 2W2A2r3 + (,14 + gAd(l/ifz) [TpF 4](4.9) 

and 

or 

+ gA2(l/ifz) [T'2.T4]' 

Again identity (4.9) requires 

,14 +gA\ =0 

A A A A A 

(l/ifz)[Tz,T4]-T4' which gives - gG/(q)-G(q), 

and therefore 

exactly as in the classical case. 

(4.10) 

(4.11) 

The system of differential equations for the Ar obtained 
in the quantum case is identical to the classical equations 
(3.21) [with B = 0 in (3.21)] and the invariant of the 
Hamiltonian 

Ii = ~[P + w2(tW + (C/m)p2m- 2g- 2m] (4.12) 

is given by 

j = Hlc/m)p2mg- 2m + (k /p2W + ipq _ pg)2], (4.13) 

where p is a solution of 

p + WZ(t)p = k /p'. (4.14) 

It has thus been shown that the Ray and Reid invariants9 do 
also exist in quantum mechanics and furthermore it has been 
demonstrated that the dynamical algebra formalism pro­
vides a natural way for a transition from classical to quan­
tum mechanics. 

5. CONCLUDING REMARKS 

In this paper we have demonstrated the utility of the 
dynamical algebra approach in constructing invariants for 
harmonic and special cases of non harmonic time-dependent 
systems. This method is based on the Lie algebra of phase-
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space functions and can be carried over naturally to quan­
tum mechanics (cf.Sec.4). We hope that the algebra ap­
proach will provide more insight into the role of the dynami­
cal invariants both classically and quantum mechanically. 
Futhermore, we would anticipate that the formalism devel­
oped here could also be successfully applied to higher-di­
mensional problems. Such work is in progress. 

APPENDIX A 

As an example of a dynamical algebra generated by p2, 
q2, and G (q) (see Sec.3) it is instructive to look at the case 
G (q) = q4 in more detail [a complementary discussion is giv­
en in Appendix B for G (g) = q-2]. Trying to close the dyna­
mical algebra, one finds in the first round the new member 
pq3, in the second round p2q2 and q6, in the third round p3q, 
pq5,p2q4, and so on. In the following we will show that the 
dynamical algebra for this system is the set of all pl"qV (p,v 
non-negative integers) with even degree d = fl + v. To prove 
this one observes that the Poisson bracket of two pl"qV with 
even degree, 

1_1', VI.J" V2}_I" + _II. V \.J',+1'2- 1qVI+ V,-1 
\.fJ q ,p q - 1f-<2 VIr' 1 zl1' ' 

(AI) 

yields again a pi'q v with even degree, 

d=fll +flZ+Vl +vz -2=d1 +d2-2. 

If, on the other hand, the algebra does not contain all pl"qV of 
even degree, there must be a pi" q v with minim urn even degree, 
d = ji + v and ji # v, which is not in the algebra. (The case 
ji = vis trivial because {Prf,pi'q} = ji2pi'rf). Observing that 
pi' - lqv - 1 (even degree < d) andp2q2((P2, [p2,q4J } = 4Sp2q2) 
are in the algebra and calculating the Poisson bracket 

(A2) 

one finds the P"qV is in the algebra, in contradiction to the 
assumption. The harmonic quartic oscillator algebra is 
therefore infinite, which is expected to be typically the case. 
An example which yields a finite algebra is discussed in Ap­
pendix B. 

APPENDIX B 

In Sec. 3 we discussed in some detail a Hamiltonian 
which generates an infinite dynamical algebra. This is ex­
pected to be typical. There are, however, Hamiltonians 
which have a finite dynamical algebra. One example is, of 
course, the harmonic oscillator. 

Another example is provided by 

H = !(p2 + lll2(t )q2 + k Iq2) (B1) 

with constant k. The Hamiltonians (B 1) can be interpreted as 
the radial part of a three-dimensional harmonic oscillator, 
where k is related to the angular momentum. Redefining 
now r l = p2/2 of the harmonic oscillator [Eq.(3.7)] as 

r\kl = !(p2 + k Iq2), (B2) 

we obtain the Poisson brackets 
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{r lklr}- 2r 1k ) l' 2 - - I, 

(B3) 

{r3,r \kl} = r 2, 

i.e., the algebra (T \k ),r2,r3) is identical to the oscillator alge­
bra (Tl,r2,r3 ). 

The Hamiltonian (B 1) reads 

H = r\k 1+ U)2(t )r3 (B4) 

and the invariant 
1= A1r1t l + A2r Z + A3r3 (BS) 

can be evaluated in the same manner as for the simple har­
monic oscillator, which yields 

1= Hk(qlq)2 + k (qlq)2 + ((jrj - qqf], (B6) 

where q is a solution of the "auxiliary" equation 

q + U)2(t)q = k Ii? (B7) 

[compare Eq.(2.7)], which can be derived from the 
Hamiltonian 

Ii = Wj2 + U)2(t )q2 + k ;(2). (BS) 

There is a complete symmetry between the Hamilto­
nians Hand ii. For k = 0 (or k = 0) we recover the well 
known invariant (2.1) for the time-dependent harmonic os­
cillator. The invariant (B6) is a constant of motion with re­
spect to Hand n, i.e., we have 

{I,H}q,p = {J,ii}q,p' (B9) 

I generates a mapping between the Hamiltonians H and ii, 
which is, of course, canonical, because the equations of mo­
tion are conserved. 
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Dispersion relations for linear wave propagation in homogeneous and 
inhomogeneous media 
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For the dispersion of waves in a homogeneous medium there exist the Kramers-Kronig relations 
for the wave number K (UJ) = UJ/c(UJ). The usual mathematical proof of such relations depends on 
assumptions for the asymptotic behavior of c(UJ) at high frequency, which for electromagnetic 
waves in dielectrics can be evaluated from the microphysical properties of the medium. In this 
paper such assumptions are removed and the necessary asymptotic behavior is shown to follow 
the representation of K (UJ) as a Herglotz function. From the linear, causal, and passive properties 
of the media we thus establish the Kramers-Kronig relations for all linear wave disturbances 
including acoustic, elastic, and electromagnetic waves in inhomogeneous as well as homogeneous 
media without any reference to the microphysical structure of the medium. 

PACS numbers: 03.4D.Kf 

I. INTRODUCTION 

The Kramers-Kronig relations have been established 
for the dispersion of electromagnetic waves in dielectrics 
since 1927.1.2 If the wave in the medium is represented by 
expi[zK (UJ) - UJt] for a real circular frequency UJ and a com­
plexwavenumber K (UJ), the imagin:ary part ofK (UJ), ImK (UJ), 
defines the attenuation coefficient of the wave along the spa­
tialaxisz, and the real partofK (UJ), ReK (UJ), when divided by 
UJ, equals the reciprocal of the phase velocity. The Kramers­
Kronig relations state that the real and imaginary parts of 
K (UJ) are related by a pair of Hilbert transforms. 

Similar relations have been applied for sound-wave 
propagation. Recently Horton3 and O'Donnell et al.4 have 
employed the equations derived by GinzbergS and Gold­
berger6 to investigate the applicability of similar relations in 
acoustics. In the literature, Ginzberg is credited with estab­
lishing the Kramers-Kronig relations for sound waves in ho­
mogeneous fluid media. Upon a close reexamination, we 
found that the proof given in Ref. 5, and in several other 
sources, depends on assumed asymptotic behavior of the 
phase velocity Coo as UJ approaches infinity. 

While the asymptotic behavior of the phase velocity can 
be determined for electromagnetic waves from the dynamics 
of electrons in dielectrics, this cannot be done rigorously for 
a sound wave. Furthermore, it is difficult to ascertain the 
behavior of c 00 for stress waves in solids, especially in inho­
mogeneous media. The purpose of this paper is to derive the 
dispersion equations (Kramers-Kronig relations) valid for a 
general class of linear homogeneous or inhomogeneous me­
dia. The proof proceeds without a priori knowledge of c 00 of 
the medium that supports the wave. 

Our investigation is motivated by the search for an al­
ternative method to determine the attenuation coefficients of 
stress waves in solids. Measurements of the attenuation coef­
ficients in solids are known to be very difficult whereas the 
determination of the dispersion (ReK as a function of UJ) is 
comparatively easy even for waves in inhomogeneous media 
such as fiber-reinforced composite materials.7 If a Kramers-

Kronig type equation can be rigorously established for the 
inhomogeneous solids, one could then calculate the attenu­
ation coefficient from a measurement of the dispersion. 

The inhomogeneous media considered in this paper 
must support a plane wave of the form expi[zK (lV) - lVt]. 
Thus it includes a random medium which is statistically ho­
mogeneous, K (lV) being the wave number of the averaged 
field, and a periodic medium for which K (lV) is the Floquet 
wave number. Other than that, the derivation is general for a 
medium which is linear and causal, homogeneous or 
inhomogeneous. 

In the next section, Sec. II, we review the existing proofs 
of a dispersion relation, which proceed along the lines used 
by Titchmarsh8 appropriate to the real and imaginary parts 
of a generalized system function. A somewhat stronger re­
sult has been obtained by Toll.9 In Sec. III we discuss the 
usual derivation of Kramers-Kronig relations for the wave 
number K (lV) for wave propagation in three types of linear 
homogeneous media, electromagnetic waves in dielectric!>, 
acoustic waves in fluids, and stress waves in solids. These 
proofs will be seen to have certain unsatisfying aspects, 
amongst them being difficulties in making generalizations to 
inhomogeneous media. Section IV discusses the phase prob­
lem as it has appeared in the literature, and relates its contri­
bution to our problem. Section V will present the newly­
constructed proof for the dispersion equations in a general 
class of linear inhomogeneous media. 

II. CAUSALITY AND DISPERSION 

The literature on dispersion relations and causality is 
extensive. An excellent introduction and review of the sub­
ject and its applications is provided by Nussenzveig. 10 Some 
of his results which are related to the subsequent discussions 
are repeated in this section. A more thorough treatment of 
the logical foundations of causality and dispersion relations 
is given by Toll.9 

Consider a general linear system with an output wIt ), a 
function oftime, which is a linear causal functional of the 
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inputf(t), 

w(t) = J~ 00 g(t - r )f(r ) dr. ( 1) 

The system is assumed invariant under translations in time. 
Hence the system function g(t - r) depends only on the dif­
ference, t - r, and not on t and r separately. Equation (1) 
states that the output at time t depends only on the input at 
times r<J. Hence the system is termed causal. 

Equation (1) may be rewritten in terms of the Fourier 
transforms of the input and output functions if they are 
square-integrable functions of time, 

W(liJ)= J~ 00 wIt )ei"" dt, 

F(liJ)= J~ 00 fIt lei,", dt. 

Thus, 

W(liJ) = G (liJ)F(liJ), 

where 

G (liJ)== L" g(r )ei"'''' dr. 

(2) 

(3) 

(4) 

In the previous equations and the sequel, we shall use 
capital letters to denote the Fourier transforms of the corre­
sponding time function in lower case letters. 

Note that because of the causality condition, g(r) = ° 
for r < 0, the lower limit of integration in Eq. (4) is zero, 
instead of - 00. G (liJ) can be considered a system function 
(transfer function) of a complex, but linear, system or a gen­
eralized scattering amplitude which converts an incident 
field to a scattered field. The change oflower limit of integra­
tion for G (liJ) from - 00 to ° has farreaching consequence. It 
implies that G (liJ) has a regular analytic continuation in the 
upper half liJ plane. This connection between causality and 
analyticity is at the root of all dispersion relations. 

If in addition G (liJ) is square-integrable along the real 
axis ofthe liJ plane, liJ = W r + iliJ i' 

f~ 00 IG (liJW dliJ < C, (5) 

where C is a constant, then G (wr + iw;) (Wi ;;.0) is also a 
square-integrable function of liJo. By integrating the function 
G (WI)/(liJ ' - liJ) over a complex contour as shown in Fig. 1 
and letting n approach infinity, one finds that the real part of 
G (w), ReG (liJ), and the imaginary part, ImG (w), form a pair of 
Hilbert transforms. This result is summarized by Titch-

Imw 

r4 r2 

r, ~+ib -O+i& 
w'_c w' w+c Rew 

FIG. I. The contour r. We take the limits {l-+oo ,E-+O, and 0.-.0. 
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marsch's theorem as stated in Ref. 10: 
If a square integrable-function G (liJ) fulfills one of the 

four conditions below it fulfills all of them: 
(i) The inverse Fourier transform, g(t ), equals ° for t < ° 

(ii)G (liJ) is, for almost all realliJ, the limit as ImliJ-G + of 
a function which is analytic throughout the upper half plane 
and is square-integrable over any line parallel to and above 
the real axis 

(6) 

(00') R G () 1 -foo ImG (liJ ' ) d I 111 e liJ=- liJ. 
1T - 00 w' - liJ 

(7) 

(. ) I G( ) 1 foo ReG(liJ') d I IV m liJ = - - liJ . 
I 

1T - 00 liJ - W 

(8) 

Equations (7) and (8) are a Hilbert-transform pair. The 
slash through the integral sign indicates that the Cauchy 
principal values of the integrals along the real axis are to be 
taken. 

Equations (7) and (8) are dispersion relations for the 
system function G (liJ). They are a consequence oflinearity, 
causality, and square-integrability. Since the condition of 
the square-integrability (6) is to assure that the top and sides 
of the contour integral r vanish as n_ 00, Eqs. (7) and (8) 
may also be derived under 

lim G (liJ)- ° uniformly, 1T;;.argliJ;;'O. 
ifIJi +00 

As often happens, the square-integrability condition on 
G (liJ) cannot be satisfied, but rather the weaker condition that 
IG(liJ)1 is bounded, i.e., 

IG(wW<C. 
For such cases, we may construct a new function H (w), 

H (liJ) = (G (w) - G (wo ))/(w - liJo)' ImliJo ;;.0. 

H (liJ) is square-integrable and has no poles in the upper half 
plane, and hence satisfies a pair of equations like Eqs. (7) and 
(8). Substituting H (w) as defined above for G (w) in Eqs. (7) 
and (8) and taking liJo to be real and then rearranging terms, 
we obtain 

(w - wo) 
ReG (liJ) = ReG (wo ) + ---

1T 

t OO [ G (liJ ' ) - G (wo)] dliJ' 
X 1m -,--, 

- 00 liJ - Wo liJ - liJ 

(liJ - w o ) 
ImG(liJ) = ImG(liJo ) - ---

1T 

t+ 00 [ G (liJ') - G (liJo ) ] dliJ' 
X Re --. 

- 00 w' - liJo liJ' - liJ 

(9) 

(10) 

This is known as a dispersion relation for G (liJ) with one 
subtraction. Further subtractions may be taken if G (liJ) is 
bounded by a polynomial function of liJ. Details are given in 
Ref. 10. 
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III. THE KRAMERS-KRONIG RELATION FOR 
HOMOGENEOUS MEDIA 
A. The canonical proofs 

A dispersion relation, similar to Eqs. (9) and (1O), was 
first established by Kramers' and Kronig2 for the complex 
index of refraction oflight waves in homogeneous dielectric 
media. Later on, a similar relation was deduced for acoustic 
waves in homogeneous fluid media.s In both cases, such a 
relation can be expressed in terms of the complex propaga­
tion constant K (w) of a time-harmonic wave. 

Consider a plane harmonic wave with angular frequen­
cy w propagating in the direction of the z space axis with a 
complex amplitude function A (w), 

u(t,z) =A (w)ei[-wt+K(w)zl =A (w)e-iw[t-z/C(wlJ. (11) 

The complex wave number K (w) is related to the com­
plex phase velocity c(w) by K = w/c. The Kramers-Kronig 
relations can be taken in the form 

w w f"" ImK (w/) dw' 
ReK(w) = -+ - I -, -

Coo rr -00 w w-w 

+ ReK (0), (12) 

ImK(w) = _ !:!.. (7 [ReK(W
I

) __ 1_]~ 
rr ~ - 00 Wi Coo W - W 

+ ImK(O), (13) 

where Coo = lim (w/K) as W---+oo. Equations (12) and (13) are 
ofthe form of a dispersion relation for K (w) with two subtrac­
tions, the point at (V = ° and the point at w = 00. 

To show that Eqs. (12) and (13) are valid, we must estab­
lish that K (w) is analytic in the upper w plane and that the 
real limit Coo exists. The proof is not as straightforward as 
that for G (w) in Eqs. (7) and (8) because k (t ), the inverse 
Fourier transfrom of K (w), is neither a causal function nor a 
physically meaningful function in the time domain. The 
proof usually proceeds as follows '0: 

Consider a material slab of thickness Zo (Fig. 2), and let 
the input function at z = ° be/(t,O) and output at z = Zo be 
w(t,zo). From Eq. (1) we write 

w(t,zo) =I 00 g(t - r,zo)/(r,O) dr, (14) 

where g(t,zo) is a causal function in time. If the input is 
/(t,O) = /0 exp( - iwt), it generates a plane harmonic wave as 
represented by (11), propagating through the thickness Zo. 

The output should be u(t,zo) = A (w) exp[ - iwt + iK (w)zo] , 
whereA (w) is a thickness independent amplitude. The Four­
ier transform of Eq. (14) is 

f= exp(-iw I) 
I> 

w=A(w)exp(-iwl .. iKz) 
-.:..--.:.------<t> 

FlG. 2. A slab of thickness z with plane wavef(t ) and plane wave output 
w(t ). 
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W(w,zo) = G (w,zo)F(w,O), 
where 

G (w,zo) = A (w)eiK(w)Zo. ( IS) 

Since G (w,zo) is the Fourier transform of a causal func­
tion, it is analytic in the upper half w plane. Furthermore, 
I W (w,zo) I.;;; I F (w,O) I because energy is not generated within 
the medium, i.e., the system is assumed passive. This implies 
that G (w,zo) is bounded, 

I G (w,zo))';; 1. 
These two conditions assure a dispersion relation, Eqs. (9) 
and (10), for G (w,zo) with one subtraction. Note that though 
G (w,zo) satisfies a dispersion formula, there is no a priori rea­
son to expect its logarithm to obey the same type of formula. 

To establish the analyticity of K (w) in the upper w plane, 
we consider two slabs of thickness Zo and z, = Zo + d, and 
apply Eq. (15) twice for two system-functions G (w,zo) and 
G(w,z,) with the same amplitude A (w) and wave number 
K (w). From the ratio of the two system-functions, we obtain 

K(w) = ~ln[G(W,zd]. (16) 
d G(w,zo) 

Since the logarithm of an analytic function is analytic in the 
same region except at the zeros of the argument, and since 
the quotient of two analytic functions is also analytic except 
at the zeros of the denominator, we conclude that in the 
absence of zeros for G (w,zo) or G (w,z d, K (w) is analytic in the 
upper half w plane. That G (w,z) for all finite z has no zeros 
can be seen from observing that no slab is a perfect reflector, 
i.e., there is always some penetration although often expon­
entially little. Equation (14) leavesK(w) ambiguous by an 
integral multiple of 2rr/d and one might therefore suspect 
the presence of branch cuts. But since K is independent of d 
and d is arbitrary, we see that there can be no such cuts. 

The analyticity of K (w) alone is not sufficient to estab­
lish Eqs. (12) and (13). We need to show further that either 
K(w) or a new function 

H(w) =K(w)/w -lie 

is square-integrable, 

f: 00 )H(w, + iwiWdw, <C, wi>O. 

This part of the proof is usually established by appealing to 
the field equations and constitutive relations of the media in 
which the plane harmonic wave is propagating. We proceed 
first with light waves in dielectric media, then discuss acous­
tic waves in a fluid, and conclude this section with a discus­
sion of stress waves in solids. 

B. Light waves in dielectric media 

For an isotropic dielectric medium, the polarization P 
at a point is related to the history of the applied electric field 
E at that point by a convolution integral 10 

P(t) = J~ 00 X(t - r)E(r ) dr. 

The susceptibility function X (t ) is causal in time. The Four­
ier transform of X (t ) is related to the dielectric constant €(w) 
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by 

E(lU) - 1 = 41TX(lU), 

where 

X (lU) = L= X(t )e;W'dt. 

(l7) 

(18) 

Hence, the complex dielectric constant E(lU), or E(lU)- 1, is 
analytic in the upper half lU plane. From Maxwell's equation 
for light waves in a medium with dielectric constant E(W) and 
unit magnetic permeability (;.t = 1), we have 

E(lU) = c~ [K(lU)/lUf, (19) 

where Co is the light speed in vacuum. Thus we can confirm 
that K (lU)flU is analytic in the upper half plane, except per­
haps at its zeros. 

Much is gained when use is made of the known physical 
properties for E(lU), or X (lU), at high frequencies. As shown by 
Nussenzveig (p. 44 of Ref. 10), based on the consideration of 
microscopic motion of electrons in an electric field, the sus­
ceptibility X (lU) is oftheorderofnef lU2 aslU approaches infin­
ity where, ne is the electron density. Thus E(lU)- 1 and, con­
sequently (K flU)2 - 1/c~, are square-integrable in the form 
ofEq. (6). It is then simple to show thatK flU - Ilea is also 
square-integrable in the form ofEq. (6). From Titchmarsch's 
theorem we arrive at the Kramers-Kronig relations as given 
by Eqs. (12) and (13). 

C. Acoustic waves in fluid 

Ginzberg5 has been quoted extensively as having pro­
vided a proof of Eqs. (12) and (13) for pressure waves in a 
fluid. Let v(t ) be the particle velocity of the fluid medium 
with ambient pressure Po and density Po and let pit ) be the 
perturbation pressure. Again a heredity integral relation is 
assumed,5 ft 

Pov(t) = _ = sit - 1" )p(r} dr. (20) 

The function s(t) is casual and its transform S (lU) is analytic 
over the upper half lU plane. The Fourier transform of the 
above equation gives rise to 

PoV(w) = S(lU)P(W). (21) 

From the balance equation of linear momentum one finds 

POV(lU) = - P(lU)fC(W), (22) 

where C(lU) is the complex phase velocity of the plane har­
monicwavegivenbYlUfK (lU). Hence 1/C(lU) = - S(lU)isalso 
analytic in the upper half plane. This establishes the analytic 
property of K (lU)flU. 

The behavior of K (lU) or 1/C(lU) as lU-OO is difficult to 
estimate as there is lacking a microscopic relation for S(lU) 
like that for X (lU) in the electromagnetic case. A discussion of 
the behavior of 1/C(lU) for lU larger than a critical high fre­
quency, say lUo( > 1012Hz), is given by Ginzberg. We shall not 
repeat his discussion here except to point out that he essen­
tially assumed that 1/ C(lU) exists as lU- 00, and that it ap­
proaches a limiting value uniformly, independent of arglU. 

Equation (20) may be criticized on the grounds that it is 
not a constitutive relation. The fluid velocity of a point is 
given by Eq. (20) as a linear functional only ofthe pressure at 
that point. At the very least there exists also an implied de-
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pendence on wave-propagation direction. The function s{t ) 
has no immediate physical significance. 

D. Dispersion relations for homogeneous viscoelastic 
media 

If we attempt a similar prooffor stress waves in material 
media we find for the same reasons as in the previous section 
that K (lU) is analytic throughout the upper half lU plane; and 
again we find that the high frequency behavior of K (lU) can 
only be ascertained by appeal to physical argument. We can, 
however, improve the derivation by replacing Eq. (20) with a 
genuine constitutive equation. 

For an anisotropic viscoelastic linear continuum the 
stress tensor U ij at a point is related to the local strain tensor 
€ kl at the same point by a convolution integral I I 

uij (t) = J~ = Cijkl(t - r )Ekl(r) dr. (23) 

The stiffness function c(t) is causal. If E and U have a har­
monic time dependence exp( - iwt 1 we may write 

.1';j(lU) = C;jkdlU)Ekl(lU), (24) 

with 

Cijkl (lU) = 1= Cijkl(t Jehu' dt. 

From the balance equation of linear momentum 

pili = uij.j' 

where U j is the particle displacement vector field, we 
conclude 

(25) 

- plU2 Uj (lU) = Cijkl(lU) .1'kl.j(lU). (26) 

Since 2€kl = uk,l + UI.k and since Cijkl = Cijlk' we find 

- plU2 Uj (lU) = Cijkl(lU) Uk •1J (w). (27) 

If the particle displacements are assumed to have a plane­
wave dependence on position exp(iK·x), then 

(28) 

For propagation in direction n with components nl and 
K = Kn the solutions to Eq. (28) are the eigenvectors of the 
matrix Cijklnt nj = Mik andpw2fK2(lU) are the associated 
eigenvalues. 

One concludes, in analogy with Eq. (19), that K (w) is 
given by the eigenvalues of the matrix M;k . 

(29) 

Thus knowledge of the high frequency behavior of C (w) 
would determine the high frequency behavior of K (lU). Un­
fortunately this behavior appears to be very difficult to esti­
mate. In the electromagnetic case there is a nondispersive 
continuum (the vacuum) which underlies the dielectric. At 
high frequency the dielectric has a negligible response and 
the propagation becomes that characteristic of the vacuum. 
In the stress-wave case there is no such underlying contin­
uum, and the dispersive medium cannot be divorced from 
the wave quantities. Strain and displacement fields, unlike 
electric fields cannot be defined at high frequencies. In short, 
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the continuum approximation inherent in Eq. (23) is invalid 
in the very region of high frequency where we wished to 
employ that equation. Locality and linearity may likewise be 
failing in this regime. 

One could avoid these questions and, following Ginz­
berg,5 assume the existence of the real uniform limit 

c"" = lim llJ/K(llJ), llJi~O (30) 

independent of argllJ in the upper half plane. Using the analy­
ticity of K (llJ), and its assumed high frequency behavior, and 
assuming that K '(0) exists, the integration of the following 
quantity along the contour r shown in Fig. 1 is taken 

H(llJ), = [K(llJ)-K(O) __ 1 ]_1_" 
llJ - llJ llJ - 0 C"" llJ - llJ 

yielding Eq. (12) and (13). 
We do not find this proof entirely satisfactory. It is per­

haps possible to rigorously derive Eq. (30) from consider­
ations on the high frequency behavior of the stiffness C(llJ). 
We have been unable to do so convincingly. In this context it 
is perhaps appropriate to point out that the assumption of 
homogeneity made in subsection B also breaks down at high 
frequency, where the electron density cannot be considered a 
constant. 

We admit further dissatisfaction with any proof based 
on appeal to the high-frequency behavior of a generalized 
susceptability such as X (llJ) or C (llJ). It is only in a homogen­
eous medium that one may make identifications such as (19) 
or (29). Thus such proofs cannot be generalized to inhomoge­
neous media. In a periodic medium K (llJ) is a Floquet wave 
number and not directly related to a generalized local sus­
ceptability. In a homogeneously random medium where 
K (llJ) is the wave number of the ensemble averaged field, 
again there is no direct connection with a generalized 
susceptability. 

In a certain sense the high-frequency behavior of K (llJ) is 
irrelevant to actual experimental work. The plausible as­
sumption that IK (llJ)1 is bounded by some power of IllJl as 
IllJl-oo with ImllJ~O, together with the analyticity of K (llJ), 
already established at least for homogeneous media, suffices 
to give a dispersion relation for K (llJ) with an unspecified 
number of subtractions. In practical work though, the num­
ber of subtractions employed is determined by convenience 
and may greatly exceed the required number.} Thus the 
theoretical determination of the required number may be 
moot. Nevertheless it is of considerable significance theoreti­
cally to determine the required number of subtraction, or 
indeed if there is any number which is sufficient. 

We conclude this section with the statement of a certain 
property of K (llJ). This property will be useful from place-to­
place in the following and we state it here for reference. 

Given thatg(t,zo) is a real function, a property which 
follows from Eq. (14), we conclude, in view ofEq. (15), that 
G (llJ,zo) has the property 

G (llJ* ,zo) = G *( - llJ,zo) 

and that K (llJ) has the property 

K ( - llJ*) = - K *(llJ), 
where an asterisk denotes the complex conjugate. 
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(31) 

IV. THE PHASE PROBLEM 

In many cases a physical experiment will measure only 
the absolute value I G (llJ) I of a complex system function. It is 
the concern of the phase problem to reconstruct the complex 
number G (llJ) from knowledge of IG (llJ)l. Two references in 
this regard are the papers by Toll,9 and Burge et al. 12 Here 
we will quote Toll's result and show its relevance for our 
problem. 

For a quantity G (llJ) which is bounded and causal in the 
form ofEq. (4), we consider the complex quantity 1/(llJ) de­
fined by 

or 

Re1/(llJ )=1/ r = argG (llJ), 

Im1/(llJ)==1/i = -lnIG(llJ)l· 

(32) 

(33) 

We ask if knowledge of 1/ i (llJ), which is an even function of llJ 
for all real w, suffices to determine 1]r(w) for all real w. Toll's 
answer is that it suffices to determine 1/r to within two real 
constants, if (i) G (llJ) has no zeros in the upper half plane, if(ii) 
the integral 

1"" 1]i(llJ) d 
--- llJ< 00 

o 1 + llJ2 
(34) 

exists, and if (iii) 1/r(llJ) is continuous. He obtains the result, 

, 2l!J'1"" 1] ( ) 1] r(w ) = - 2 i W ,2 dllJ + BllJ' + J, 
7T 0 W - llJ 

(35) 

where B is positive and real and J is real. The condition on 
the zeros of G (llJ) and the condition on the continuity of 1/ r (w) 
may be relaxed at the expense of generating additional de­
grees offreedom for 1/r(w). 

As G (w,z) for electromagnetic or stress-wave propaga­
tion in homogeneous media satisfies most of the three condi­
tions assumed in Toll's derivation we may conclude that the 
quantities ReK (llJ) and ImK (llJ) as defined in Eq. (15) satisfy 
Eq. (35) ifReK (llJ) is continuous and if 

1"" ImK (w) d 
2 w<oo. 

o l+w 
(34') 

This result is very interesting but it leaves one wonder­
ing if the conditions on the continuity of ReK (w) and the 
convergence of the integral (34') may be relaxed. One also 
wonders if an inverse relation giving ImK (llJ) in terms of 
ReK (llJ) can be obtained. In the next section we present a new 
proof, applicable to any type oflinear wave propagation. The 
new proof establishes an equation like (35) for ReK (w) and a 
reciprocal equation for ImK (w). Furthermore Eq. (34') is 
shown to be a consequence of first principles rather than an 
initial constraint. 

V. DISPERSION RELATIONS FOR A GENERAL LINEAR 
MEDIUM 

In this section we will establish dispersion relations for 
K (w) in general linear media independent of any appeal to 
detailed physical structure. We will show that there must 
exist a real quantity, which plays the role of c "" , such that 
formulas equivalent to Eqs. (12) and (13) are valid. These 
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relations will be established for homogeneous media and for 
that class of inhomogeneous media which admit plane waves 
with wave number K (w). 

We begin by considering a slab of thickness D such as in 
Fig. 2 supporting some unspecified type of linear distur­
bance at frequency w. As discussed in Sec. III the transfer 
amplitud~r transmission coefficient-through the slab 
should be of the form 

G (w,D) = A (w)eiKlwID. (36) 

This is a form appropriate to any homogeneous medium, 
where K (w) is the wave number in that medium. For a ran­
dom inhomogeneous medium which is statistically homo­
geneous, K (w) is the wave number of the average field and 
G (w,D ) is the ensemble-averaged transmission coefficient. 
For a periodic inhomogeneous medium, K (w) is a Floquet 
wave number and D is restricted to a set of slab thicknesses 
differing by an integral multiple of the periodic spacing. 
Note that here we make no reference to the type of linear 
disturbance. 

A. The analyticity of K(w} for inhomogeneous media 

We will need to show that K (w), as defined above, is 
analytic in the upper half w plane. For a homogeneous medi­
um the discussion of Sec. III suffices. 

In a random inhomogeneous medium which is suffi­
ciently statistically homogeneous to allow the wave form Eq. 
(36), the analyticity of K (w) may be established by the follow­
ing proof. The same proof is also applicable to homogeneous 
media and is found in the book by Nussenzveig. 10 He points 
out thatK (w) will have the same domain of analyticity as that 
ofG (w,D) except at the zeros of exp [iK (w)D ). For any given 
realization in the ensemble of random media, the field trans­
mitted through the slab, though not a plane wave, is causal. 
The average of these fields is a plane wave, and of course still 
causal. Hence G (w,D ) has the required analyticity in random 
as well as in deterministic media and K (w) will have the same 
domain of analyticity except at the zeros of exp [iK (w)D ]. 
But any zeros in the exponential factor at, say w = ; would 
imply a branch cut in G (w,D ') atw = ;forsomeD I =/=D. The 
possibility of a branch cut is excluded by the analyticity of 
G (w,D) for all D. Thus there are no such zeros and K (w) is 
analytic throughout the upper half w plane. 

In the case of a periodic medium, we may conclude that 
there are no zeros in the factor exp[iK (w)D 1 at any finite 
value of w in the upper half plane because a zero in G (w,D ) 
would imply that there is some frequency (perhaps complex) 
for which a vanishing field to the right of the slab is consis­
tent with a non vanishing field to the left. This can only hap­
pen at a frequency at which one of the constituents of the 
medium has singular properties. But these properties are 
causal transforms and analytic in the upper half plane. Thus 
G (w,D ) has no zeros in the upper half w plane and K (w) may 
be assumed analytic there except for possible branch cuts 
where K (w) jumps by an integral multiple of 21T/h, h being 
the periodicity of the medium. While such branch cuts may 
exist, they may be swung into the lower half plane without 
loss of generality by noting that there can be no branch 
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points of K (w) in the upper half plane. Any such points for 
K (w) would imply branch points for G (w,D) and these are 
disallowed by its analyticity. Van Kampen 13 has also dis­
cussed the analyticity of the Floquet wave number as a func­
tion of w. 

Thus we conclude for this class of media that K (w) is 
analytic in the upper half plane. We have not yet discussed 
its behavior at large wand cannot yet conclUde with a disper­
sion relation for K (w). The discussion of the high frequency 
limit of K (w) will occupy the remainder of this 
communication. 

B. K(w} as a Herglotz function 

K (w) has a further property which has so far not been 
exploited, that is, its imaginary part may be assumed non­
negative. Since the system under consideration is assumed 
passive and no energy can be added to the wave, we conclude 
that 

IG(w,D)I.;;;l (37) 

for all real wand all positive D. It is appropriate here to point 
out that logical connections between passivity and causality 
have been widely noted 10.14.15, often in the context of deriv­
ing dispersion relations for system functions. ln

.
17 By refer­

ring to Eq. (4) we may extend Eq. (37) to all values of w in the 
upper half plane and on the real axis. By noting that Eq. (37) 
must hold for arbitrarily large thicknesses, D, we conclude 

leiKlwlD I.;;; 1, Imw;>O 

and thus 

ImK (wl;>O, Imw;>O. 

(38) 

(39) 

Equation (39) together with the analyticity of K (w) in the 
upper half plane form the definition of a Hergoltz 
function. 10.18 

Any Herglotz function admits a representation in the 
upper half w plane in terms of a bounded (from above and 
below) nondecreasing real function art ) of a real variable t, 
the real numbers B, J, with B positive 

foo 1 + tw 
K (w) = Bw + J + _ 00 t _ w da( t) (Imw > 0).(40) 

The integral is a Stieltjes integral. 
There is a slight resemblance between Eq. (40) and Eq. 

(7). The resemblance can be explored by taking the limit 
Imw----..O and assuming that a(t ) is sufficiently differentiable 
everywhere. One obtains, for real w, 

K(w) = Bw + J - i1Ta'(w)(I + w2
) 

+ {+ 0000 It ~ = a'(t) dt (Imw = 0). (41) 

Thus a' may be identified 

a'(r<J) = _ J... ImK(~) 
1T 1 + w-

and Eq. (41) becomes 

ReK(w) =Bw +J _ J... C"" 1 + t~ ImK(t) dt. 
1T1~x l+t- t-w 

(42) 

(43) 

With a little more manipulation which exploits the property 
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that ImK (liJ) is an even function of realliJ, Eq. (43) may be 
made into the form (12) with Coo = 1/ Band J = ReK (0). 
This approach, similar to that of Wu, 17 whose concern is 
with despersion relations for impedances, is not adequate for 
the present purposes. We have assumed here that art ) is 
differentiable. The meaning of such an assumption is not 
clear. Furthermore we have derived only one of the Hilbert 
transform-pair, and not the reciprocal relation which gives 
ImK (liJ) in terms of ReK (liJ). 

From K (liJ) as described in Eq. (40), we construct an­
other analytic function 

H (liJ) = K (liJ) - K (liJo) _ B 
liJ - liJo 

f<$> 1 + t 2 

= daft) , 
- = (t - liJ)(t - liJo) 

(44) 

where liJo will be specified later. Clearly H (liJ) is analytic in 
the upper half plane. We will show in the following that as 
liJ~ 00 ,H (liJ) vanishes uniformly in a sector of the upper half 
plane, 31T/4;;;'argliJ;;;'1T/4 and approaches zero in a possibly 
nonuniform manner on and in a neighborhood of the real 
axis. It is in this limited sense only that c'" = 1/ B can be said 
to exist for general linear media. Fortunately, the nonuni­
form properties of H (liJ) will be seen to be sufficiently unpath­
ological that equations effectively equivalent to Eqs. (12) and 
(13) will be valid. 

An illustration of the possible nonuniform properties of 
K (liJ) is provided by the consideration of a medium which 
embeds sharply-resonant scatterers. We take their reson­
ances to occur at frequencies Rw", n = 1,2,3 ... ,00 and each 
resonance to have width ImliJ" > O. Each oscillator will be 
assumed to have strength a" . ThusK (liJ) will include a patho­
logical term of the form 

Kp(liJ) = I a,,/(liJ -liJ,,). 

" 
If, for example, ImliJ" ~O as n-- 00 such that 

" ·oc 

does not exist, i.e., if the resonances are becoming increasing­
ly sharp as n-- 00, then H (liJ) may converge to zero on most 
sequences liJ--oo, but will diverge on sequences close to the 
sequence [liJ" l. It may be that the behavior described here is 
unphysical. It is not clear, though, that all pathological be­
havior can be ruled out. 

c. The contour integral 

We consider the integral along the closed contour r of 
Fig. 1 where F = FI + F z + F3 + F 4 , 

( H (liJ), dliJ = O. 
Jr liJ - liJ 

(45) 

By taking the limit of this integral as n goes to infinity, and 

as E goes to zero, we wish to establish that the contribution to 
the contour integral from the top, F 3, left- and right-hand 
sides, r2 andF4 , vanish in the limitn __ oo. Clearly if IH (liJ)1 
vanishes uniformly as n~ 00 on all points of a given section 
ofthe contour, the contribution from that section will vanish 
in this limit. 

1. The top of the contour r3 
The proof that I H (liJ) I vanishes as fl __ 00 on F 3 is also 

found in Ref. 14. We write H (liJ) in the following form: 

I 1 + t 2 

H(liJ) = da(t) 
1'1,;,1' (t -liJ)(t -liJo) 

1 1+ t 2 

+ dart), 
1'1> T (t - liJ)(t - liJo) 

(46) 

where Twill be taken as arbitrarily large but fixed as n--oo 
and liJ in understood to be on r 3• 

In the limit fl--oo with IliJl;;;.fl, the first integral ofEq. 
(46) vanishes because it is of the order 1/liJ times a fixed 
quantity. In the domain of the second integral where 
It I:> IliJol the integrand is of the order of unity, 

1(1 +t 2 )1(t -liJ)(t -liJo)l~l. (47) 

The second term of Eq. (46) then becomes 

11 l+t2 I I -----da(t) ~ daft). 
l'I>T(t -liJ)(t -liJo) 111>1' 

(48) 

Since T is arbitrarily large and as art ) is monotonic and 
bounded from above and below this integral is arbitrarily 
small. We conclude that IH(liJ)1 vanishesonr3 asfl--00 and 
that the top section of F contributes zero in the limit n- 00. 

2. The sides of the contour r2 and r4 

We now let liJ lie on F z and break the integral represen­
tation for H (liJ) into four terms 

f T + ifl -f3fl + Lfl + f3fl H(liJ) = 
-00 I' fJ-f311 

L
oo 1 + t 2 

+ dart), fl + f3fl (t - liJ)(t - liJo) 
(49) 

where 0 </3 < 1 and Tis arbitrarily large but fixed as fl~oo. 
The first integral vanishes because it is of the order 1/liJ 

times a fixed quantity; the second and fourth integrals vanish 
as fl-- oo in manners similar to that ofEq. (48). The third 
integral is readily seen to be bounded for sufficiently large n, 

IH(liJ)l.;;; [a(fl + /3fl) - a(fl - /3fl )](1 + /3)fl IImliJ. 
(50) 

It is not apparent that the expression above vanishes as 
fl- 00. The first factor vanishes, but the factor 11 renders the 
convergence questionable. 

We can, however, through the bound on IH (liJ) I along 
F z, construct the consequent bound on the contribution to 
the contour integral from this segment. For large fl and for 
liJ = n + iliJ j 

I 
(fl+iU H() I 

JfJ + ib liJ _(UliJ' dliJ .;;; [a(fl + /3n) - a(fl - /3n)] (1 + /3 )[lnn - lno]. (51) 
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This expression will now be shown to vanish as fJ~ 00 at 
fixed 8 but in general, not in a uniform manner. 

We state that there exists a sequence ofincreasing num­
bersfJn, n= 1,2,3 ... withfJn~00 asn~oo such that the 
right-hand side of inequality (51) vanishes as n~ 00 . This will 
be proved by asserting the contrary, i.e., that there is no such 
sequence, and discovering a contradiction. It is clear that if 

a( 00) - a(fJ) = LOO da(t) = m~o L~~+ 1 da(t) 

there is no such sequence then there exists some (large) fJ 
such that for all X> fJ /1 - 13 

a(X + f3X) - a(X _ f3X» 1 
InXlnlnX 

(52) 

This implies 

= f [a(X m + 1) - a(X m )] = f [{a( 1 + 13) X M } - a {( 1 - 13 ) ~}]. 
m=O m=O 1-13 1-13 

(53) 

whereXo = fJ andXm + 1 = [(1 +f3)/(l - f3)]Xm · Combining Eqs. (52) and (53) we conclude, with r = (1 + 13)/(1 - /3), 

a( 00) - a(fJ» f [(mlnr + In.....!!...-) In (mlnr + In fl )] - 1. (54) 
m=O 1-13 (1-13) 

The sum does not converge. But a( 00 ) - a(fJ ) must exist. 
Thus we have a contradiction and there does exist a sequence 
of fJ n with the desired properties. 

We conclude that 

. in" + in" H (w) hm --- dw = 0. 
n---+oo fln + is (j) - Wi 

(55) 

Similarly we can conclude for the left-hand side 

lim __ w_ dw = 0, 1-
Z "+i6 H( ) 

n-oo iZ n - Z,r liJ - 0/ 
(56) 

where Z" is some sequence, not necessarily the same as fJn , 

which goes to infinity as n goes to infinity. It will be shown, 
however, that Z n can be taken equal to fJ n' This will follow 
from the parity of K (w) under w~·. 

3. The bottom side of the contour 

We now take the limit 8~. The limit can be taken only 
if K (fln) exists in a suitably well-defined way. The validity of 
the limit is related to the validity of taking the bottom section 
of the integration along the real axis in the first place. K (w) 
has not been guaranteed analytic, or even everywhere de­
fined, for real w. But sinceK (w r + i8) is analytic for all 8 > 0, 
it is reasonable to assume that its integral transforms with 
respect to Wr are continuous functions of 8 as 8~. Hence 
K (w r ), though perhaps not a good function, is in this sense 
locally integrable and thus a distribution. See Beltrami and 
Wohlers19 for a discussion of distributions as boundary val­
ues of analytic functions. 

Thus we conclude that 

1· fn" H{w) d 0 1m ---, w = 
n--OC! _ Zff (i) - OJ 

(57) 

and, for Imw'~, 

lim __ w_, dw = i1rH (w'); f
n

" H() 

n_OC! _ Zn: (i) - W 
(58) 

the real and imaginary parts may be taken now. 

ImH ( ') l' - 1 }n" ReB (w) d w = 1m -- W, 
n-oo 1T - Zn OJ - UJ' 

(59) 
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ReH(w') = lim ~ en" ImH(~) dw. 
n~oo 1r 1- Zn W - W 

(60) 

Since ImK (w»O for all real w, the limit in Eq. (60) is clearly 
independent of the details of the sequences fJ nand Z n' We 
therefore may take, for this integral, fJ n = Zn-oo 

(61) 

where there can be no ambiguity in regard to the limits of 
integration. Furthermore, taking Wo = 0, ImH (w). except for 
a part which gives zero upon being Hilbert-transformed as in 
Eq. (61), becomes an odd function of real w [(seeEq. (31)] and 
the above integral can be rewritten as 

or 

ReH (w') = 2- Goo wlmH (w) dw (62) 
1r 10 w 2 _ W,2 

ReK (w') = Bw' + 2liJ' COO I~ (~~ dw + ReK (0). 
1r 10 w - w 

(63) 

Note that Eq. (63) implies the inequality (34'). 
Equation (59) is not in a useful form. The purpose of the 

remaining parts of this section will be to replace Eq. (59) by 
Eq. (68). This will be done by considering the right- and left­
hand sides of r simultaneously and showing that the real 
part of the possibly nonuniformly convergent part of the sum 
of the contributions from the right and left sides of rvanish­
es for all fJ. 

4. The uniform limit 

Again we assume Wo = O. We first show that the w' #0 
integrals on the sides differ from the w' = 0 integrals only by 
a uniformly convergent part. By referring to Eq. (50) one 
may write, for w on the left or right sides of r, 

\ 
H(w), \ <; [a(fJ + f3fJ) - a(fJ - /3fJ)] 

())-{)) 

(64) 

If this quantity is now integrated along the right or left sides 
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of r, it is only the leading term, which is independent of 0/, 
that is of questionable convergence. The integral of the re­
maining terms clearly vanishes uniformly as f1--00. Thus 
for an investigation of the nonuniform covergence of the side 
integrals, we may take w' = 0 without loss of generality. 

Now setting w' = 0, we consider the integral up the 
right-hand side of the contour r z and down the left-hand 
side r 4 • The integral along r 2 is 

i H(w) d - in H(f1 + iy) 'd -- w- I y. 
r, W {j f1 + iy 

(65) 

The integral along r 4 is 

( H(w) dw = r H( - f1 +. iy) i dy. (66) 
Jr, eu In - f1 + Iy 

Equation (66) becomes, on recognizing that 
H (w) = H *( - w*) except for the unimportant term 

K(O)/w, 

i H(w) d in H*(f1 + iy) 'd 
-- W= I Y 

r, w {j (f1 + iy)* 

and the sum of the integrals on r 2 and r4 becomes 

( H (w) dw + ( H (w) dw 
Jr, w Jr, w 

= i (n dY{ H(f1 + iy) + H*(f1 + iY)} (67) 
J{j f1 + iy (f1 + iy)* ' 

which has zero real part. 
Therefore the integral 

lim Ref ( H (w), dw + ( H (w), dW} 
n~"" Jr, w - w Jr, w - w 

is uniformly convergent to zero as f1--00. 
We rewrite Eq. (59) as 

ImH(w') = lim --=-!. C+
n 
ReH(~) dw. (68) 

fl-oo 1T 1- n w - w 

SinceReH(w) = ReH( - w) forw real exceptforapart which 
gives zero upon being Hilbert transformed, we may recast 
Eq. (68) into 

ImH (w') = - 2uJ' C"" ReH (w) dw 
1T 10 w2 - W,Z 

(69) 

or 

ImK (w') = - 2uJ'2 ("" ReK (w)/w - B dw 
1T Jo w2 - W,2 

+ ImK (0). (70) 

By subtracting from Eqs. (63) and (70) the appropriate 
mUltiples of 

i
oo 

1 
2 ,2 dw = 0 

w - w 

one obtains the sometimes more convenient formulas 

ReK (w') = Bw' + 2uJ' ("" ImK (w) - ImK (w') dw 
1T Jo w2 - W,2 

+ ReK(O), (71) 
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ImK (eu') = - 2uJ,2 ('" [ ReK (w') _ ReK (w') ] 
1T Jo w w' 

dw 
X w2 _ W,2 + ImK (0), (72) 

where now the integrands contain no explicit poles. B is an 
unknown positive real number, equal to, when the limit ex­
ists unambiguously, 

lim K (w)/w = B. 
(r.}--+co 

In lieu of the definition (44) of H (w) one could consider 
the quantity 

(73) 

which, by analysis similar to that of Sec. VCI and VC2 can 
be seen to be uniformly convergent to zero on r 2, r 3, andr4 

as f1--00. It follows immediately that one may write a dis­
persion relation for H (w). After taking the imaginary part of 
this dispersion relation and recognizing that ImK '(0) = 0, 
one obtains Eq. (72). After taking the real part one obtains, in 
place ofEq. (71), the possibly more useful relation 

ReK (Wi) = ReK (0) + w'ReK '(0) 

+ 2uJ'3 ('''' [lmK (w) _ ImK '(WI)] dw . 
1T Jo w2 W '2 w2 _ W'2 

IfReK(O) = 0, as it must ifReK(w) is an odd function, Eq. 
(74) becomes Horton's3 Eq. (5). 

VI. CONCLUSIONS 

To summarize, the Kramers-Kronig relations have 
been established without reference to the exact physical na­
ture of the medium, and independent of any assumptions 
regarding the high frequency behavior of the medium. This 
high frequency behavior, until now a prerequisite to 
Kramers-Kronig relations, is seen to follow logically from 
the first principles of causality, linearity, and passivity. The 
Kramers-Kronig relations for the wave number K (w) have 
thus been found to hold for a wider class of homogeneous 
and inhomogeneous media, for which a priori high frequency 
behavior is difficult to judge, than has heretofore been 
thought to be the case. 

The surprising result is perhaps not the validity of some 
form of a Kramers-Kronig relation for general linear media. 
They have been employed in a wide range of circumstances 
for many years. It would have been remarkable had it been 
shown that for some media there is no dispersion relation for 
the wave number K (eu). The more surprising result is that 
two subtractions Eqs. (71) and (72), where the second sub­
traction is a point at infintiy, are always sufficient, or, speak­
ing more loosely, that the attenuation, ImK (w), cannot rise as 
w __ 00 as fast as a linear function of w, nor can the real part, 
ReK (w), rise faster than a linear function of w. It is remark­
able that these properties follow from only causality, passiv­
ity, and linearity with no appeal to specific physical 
argument. 
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The Cauchy-Riemann equations of holomorphy are extended to fields i.n hi~her-dim.ension~l 
spaces in a framework of Clifford algebras. The equations ofholomorphy 10 ~1Ok?wskI spacetIme 
turn out to be the Maxwell equations in vacuum. The Lorentz gauge conditIon IS a result of the 
holomorphy. Sources can be included in an extension of the residue theorem, where charges 
correspond to the residues. 

PACS numbers: 03.50.De, 02.40. + m, 

I. INTRODUCTION 

Ever since the creation of the beautiful branch of math­
ematics dealing with holomorphic functions and residue in­
tegration in the complex plane, 1.2 there have been efforts to 
extend those results to higher dimensions. The direction 
which concerns us is the formulation of hoi om orphic fields, 
using, as a basis, an algebra with anticommuting elements 
and not several commuting complex bases. This latter ap­
proach has been adopted to create the theory of "several 
complex variables. ".'.4 The theorems of Frobeniuss.f> and 
Hurwitz and Albere- IO give all normed division algebras 
without singular inverses other than the zero element as JR, 
C, and H. This result has motivated a group of researchers to 
look into "quaternion holomorphy"II.12 as the natural ex­
tension of complex holomorphic fields. (Ref. 12 contains an 
extensive bibliography.) 

Recently, we have demonstrated that all Clifford alge­
bras up to order 8 are either division algebras, or "singular" 
division algebras. 13,14 Furthermore, any larger Clifford alge­
bra has division defined for each rank antisymmetric tensor 
field.ls,lf> This property, as well as the manipulatory ease of 
Clifford algebras, leads us to formulate a theory of hoi om or­
phic fields using Clifford algebras. Related but distinct ef­
forts can be found in Refs. 17-20. Also of related interest is 
the work of Penrose and his school on holomorphic twistor 
fields. 21 -2" 

In this paper, we show how to construct the generalized 
Dirac operator D 24-2f> in any flat Riemannian space as a 
vector operator in the Clifford algebra (Sec, III), D is defined 
using the realization of Clifford algebras in terms of the dif­
ferential forms of each space, introduced in Refs. 15 and 16. 

In Sec. IV, we show that the Cauchy-Riemann equa­
tions ofholomorphy correspond to the expression D/ = 0 in 
two dimensions. By using the Clifford algebra in four-di­
mensional Minkowski spacetime,27-29 the corresponding ex­
pression Df = 0 in four dimensions gives rise to two distinct 
sets of equations. When/is a vector field, it can be identified 
with the electromagnetic potential, and the condition Df = 0 
is equivalent to the Lorentz gauge condition plus the differ­
ential equations expressing a zero electromagnetic field in 
terms of the potential. When/is an antisymmetric rank-2 
tensor field,! can be identified with the electomagnetic field, 
and the condition Df = 0 is equivalent to the Maxwell equa­
tions in vacuum. 

It is possible to include singular points, in which case 

the fields are nonholomorphic, An integral formalism de­
rived from the differential treatment is introduced. Using the 
analogy with electromagnetic fields, we show how a residue 
in Minkowski space can be evaluated via an extension of the 
usual Residue theorem. We apply this method to (i) the vec­
tor field rlrl nand {iiI the electric and magnetic multipole 
fields. The result obtained is that the only nonholomorphic 
field is in fact that corresponding to the electric field of a 
point charge. These examples illustrate the close connection 
between electromagnetism and the holomorphic properties 
of Minkowski spacetime. 

II. PROPERTIES OF THE CLIFFORD ALGEBRA IN 
MINKOWSKI SPACETIME 

We review her the "vee" representation of Clifford alge­
bras in terms of differential forms, which was introduced in 
Refs. 15 and 16. The reader is referred to there for details; 
here we give a summary of those results that are necessary in 
the following discussion. In particular, we study the Clifford 

. M' k k' . d db A 1 -' N 27-2'1 algebra 10 10 ows I spacetime, enote y ,. = 4' ' 
Consider the differential one forms u~ = dx~; 

J-l = 1,2,3,4, of the Minkowski spaceM. 1,3 We construct a set 
of24 = 16 basis p-forms using the Cart an exterior produceo: 

{l,d',if !\uV,d' !\aV !\r.:!', (i}4 = u l !\ ... !\a4}, 

J-l,V,A = 1, ... ,4, J-l#V#A. (I ) 

The volume element in four dimensions is labelled (i}4. In the 
space M 1,3, define a metric scalar form 

g ~v = (if, a V
) = diag{ - 1, - 1, - 1, + 1). (2) 

In general, the metric can have p plus signs, q minus 
signs, andp + q = n, In that case, the construction is ex­
tended to the Clifford algebra A M, which is of dimension 
2P + q.15.1f> 

We define an associative multiplication V, "vee," be­
tween all the basis forms in (I) in terms of the Cartan exterior 
product and the contractions (2). The "vee" mUltiplication 
between a basis r-form and a basis (s)-form is defined as a sum 
of permutations of basis forms in (I), as follows 15,16: 

Definition I: 

(r.:!"!\ ... !\ u'\') V (if'!\ ... !\ u') 

I 1 II( - l)/I,{ - It' 
k = 0 k !{r - k )!(s - k )! /I, 11, 

(3) 
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Here ( - 1 )ll, and ( - 1)/1, are the signs of the 
permutations 

CI n= r 
I 

V
r

) n = tl A' S 
r I 

Ps). 
I1s 

(4) 

In actual practice, the rules of manipulation of the vee 
product are very simple. For example, it follows from defini­
tion (3) that 

0'" V a V = g'"v + a'" 1\ a V
, (Sa) 

elL V (aV 1\ a).) = g'"va ). - g'").av + a'" 1\ a V 1\ a).. (5b) 

Define the "tensor types" /k' which are anti symmetric 
tensor fields of rank k expanded onto a basis of differential 
forms in (1). The crucial difference between the "tensor 
types" and the usual differential forms is that the bases are 
here endowed with the vee product; hence the tensor types 
possess intrinsic algebraic properties in addition to those ex­
pected from the theory of differential forms. The most novel 
property is the existence of a unique two-sided inverse of 
each tensor type. 15.16 In four dimensions, the ranks of the 
tensor fields can be only 0,1,2,3, and 4. The most general 
element of the algebra A 1.3 is a combination of all distinct 
tensor types /k : 

a=/0+/I+/2+J;+/4 

=/0 + I/I'"cI' +! I/2 ,"va '" I\a
v 

'" ,".V 

+ ~ '" !,"v).a'" 1\ a V 1\ a). + j;°UJ4 
3' "'" 3 4 , 

• ,",v,). 

11, v, A = 1,2,3,4, WI=v=fA. (6) 

The coefficients of the tensor types are all real; the total 
number of scalar components is 16, which is the dimension 
of the algebra. 

In the discussion of forms, the notation of the dual30 

plays an important role. A result of particular practical sig­
nificance is the ability to express the dual notation algebra­
ically using the vee product as follows I5

•
16

: 

Theorem 1: 

*/p = (- 1)'UJ
k V/p =fik-PI' 

k 

(7) 

The index t is different for each space and for each rank. 
The duality theorem [Eq. (7)] can be used in the three-dimen­
sional subspace of Mink ow ski space to reduce a second rank 
tensor Fin four dimensions into space and time components. 
This is known as the "canonical decomposition,,29: 

F=EI\~-*B=EI\~+~Va 
3 

E i = p4, B i = -! I,jjkF j\i, j,k = 1,2,3. (8) 
i, j.k 

In the case of the electromagnetic field, this is just the 
familiar reduction into the vector fields E and B in the three­
dimensional space. 

In our notation,a and b will represent vectors in four 
dimensions, with scalar product (a,b ) = ~! = I ai' b '". We use 
the Minkowski metric (2) g"''" = ( - 1, - 1, - 1, + 1). The 
quantities a and b are the spatial part of the same vectors, and 
have a Euclidean scalar product denoted by 
(a·b) = ~i ~ I aib i. The usual vector cross product in the 
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three-dimensional subspace is defined as axb 
= ~3. aibj-ijLJc 

~'J,k= I e' if. 

We list the vee products between vectors a, b and the 
tensor type-2 F, as follows; they are easily calculated using 
(5): 

a Vb = (a,b) + (b 4a - a4b) 1\0'4 - UJ3VaXb, (9a) 

a V F = - a4 E - axB - (a·E)a4 + UJ4 V [ - (a'B)a4 

+ axE - a4B]. (9b) 

The hypercomplex character of the vee product is ex­
plicit in (9a). (Compare this product with the well-known 
quaternion product. It has a similar form, but is quite dis­
tinct.) In (9b) we have used the canonical decomposition (8) 
to separate the tensor F into the space part B and the space­
time part E. Identities (9) demonstrate that fields in space­
time can be described in our formalism by employing the 
traditional vector notation. 

III. CONSTRUCTING THE GENERALIZED DIRAC 
OPERATOR 

Consider a field/that is a function of the n variables 
xl, ... ,xn. Then, any general derivation D can be written in 
terms of the chain rule as 

Definition 2: 

D/[xl, ... ,xnj = i dxaaJ[xl, ... ,xnj. (10) 
a=1 

Motivated by this rule (10), proceed by making the fol­
lowing identifications: (i) Interpret the coordinate differen­
tials dxa as the basis one-forms ~ endowed with the vee 
product, and (ii) interpret/as any "tensor type" in (6). We 
can consequently use the Leibnitz chain rule to define a first­
order differential operator. The interpretation given here has 
the feature that the differential operator D actually generates 
the algebra in the space of variables. 

I t is possible to identify the partial differential operators 
a a with the covariant components of a vector in n dimen­
sions expanded on the a-basis, as follows: 

n 

D/=DVF, D= I aa~' (11 ) 
a=l 

With this identification (11), the purely operational 
definition (10) becomes an algebraic definition of D as a vec­
tor differential operator. The obvious advantage to this con­
struction is that the properties of D can be deduced very 
simply by using the algebraic vee structure. We list some of 
the properties here: 

D:J;,-fi p-II + fi p+ 11' 

DV(1;, +/d=DV 1;, +DV /k' 

DV(DV/) = (DV D)Vf, 

DVD=o. 

(12a) 

(12b) 

(12c) 

(12d) 

These properties (12), along with the universality of the 
Clifford algebra, demonstrate that D is in fact isomorphic to 
the generalized Dirac operator. 

In the Grassmann algebra, D may be identified with the 
operator (d + 0 ), which is the sum of the Cartan exterior 
derivative d with the Hodge coderivative 8, as follows25

•
26

: 

N. Salingaros 1920 



                                                                                                                                    

Theorem 2: 

D V I+-+(d + 8) AI = d A ± *(d A (*/)). (13) 

It is to be stressed that, although some results are ex­
pressible using d and 8 separately, it is crucial in the follow­
ing analysis to consider the operator D as a vector operator. 

Practical calculations in Minkowski spacetime are done 
as follows. In keeping with the traditional usage of vector 
calculus, we denote the vector derivative in the three-dimen­
sional subspace of Minkowski space as V, using contravar­
iant partial derivatives of the space coordinates. 

3 

V = I aiel, D = - V + 0'0.4. (14) 
;= I 

Using (14) and the vee product rules (9), we explicitly 
write down the D derivatives of the tensor types in Min­
kowski spacetime: 

DVa = (V·a) + O'a4 + (- O'a - Va4
) A 0.4 + w3VVXa, 

(ISa) 

DV F= V·B - O'E + (V·E)(74 + w4V [- a4 B - VXE 

+ (V·B)(74]. (ISb) 

We have utilized the canonical decomposition (S) in 
(ISb). One sees from (IS) that fields in spacetime can be de­
scribed by using the language of classical vector analysis. 
The properties of D acting as a differential operator on vee 
and wedge products of fields IV g and I A g are easily ob­
tained by writing everything in coefficient form and using 
the algebraic rules (S), (11). Often, it is easiest to first reduce 
the vee products between fields using (S),(9), then apply D 
using (14), (IS). 

IV.HOLOMORPHY IN FOUR DIMENSIONS. MAXWELL'S 
EQUATIONS 

In this section, we investigate the extension of the con­
cept of holomorphic fields to any dimension. The specific 
interest of this paper is in four-dimensional spacetime with 
Minkowski metric, but our construction is quite general. 

We introduce the notion ofholomorphy in n dimen­
sions, using the D operator as defined in the previous section. 

Definition 3: A tensor type/is holomorphic iff 

DV/=o. (16) 

By utilizing the identification (13) in the Grassmann 
algebra, the condition ofholomorphy (16) is equivalent to the 
two separate conditions (f is a tensor field of homogeneous 
rank). 

dA/=O, 

dA(*I) =0. 

(17a) 

(17b) 

In two dimensions, condition (16) gives the Cauchy­
Riemann equations. Of interest are the specific expressions 
ofholomorphy for fields in four-dimensional spacetime. The 
tensors of type 1 and 2 in spacetime will give two distinct sets 
of differential equations ofholomorphy. (The tensor type 3 is 
dual to the vector, and gives the same equations.) 

TheDderivative of the vector a is given by (ISa). Setting 
the coefficients of each basis form in (1) equal to zero, we 
obtain the following set of seven equations as the holo-
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morphy conditions of a vector field a: 

(V'a) + a 4a
4 = 0, 

a4a i + aia4 = 0, 

(Vxa)i =0, 

(ISa) 

(ISb) 

(ISc) 

Via the electromagnetic analogy, (ISa) is the Lorentz 
gauge condition for the vector potential, which is implied by 
the holomorphy. Equations (ISb) and (ISc) define the deriva­
tives of the vector potential when the electromagnetic field is 
identically zeroY 

Equations (IS) are a generalization of the Cauchy-Rie­
mann equations, as can be seen by considering a two-dimen­
sional subspace of Minkowski spacetime. Take theA 0,2 sub­
algebra of A 1.3 generated by (71 and~. The expressions of 
holomorphy for a two-dimensional vector u = U

I
(71 - U2~ 

are the Cauchy-Riemann equations l.
2 

(19) 

The sign results from the conjugation in the complex 
product which does not arise in the vee product. 

What is of considerable physical interest is the fact that 
the expressions ofholomorphy for a tensor of type 2 in Min­
kowski spacetime are precisely the Maxwell equations in 
vacuum. This is seen by using (ISb) and (16), and setting the 
coefficients of each basis form equal to zero to obtain the set 
of eight equations 

(VXB)i _ a4Ei = 0, 
(V.E) =0, 
(V X E)i + 0' B i = 0, 
(V·B) = 0, i = 1,2,3. 

(20a) 
(20b) 
(20c) 
(20d) 

These are the Maxwell equations in vacuum. In deriv­
ing this result, we have used nothing more than the holomor­
phic structure of Minkowski spacetime, formulated in terms 
of Clifford algebras and the generalized Dirac operator. 

One can, of course, obtain Eq. (20) by requiring the two 
separate conditions (17); in this case, however, both the tran­
sit ion to integral holomorphy and the algebraic framework 
are lost. 

Equations (20) reduce to the Cauchy-Riemann equa­
tions in two dimensions in exactly the same way as do Eqs. 
(IS). 

This can be seen as follows. In two dimensions, the elec­
tromagnetic field is either an electrostatic or magnetostatic 
field in the plane; E = E 1(71 - E2~ or B = B 1(71 _ B 2~. 
Equation (20) then becomes 

or 

alB 2 + a 2B I = 0, 

a I B 1 _ a 2 B 2 = 0, 

a IE I _ a 2 E 2 = 0, 

a 1E2+a 2EI =0, 

(21a) 

(2tb) 

which are the Cauchy-Riemann equations. (The sign again 
results from having to use the conjugate field). 

We would like to clarify the fact that, whereas Max­
well's equations have been written in terms of Clifford alge­
bras in the past,32-34 the derivation given here as a result of 
holomorphy in spacetime is quite distinct. Also, while it is 
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known that the static Maxwell equations for electrostatic 
fields in two dimensions can be cast in a form analogous to 
the Cauchy-Riemann equations,3s we have demonstrated 
that one can generalize the Cauchy-Riemann equations to 
four-dimensional spacetime to obtain the full time-varying 
Maxwell equations. 

Related but distinct formulations of the Maxwell equa­
tions in vacuum have been given in terms of analytic twistor 
fields by Penrose and his school,21-23 in terms of spinor fields 
in Refs. 36 and 37, and in the context of the 3 X 3 matrix 
representation of the Lie algebra SO (3).38,39 In the latter 
case, these matrices do not satisfy anticommutation relation 
required of any representation of a Clifford albegra; hence 
the algebraic basis is quite distinct. 

This completes the discussion of fields which are strict­
ly holomorphic. We proceed in the next section to include 
sources. 

V.lNTEGRAL EXPRESSIONS OF HOLOMORPHY: 
RESIDUES 

It is possible to extend the discussion ofholomorphy 
given in the preceding sections to show that certain results of 
potential theory in three and four dimensions are analogous 
to residue integration in the complex plane. 

We seek to obtain integral expressions corresponding to 
the differential formulation of the holomorphy condition 
(16). In this, we are motivated by Theorem 2, Eq. (B), and 
the duality Theorem I, Eq. (7). The novelty of expressing the 
dual as the vee product with the volume element (r)n, along 
with the fact that (r)n can be treated via its purely algebraic 
properties, leads to a key identification. We define integral 
forms corresponding to the Cartan exterior derivative and 
the Hodge coderivative as follows: 

Definition 4: The integral forms corresponding to d A/ 
and {j A/ are 

(22a) 

and 

(22b) 

We have applied the Stokes theorem to express the inte­
grals over closed hypersurfaces of the appropriate dimen­
sion.30 As always in this discussion,fis a tensor type, i.e., a 
tensor field of homogeneous rank. The domain of integration 
is determined by the differential form basis off, and will in 
general extend to an infinite domain. In actual practice, the 
integrals are evaluated in a finite domain, and then limits are 
taken, following the standard procedure of potential theory 
(see below). 

It is now possible to give a definition of "integral holo­
morphy" as follows: 

Definition 5: (a) A tensor type/is holomorphic iff the 
sum of integrals (22) goes to zero in the limit of an infinite 
domain of integration. 

(b)/is nonholomorphic if the sum of integrals (22) is a 
constant volume, and 

(c)/is divergent nonholomorphic if the sum of integrals 

1922 J. Math. Phys., Vol. 22, No.9, September 1981 

(22) diverges in the limit of an infinite domain of integration. 
If a tensor field/is holomorphic, then from (16), (17), 

and (22) the following conditions are true separately (the lim­
it is implied): 

(23) 

The case of particular interest is when a tensor field/is 
nonholomorphic, i.e., possesses a singularity. This case can 
be examined by proceeding with the electromagnetic 
analogy. 

Consider the electromagnetic field in the canonical de-

composition, F = E A 0.4 - *B(8). In this case, the integrals 
3 

(22a) , (22b) are easily evaluated and are equal to the magnet-
ic and electric flux, respectively: 

§F= f(EAa4 
- ~B) = - §B1dS I = 0, 

§=rF= §(BAa
4 + ~E) = §E1dS

I = (/Je' 

(24a) 

(24b) 

The electric flux equals the sum of the charges; there­
fore, integral (24b) can be written as 

(25) 

We now apply Theorem 5 to the electromagnetic field F 
to obtain the following expression from (22), (24), and (25): 

f D V F+-->§F + (r)4 V §=rF = 41T(r)4:fqa. (26) 

Hence the electromagnetic field is in general 
nonholomorphic. 

We now show that expression (26) is analogous to the 
usual residue theorem in two dimensions. In that case, the 
field F is either a pure electric, or pure magnetic field in the 
plane, i.e., 

F=E1a l +E2~ or F=B1a l +B2~. (27) 

Since our construction is valid in any space, the expres­
sion corresponding to (26) in two dimensions is just 

(28) 

One can naturally indentify (r)2, the unit pseudoscalar in 
two dimensions with the complex unit i = v-I. Note that 
(r)2 V (r)2 = - 1; the commutation properties are here irrele­
vant. After explicitly performing the two-dimensional dual 
of (27), we have from (28) 

fIE 1 dx l + E2 dx 2
) + if(E 2 dx l 

- E 1 dx2) = 41Ti:fQ". 

(29) 

This expression is identical to the residue theorem. By 
combining the two integrals, we can express (29) as a single 
integral using complex multiplication. The complex electric 
field is E = E 1+ iE2, dz = dx l + i dx 2

; the tilde denotes 
complex conjugation, and we have the residue theorem: 

(30) 
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This analysis demonstrates that, by considering the 
Dirac derivative as a vector operator, one obtains a corre­
spondence with hoi om orphic functions in the complex 
plane. The charges correspond to the residues. The factor of 
2 arises from the special geometry involved, and is discussed 
below. In the analogous case of a pure magnetic field in two 
dimensions, the integral (28) vanishes, and gives Cauchy's 
theorem for the holomorphic magnetic field: 

(31) 

We note that, in the special geometry involved, the elec­
tric field is due to infinite long wires perpendicular to the 
plane, and is equal to E = U Ir. Here, A is the linear charge 
density which corresponds to a two-dimensional charge. 
The residue of the electric field at the origin is equal to U, 
since Resz~ 0(1Iz) = I. This is the factor of2 that appears in 
Eq. (30), in addition to the 21T of the residue theorem. 

This completes the definition of integral holomorphy in 
n dimensions, and its relation to the residue theory in the 
complex plane. 

VI. HOLOMORPHIC FIELDS IN THREE 
DIMENSIONS:MULTIPOLES· 

The questions one now asks is, what are the holomor­
phic functions? We first examine functions in the three-di­
mensional subspace of Minkowski space. The basic func­
tions are polynomials of the radius vector r, which can then 
be used to build any other field through a three-dimensional 
Fourier expansion. The scalar fields are 

Inlrl, 

Irln, n = 0, ± 1, ± 2, ... , 

(kor)lrl n, k = constant vector. 

The vector fields are 

rlrln, 

and the tensor fields are 

(32a) 

(32b) 

(32c) 

(33) 

(34) 

From these expressions, we can construct any tensor 
field in three dimensions. 

By substituting the vector field (33) in the integral forms 
(22), we obtain direct expressions. Integral (22a) is evaluated 
on the perimeter of a circle of radius R around the origin: 

frlrln = O. (35a) 

Integral (22b) is evaluated on the surface of a sphere of 
radius R around the origin: 

frrlrln = 41TR n + 3. (35b) 

This expression (35b) diverges when the radius R is tak­
en to infinity for n > - 3. It is equal to 41T for n = - 3, and 
goes to 0 as R-oo for n < - 3. We can apply Definition 5 to 
determine the cases when the field (33) is holomorphic. From 
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(22) and (35) we have the formula 

frlrln + liJ3 V f~rlrln = 41TliJ
3R n + 3. (36) 

Applying the prescription of Theorem 5, we see that of 
the vector fields (33), the holomorphic ones are for n < - 3; 
the divergent ones are for n > - 3; and the nonholomorphic 
field corresponds to n = - 3. In that case, we have the ana­
log to the residue theorem in three dimensions as 

j _r_ + liJ3 V j* _r_ = 41TliJ3. (37) 
j Irl3 j 3 Irl3 

Returning to the differential definition ofholomorphy, 
we can obtain the analogous expressions using (14) on (33). 
These correspond to Definition 3, Eq. (16) in the limit r_ 00 : 

DVrlrl n = - VVrlrl" 

{
n = 0, ± 1, ± 2,. .. , 

= (3 + n)jrjn, n# _ 3, 

= 4m5 (r), n = - 3. 

(38a) 

(38b) 

We see therefore the existence of the singularity for 
n = - 3, the coefficient 41T, which is the surface area of the 
unit sphere S 3, and the three dimensional residue at the point 
r = 0, which is equal to 1. This case corresponds to the elec­
tric field of a point charge. 

A deeper connection to electromagnetism is established 
by considering the potential rp of an arbitrary charge distri­
bution, expanded as a series of 2n-pole scalar potentials rp,,: 

(39) 

Each term in the expansion is given by 

I 1 3 .. . 
= -(D R ) = - " D ,,, .... ·,,,R ', ..... i" 

rp" I n' n I. £,..." " n. n. I ••..•• 1,,= 1 

(40) 

where Dn is the 2"-pole moment ofthe charge distribution 
defined by the symmetric tensor 

(41) 

and Rn [r] is the spatial multipole tensor which gives the 
space dependence of the 2n pole: 

R i" .. ';" - a a I 
n - i,,'" i" Vi' (42) 

We note that Rn [r] is a function of 1IIrin + I; hence the 
2"-pole potential varies as 1Ijrj n + I, 

The electric field of each 2n pole is obtained as the gradi­
ent of expression (40): 

(43) 

Substituting the electric field (43) into the holomorphy 
integrals (22), we obtain via the Stokes theorem, 

fEn = f V 1\ En = f V 1\ Vrp" = 0, (44a) 

f~En = f ~(V.En) = J ~V2rpn = f V2
rpn liJ3 . (44b) 

We proceed to calculate the Laplacian of the potential 
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(45) 

We can exchange the order of differentiation to obtain 
the expression 

v2a . ... a _1_ = a .... a V2 _1_ 
'I 'n Irl 'I 'n Irl 

= - 41Tail ···aino(r). (46) 

f'fEn = - :~ i,.±: ~ IDn i'''''iJ ai, ... ai.,8(r)ul. (47) 

Using a formula from the theory of generalized func­
tions,40 for any polynomial P [Xl ,X

2
,X3] we have the identity 

ff(X)P [a l ,a2 ,a3 ]8(x - a)u? 

= P [ - ai' - a2 , - a3 V(x)]x=a' (48) 

In the case of interest, we havef(x) = 1; hence the inte­
gral (47) is identically zero, except for the case n = 0, i.e., the 
point charge. We therefore have 

i*En = {41Te, n = 0, (49) 
j 3 0, n >0. 

Equivalently, we can write this as the residue theorem 
(26) in three dimensions: 

iEn + {j)3 V i*En = {41T(j)Je, n = 0, (50) 
j j 3 0, n >0. 

In the same manner, it can be shown that all the mag­
netic multipole fields are holomorphic. 

We have shown in this framework how all the higher­
order multi pole fields are holomorphic, The only nonholo­
morphic field is that due to the point charge. A point worth 
noting is that the holomorphy of the vector fields rlrln, (33) 
requires the discussion of the limit to an infinite domain. In 
contradistinction, the multipole fields En (43) are in exact 
agreement with the differential conditions of holomorphy 
(16), since this condition in fact implies Maxwell's equations. 

This analysis illustrates the intrinsic connection be­
tween electromagnetism and holomorphic fields in three 
dimensions. 

VII. CONCLUSION 

In this paper, we have indicated how the theory ofholo­
morphic functions in the complex plane can be extended to 
spaces of any dimension. 

In conclusion, we recall the main points of this paper. 
First, we have shown how one can realize the general­

ized Dirac operator in a calculationally useful algebraic set­
ting, Using this operator, we introduced a definition ofholo­
morphy for fields in any dimension, and showed that the 
differential expressions ofholomorphy in Minkowski space­
time are precisely the Maxwell equations. Second, we have 
obtained an integral expression for holomorphy in any di­
mension, and shown how it corresponds to residue integra­
tion and the Cauchy theorem when the dimension of the 
space is equal to 2. Third, we have determined the holomor-
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phic fields in three-dimensional space, and have found that 
the nonholomorphic field is in fact that corresponding to the 
electric field of a point charge. 

These results underline the connection between electro­
magnetism and the structure of spacetime. We have recast, 
combined, and extended certain results from potential the­
ory in an essential manner in order to provide this 
construction. 

Our analysis has been based on the following key points: 
(i) We have used the tensor fields of a given rank which 

correspond to physical fields. This is in contrast to other 
work in this area, where one usually considers the most gen­
eral element of the algebra, i.e., a linear combination of all 
rank tensor fields. This geometrical distinction has a pro­
found consequence on our results. This same distinction was 
utilized in the definition of inverses in a Clifford algebra. We 
recall that a linear combination of tensor fields may not al­
ways have a inverse, while a specific tensor field always 
has. 15,16 

(ii) The identification of the differential forms as the 
bases of the algebra is crucial in the construction of the gen­
eralized Dirac operator as a vector operator in the Clifford 
algebra. This feature also enables us to utilize the entire ap­
paratus of the exterior calculus in our discussion. Our use of 
a geometrical basis has as a consequence that most of our 
results are independent of the analytic properties of the indi­
vidual field components; they follow from the underlying 
geometric structure. 

We believe that this paper has illustrated how electro­
magnetism is intrinsically related to the hoi om orphic prop­
erties of fields in Minkowski spacetime. 
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We present a Hamiltonian formulation for classical field theories. In a general case we write the 
Hamilton equation by means of the energy-momentum function E and the symplectic 2-form n. 
We investigate thoroughly an important example, the gravitational field coupled to a matter 
tensor field. It will be shown that the energy-momentum differential 3-form yields a 
generalization of the Komar energy formula. We prove that the energy-momentum function E, 
the symplectic 2-form n, the Hamilton equation, and four constraint equations for initial values 
of canonical variables give rise to the system which is equivalent to the Euler-Lagrange 
variational equations. We also discuss relations between the Hamilton equation of evolution, the 
degeneracy of the symplectic 2-form n, and the action of the diffeomorphism group of spacetime 
in the set of solutions. 

PACS numbers: 03.50.Kk 

I. INTRODUCTION 

The classical approach to the field equations in physical 
theories is based on variational principles and on the Ein­
stein principle of general covariance. This combination gives 
rise to the geometric formulation of the field equations for a 
comprehensive class offield theories (scalar field, electrody­
namics, Proca field, gravitation, Yang-Mills fields). In the 
4-covariant picture the space of solutions of the field equa­
tions is a subspace of the space of sections of some bundle 
over spacetime M. This approach is static; a state (a solution 
of the field equations) represents the entire history of the 
system under consideration (the Heisenberg picture). We 
shall show that the space of solutions-Sol-is endowed 
with a closed differential 2-form n (in general degenerate). 
The static 4-covariant approach is not convenient for the 
discussion of the initial value problem. Therefore it is inter­
esting to formulate a given classical field theory in terms of 
the space (Id) of initial data and their evolutions [curves in 
(Id)]. This picture corresponds to the Hamiltonian form of 
mechanics (the Schrodinger picture in quantum mechanics). 
In this paper we present a Hamiltonian formulation for clas­
sical field theories and prove that the evolution of an initial 
data/E(Id) is generated by the action of the group of diffeo­
morphisms of spacetime M. Therefore our construction suits 
those theories which are invariant with respect to the action 
ofDiff M (e.g., the gravitational field coupled to a matter 
field). 

The general scheme of this paper is the following. Let r: 
9 -+M be a bundle over spacetime M and 8 H _C be a differ­
ential 4-form on 9. (9, 8 H _ C ) is the multi symplectic bun­
dle of a classical field theory in the sense of Refs. 1-4. The 
space of solutions-Sol--consists of four-dimensional sub­
manifolds of 9 (images of sections of 9) which satisfy the 
field equations [cf. (2.1)]. We assume, additionally, that 
Diff M acts in 9 and that 8 H _C is invariant with respect to 
this action. For a fixed three-dimensional surface u in M 

"'Permanent address: Institute of Mathematics, Polish Academy of Sci­
ences, uJ. Sniadeckich 8,00-050 Warsaw, Poland. Alexander von Hum­
boldt Fellow. 

(Cauchy surface) we define the restriction 9(u) of 9 to u. 
The space of initial data (ld) (u) consists of these sections of 
9 (u) which can be extended to sections of 9 satisfying field 
equations. The space (Id) (u) is equipped with a symplectic 
2-form n (u) and an energy-momentum function E (u). 
These quantities satisfy the Hamilton equation 

(1.1) 

where' YET((Id)(u)) is the evolution vector (Hamiltonian vec-
"'-

tor) and' V is an arbitrary vector tangent to the space of 
sections of 9 (u). 

If/E(Id)(u) and' Y is the vector field on/(u) C [:JJ (u) re­
presenting the vector of evolution' Y, then the evolution 
t-+J; of/ = /0 is given by equation 

dJ; 
- (x) = 'Y(J;(x)), XEt7. 
dt 

(1.2) 

We see from (1.1 )-( 1.2) that the energy-momentum function 
E and the symplectic 2-form n generate the dynamics in the 
same way as the Hamiltonian H = H (Pi> if) and the sym­
plectic 2-form UJ = dpi 1\ dqi generate the canonical equa­
tions of classical mechanics 

dpi JH dqi JH 
- -, - = - (cf. Refs. 5, 6) 

dt Jq' dt JPi 

In this case Y=--+--. ~ . , dqi J dpi J ) 

dt Jqi dt JPi 

We give a geometric construction of the energy-mo­
mentum function E for an arbitrary classical field theory 
based on a multi symplectic structure (9, 8 H _C )' Our con­
struction applied to the gravitational field gives rise to a gen­
eralization of the Komar energy formula? (cf. also Appendix 
D and Sec. 8). The part of the paper devoted to the Hamil­
tonian dynamics presents ideas which are close to those of 
Fischer and Marsden,8.9 who, in the seventies, reformulated 
the classical results of Arnowitt, Deser, and Misner lO con­
cerning the dynamics of the Einstein theory of relativity. In 
our more general case the connection on spacetime is not 
Riemannian. Therefore we need two types of equations for 
the gravitational field, one system of which describes the 
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evolution of the metric and the second, the evolution of the 
connection. We get these equations by means of the vari­
ational principle of the Palatini type; that is, variations with 
respect to the metric and the connection are independent. 
Such a procedure is now widely accepted in theories of grav­
ity. We are, however, able to get the inverse result: We can 
recover from (1.1) the variational gravitational equations 
and also the Euler-Lagrange matter field equations. We pos­
tulate the energy-momentum function E, the symplectic 2-
form n and try to solxe Eq. (1.1) with respect to an unknown 
vector of evolution' Y. The essential difficulty is that the 
symplectic 2-form is degenerate and a solution' Y, if it exists, 
is not unique. We solve this problem in the following way: let 
Sbm (4) be the space of all four-dimensional (sufficiently 
smooth) submanifolds of 9 (which are images of sections of 
9) and let Sbm" (3) be the corresponding set ofthree-dimen­
sional submanifolds in 9(0-). We define E and n on Sbm (4) 
[and on Sbm" (3)], investigate Eq. (1.1) for arbitrary (sample) 
vectors 'VET(Sbm" (3)) and show that it has a unique solu-

A 

tion ' YET ((Id)(o-)). As one could expect, knowing E and n is 
not sufficient to determine' Y. We have also to assume the 
constraint equations for initial values of the canonical varia­
bles. [We shall prove in Sec. 5 that the constraint equations 
(5.1) give the necessary and sufficient conditions for the solv­
abili ty of ( 1.1 ). ] 

The following diagram shows relations among several 
problems investigated in the paper: 

multisymplectic 

manifold(.9, 8 H _d 

./' ~ 
action of Diff M field eqs.; 

space-Sol 

I~ 
energy-momentum Cauchy problem; symplectic 

-. . +-function E dynamIcs 2-form n 

/ '/ action of Diff M canonical 
. "'~f---
In Sol; Degeneracy variables 

distribution of n / 

Hamilton-Jacobi 
~---------- --------~------relations 

Two fundamental geometrical objects appear in the scheme: 
the energy-momentum function E and the symplectic 2-
form n. The symplectic 2-form n for an arbitrary classical 
field theory based on a variational principle (multisymplec­
tic bundle) has been constructed by Kijowski and the present 
author3 (cf. also Ref 4). The diagonalization procedure for n 
and the geometrical definition of the canonical variables in 
theories of gravity were presented for the Einstein and Ein­
stein-Maxwell theories 11-13 and for a generalized theory of 
gravity with the presence of a tensor matter field. 14 In the 
present paper we use a stronger version of the results given in 
Ref. 14 (cf. Proposition 4). The geometric definitions of the 
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canonical variables, the Belinfante-Rosenfeld identities, the 
contracted Bianchi identities, and some other technical re­
sults Of14,15 are used throughout the paper. We also give the 
definition of the canonical variables by means of variations 
of the action integral (the Hamilton-Jacobi relations) (cf. 
Ref. 16 and Sec. 7). 

All constructions in the paper are performed under the 
assumption that topologically M is the product of the real 
line R and a compact, three-dimensional manifold 0- (with­
out boundary). Therefore we can neglect all integrals of 
three divergencies on 0-. If 0- is a noncompact manifold, some 
surface integrals can give nontrivial contributions. We dis­
cuss this problem briefly in Sec. 8. 

There are several papers in the literature devoted to the 
Hamiltonian (canonical) formulation of gravity (especially 
the Einstein theory). The most popular among physicists is 
the approach in the language of "constrained Hamiltonian 
systems" and the Dirac brackets; cf. papers by Dirac, 17 Berg­
mann, 18 Arnowitt-Deser-Misner,1O Faddeev, 19 Kuchar, 20 
Hojman-Kuchar-Teitelboim, 21 Hanson-Regge-Teitel­
boim,22 Nelson-Teitelboim, 23.24 Pilati,25 Nester-Isen­
berg,26--28 and Murchadha-York29,30 (see also the papers 
by Sniatycki,31 Tulczyjew,32 and Gotay-Nester-Hinds33 de­
voted to the mathematics of the Dirac theory of constraints). 
As we have already mentioned above, there is the series of 
papers by Fischer-Marsden, Moncrief, and Arms,8.9.34--36 
who treat the Einstein equations, the coupled Einstein-Max­
well, and Einstein-Yang-Mills equations, respectively, as 
infinite-dimensional Hamiltonian systems (cf. also Ref. 5 
and the review paper by Francaviglia37). These authors in­
vestigate such problems as the Cauchy problem, the lineari­
zation stability, the structure of the manifold of solutions, 
and singularities of this manifold. The third, recently devel­
oped approach is given in the interesting book by Kijowski 
and Tulczyjew38 (see also Ref. 39). 

We present here an alternative theory which has cer­
tainly many points in common with all the above-mentioned 
papers but tends rather towards the Fischer-Marsden ap­
proach. Some questions about relations between our theory 
and other papers are discussed in Sec. 8. 

2. THE SYMPLECTIC 2-FORM n AND THE ENERGY­
MOMENTUM FUNCTION E 

For a given classical field theory the basic notions are 
the field potentials which are sections of some geometric 
bundle over spacetime M. The dynamics is determined by a 
Lagrange function L and the Euler-Lagrange equations of 
the variational problem for L. The Lagrangian L depends on 
values of the field potentials and their first partial derivatives 
(theories with derivatives of higher orders are not discussed 
here). In the geometric approach to the calculus of vari­
ations, solutions of a variational problem are sections of 
some bundle 7: f!}'J ~M over spacetime M. A point of the 
fibre of f!}'J at xEM determines values of the field potentials 
and their first partial derivatives. By means of the Lagran­
gian L we construct a differential 4-form 8 H _C on 9 (the 
Hamilton-Cartan 4-form) and formulate the variational 
principle in terms of8H -c. Detailed descriptions of such a 
construction were given in papers by Dedecker,40 Goldsch-
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midt-Sternberg,2 Kijowski-Szczyrba, 1,3,41,12 Garcia,42 and 
Kijowski-Tulczyjew,38 The Euler-Lagrange equations can 
be written in the following geometrical formulation: 

A section F:M-+9 is a solution of the E-L equations if 
and only iff or every (r-vertical) vector field X, tangent to 9 
and defined at points ofthe submanifold C4 = F (M) C 9, the 
condition 

F*(XJd8H _d = 0, 

or equivalently 

(X Jd8H _C ) I C4 = 0, 

holds. 

(2.1) 

(2.1 ') 

Remark: The symbols J, d denote the interior product 
(contraction) between vectors and forms and the exterior 
derivative, respectively. F* denote the pullback operation 
for differential forms generated by F and (X J d 8 H --c ) I C4 is 
the pullback of the 4-form X J d8H _C onto the submanifold 
C4 C 9 (cf. Refs. 5, 6). 

Four-dimensional submanifolds C4 = F(M)C 9 
which satisfy (2.1) form the space of solutions Sol. The space 
Sol is a subspace in the space Sbm(4) of all (sufficiently 
smooth) four-dimensional submanifolds of 9 which are the 
images of sections of r. The space Sbm( 4) carries the natural 
structure of an infinite-dimensional manifold (either Banach 
or Frechet-Schwartz cf. Refs. 43, 44). The space of solutions 
Sol is not a manifold for generic classical field theories, how­
ever. It has singular points, that is, such points that no neigh­
borhood of them can be parametrized by means of vectors of 
the tangent space. For the Einstein theory of gravity this 
problem was investigated by Fischer, Marsden, Moncrief, 
and Arms. 35,36,45,46 However, a weaker structure is sufficient 
for our considerations. We endow the spaces Sbm( 4) and Sol 
with a kind of pseudo differential structure.3,4,12 The most 
important definition we n~d in the present paper is that of a 
tangent vector. A vector Y tangent to Sbm(4) at C4ESbm(4) 
is represented by a (smooth) r-vertical vecWr field Y tangent 
to 9 and defined at points of C4 • A vector Y tangent to Sol at 
C4ESoi is represented by a r-vertical vector field Y tangent to 
9, defined at points of C4 , which satisfies the linearized 
version of field equation (2.1) (cf. Refs. 3, 12 and Appendix 
A). We denote the tangent bundles ofSbm(4), Sol by 
T(Sbm(4» and T(Sol), respectively. In the framework pre­
sented in Refs. 3, 12 the notions of vector fields, differential 
forms, and their exterior derivatives can be defined in a natu­
ral way. 

Remark: Throughout this paper we consider smooth 
(i.e., COO) sections of bundles, smooth vector fields, etc. 
However, we can choose another topology in these spaces­
e.g., C k (k-times differentiability) or HS (Sobolev spaces). 
The precise choice of the topology is necessary if one intends 
to investigate the structure of the set of solutions deeper (cf. 
Refs. 9, 46). 

In Refs. 1-3, 11-15,41,42, and 47 several examples of 
classical field theories, their multisymplectic bundles and 
the Hamilton-Cartan 4-forms were given, including the Ein­
stein theory of gravity and its generalizations. 

The symplectic 2-form f1 on thx. sp~ce Sol is defined in 
the following way.3,4,12 Let C4ESol, YI , Y2ETc.(Sol) and YI , 
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Y2 be r-vertical vector fields defined on C4 which represent 
Y\, Y2' respectively, Let O'CMbe a three-dimensional sur­

face in M such that M = R X 0'. We define 

f1 (O')(Y\, Y2) = ~ r (Y\ /\ Y2)Jd8H --c 
JF(a) 

= ~ r (Y2 J YI Jd8H _C ), 
JF(a) 

(2.2) 

whereFis a section of 9 such that C4 = F (M). It was proved 
in Ref. 3 that the integral in (2.2) does not depend on the 
choice of 0' in M and therefore (2.2) defines a differential 2-
form f1 on Sol. 

Remark: We must, of course, single out a class of three­
dimensional surfaces 0' in M for which the integral (2.2) is to 
be computed. One possible, reasonable set of axioms was 
presen ted in Ref. 1. If we discuss a particular theory, then the 
class of admissible surfaces 0' in M has to be contained in the 
set of Cauchy surfaces, i.e., in the set of such three-dimen­
sional surfaces in M for which the initial value problem is 
well posed. 

We can generalize the definition of f1 (0') for C4ESbm( 4), 
YI , Y2ETc• (Sbm(4». However, in this case the value ofthe 
integral depends essentially on the choice of O'cM and we 
have the family (f1 (O'»aCM of differential2-forms on 
Sbm(4). The form f1 on Sol is closed, i.e., df1 = O(cf. Refs. 3, 
12). We are able to prove that all the forms f1 (0') on Sbm(4) 
are also closed. 

An essential feature of theories of gravity is that they 
are invariant with respect to the action of the diffeomor­
phism group of spacetime-that is, we have an action A in 
the bundle 9 

(Diff M, 9) 3 (<P,p)-+A (cP)(p)E9, (2.3) 

and that for every cPEDiff M 

A *( cP )8H - C = 8 H - C (2.4) 
A-

It follows from (2.4) that the action A generates an action A 
in the space Sol (see Sec. 6). 

The action (2.3) induces the mapping 

C OO(TM)3Z-dA (id)ZEC OO(T9) (2.5) 

where dA is the derivative of (2.3) with respect to the first 
variable, id is the identity in Diff M, and the vector field Z on 
M is generated by a one-parameter family of 
diffeomorphisms 

(cPt ltE" , cPo = id, 

Z (x) = .:£cP, (x) I ,xEM. 
dt 1=0 

(2.6) 

We have a globally defined vector field on 9 

X z = dA (id)Z. (2.7) 

For every section F of 9 the family (cP, ),ER gives us a one­
parameter family (F, )/ER of sections of 9 

F,(x) = A (tP ,-I)F(tP,(x», 

xEM, Fo=F. (2.8) 
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Let 

Y(F(x» = !!....F,(x) I ,xEM. 
dt ,=0 

(2.9) 

Y is a 1'-vertical vector field defined on C4 = F (M) and tan­
gent to & . If the section F satisJ!es field equation (2.1), then 
the field Y represents a vector YET c. (Sol). 

Proposition 1: If X z is the vector field on & defined by 
(2.7), C4 = F(M), and Yis defined by (2.9), then 

Xz(F(x))=dF·Z(x)-Y(F(x)), xEM. (2.10) 

Definition: The Hamilton 3-form Vz on & (corre­
sponding to the vector field Z) is given by 

V z = -XZ J8H _C (2.11) 

Definition: The energy-momentum function Ez on Sol 
is given by 

E Z (C4 ) = i V Z , C4ESol, (2.12) 
F(a) 

where uCM is a three-dimensional submanifold (surface) in 
M. (We recall that a is always a compact manifold without 
boundary.) 

By virtue of (2.4) we have 

f x 8 H -c = d (X z J 8 H _C> + X Z Jd8H -c = O. (2.13) z 

Using field equation (2.1), we get 

d «Xz J8H-c)IC4 ) = 0, C4ESol, (2.14) 

and therefore the integral (2.12) does not depend on the 
choice of uCM (for homotopically equivalent surfaces in 

M). "'-
Proposition 2: Let VETc4 (~l) and Vbe the 1'-vertical 

vector field on C4 representing V. Then 

dEzV=i VJdvz ' (2.15) 
F(a) 

Proof It is easy to see that 

dEzV=i fvvz, 
F(a) 

where Vis an extension of Von a neighborhood of C4 in &. 
Using the properties ofthe Lie derivative [cf. (2.13)] and 
integrating by parts, we get (2.15). 

Theorem 1: Let Vbe an arbitrary vector tangent to Sol 
at C4 = F(M) and Ythe vector tangentto Sol defined by 
means of (2.9). Then 

A A. A. AA 

dEzV= -fl(YAV)= -2fl(Y, V). (2.16) 
Pro9f Let Vbe the 1'-vertical vector field on C4 repre­

senting V. From the invariance property (2.4) we have 

0= 1'" x,8H-C = d(Xz J8H_C ) +Xz Jd8H_C ' 

Contracting with V, we get 

(VJd(Xz J8H _C )) IC4 + (VJXz Jd8H _C ) IC4 = 0 

The decomposition (2.10) enables us to write 

- (V Jdvz ) I C4 + (V JdFZJd8H_cll C4 

- (VJ YJd8H_clIC4 = O. (2.17) 

But dFZ is tangent to C4 , C4 satisfies (2.1), and therefore the 
second term in (2.17) vanishes. We see that (2.16) follows 
from (2.2), (2.15), and (2.17). 
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We remember that we have the family (fl (a))acM of 
closed differential2-forms on Sbm(4). In a similar way for­
mula (2.12) defines a family of functions (EZ(a))acM on 
Sbm(4). Formulas (2.15) and (2.17) are valid also for 
VETc (Sbm(4)). We have 

Theorem I': Le,1 C4ESol, VETc4 (Sbm(4)) be an arbitrary 
tangent vector and YETc4 (Sol) be the vector defined by (2.9). 
Then 

dEz(a)V= -fl(a)(YAV)= -2fl(a)(Y, V). (2.18) 

We show later that for theories of gravity Ez(a)-O on Sol 
[but Ez(a)'jEO on Sbm(4)] and that Ybelongs to the gauge 
distribution (degeneracy distribution) of fl. These facts im­
ply that formula (2.16) is trivial. On the other hand, Eq. 
(2.18) is not trivial and can be taken as the basic equation for 
the dynamical picture (Sec. 5). 

3. THE BUNDLE OF INITIAL DATA AND THE TIME 
EVOLUTION 

In this section we show how to pass from the static 
description of classical field theories, as presented in Sec. 2, 
to the evolution picture. In the static approach a state of the 
system is a solution of field equation (2.1); that is to say, a 
state is a field of geometric quantities on spacetime. For the 
coupled system of the gravitational and matter fields we 
have a metric tensor g = (gjlv)' an affine (linear) connection 

r = (F;v) and a tensor matter field cI» = (ifJ ~::::~:) on M. 
In order to describe the evolution problem, we assume 

that a slicing of spacetime into a family of three-dimensional 
surfaces (a, )/EIR and a method of passing from one surface to 
another are given. This can be accomplished in the following 
way. Let a be a three-dimensional submanifold in M such 
that Mis diffeomorphic to the product RXa. Let ((/), )'EIR be a 
one-parameter subgroup to diffeomorphisms of M (i.e., 
(/)0 = id, (/)'+8 = (/),o(/)s' (/) ,-I = (/) _ ,), which satisfies the 
conditions 

(i) U'ER (/),(a) = M, 

(ii) (/)" (a)n(/)" (a) = 0 for t 1# t2 , (3.1) 

(iii) the vector field Z (x) = d / dt (/), (x) is transversal 

to every submanifold a, = (/),(a). 
Remark: A construction of the subgroup «(/),)tER by 

means of the exponential mapping exp: C 00 (TM)---.Diff M 
was discussed in Refs. 48, 49. 

By means of the diffeomorphisms «(/)')'ER we transport 
geometrical quantities from points of M lying beyond a onto 
a. If F is a section of & , then the formula 

j,(x) = A ((/) ,- I)(F((/),(x))), XEa, (3.2) 

gives us a one-parameter family of sections of & over a. Let 
l' a:&(a)~ be the restriction of the bundle 1':& ---+M to the 
submanifold aCM. 

Definition: A sectionfa---+&(a) of the bundle &(u) is 
called an admissible initial data if there exists a section 
F:M---+& such that 

(i) F(x) = f(x), for XEa, 
(3.3) 

(ii) F satisfies field equation (2.1). 
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A one-parameter family (f,),eR of sections of 9(0) is 
called an evolution of the initial admissible datafif 

(i) fo =J, 

(ii) the section F of 9 given by 

F(y)=A(<P,)(J;(<P,-I(y))), yEM, (3.4) 

satisfies field equation (2.1). 

The set of all admissible initial data on 0' is denoted by 
(ld) (0'). For every sectionfE(ld)(u) there is a corresponding 
three-dimensional submanifold C3 = f(u)C 9(0'). We call it 
an admissible initial surface and the corresponding space of 
three-dimensional submanifolds of 9(0') is denoted by 
(Is) (0'). 

In general we have no 1-1 correspondence between ele­
ments of (Is) (0') and Sol. In theories with gauge (electrody­
namics, gravity, Yang-Mills fields) to every fE(ls) (0') there 
correspond many possible solutions of (2.1). 

Let t-J; be an evolution of an admissible initial data! 
We define 

'Y(f(x) = ~(J;(x) I ,XEU. 
dt ,~o 

(3.5) 

'Yis a T,,-vertical vector field tangent to 9(0') and defined at 
points of the three-dimensional surface c3 = feu). 

We see from (2.8) and (3.2) that the vector field 'Yis the 
restriction of the vector field Y[defined by (2.9)] to the sub­
manifold C3 C C4 = F(M)C 9. 'Y gives us the initial values 
of Yon c3 • The vector field' Y defines a vector' Y tangent to 

~ ~ 

(Is) (0'). We call 'Ythe vector of evolution; in the literature 'Y 
is often called the Hamiltonian vector.5 

We have a 1-1 correspondence between tangent spaces 
Tc, «Is) (0') and Tc, (Sol), respectively. In fact, if Fis a 
section of 9 satisfying (2.1) and Yis defined on C4 by means 
of (2.9), then the vector field' Y on c 3 is defined by means of 
(3.2) and (3.5). Conversely, if'Yis a vector field on C3 and 
t-J; is an evolution such that (3.5) holds, then we are able to 
construct the vector field Yon C4 by means of (2.8), (2.9), 
and (3.4). 

Formulas (2.2) and (2.12) define the symplectic form 
and the energy-momentum function on (Is) (0'). The inde­
pendence of the definitions of the choice of 0' means that 
these quantities are maintained in "time." Evolutions are 
symplectomorphisms, and the energy-momentum function 
is a preserved quantity. We can reformulate Theorems 1, l' 

~ 

in the space (Is) (0'). The vector of evolution 'Ysatisfies the 
Hamilton equations (2.16) and (2.18). This problem is thor­
oughly investigated in Sec. 5. We shall prove there that ad­
missible initial data have to satisfy some constraint equa­
tions. These equations together with the Hamilton equation 
(2.18) yield the complete characterization of the space of 
initial data and their evolutions. 

Remark: In order to reformulate Theorem l' for 
(Is)(u), we have to embed the space (Is) (0') in the space 
Sbm" (3). This space consists of such three-dimensional sub­
manifolds of 9(0') which are the images of sections of 9(0'). 
We have the following natural definition: A vector 'Ytan­
gent to Sbm" (3) at c3ESbm" (3) is represented by a T a -verti­
cal vector field' Y tangent to 9 (0') and defined at points of 
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c3• We show later that a vector 'Ytangent to Sbm" (3) at 
c3E(lS) (0') is tangent also to (Is) (0') if and only if the compo­
nents of the vector field' Y satisfy the linearized version of 
the constraint equations (4.21). 

In this paper we deal with geometrical quantities on M 
and with geometrical quantities on u. We describe now the 
relations between these notions. 

Elements of the fibre of the bundle 9 over xEM are 
geometric 4-quantities (quantities tangent/cotangent to M). 
Elements of the fibre of 9(0') over XEU are also 4-quantities 
tangent/cotangent to Mat x. We would like to attach to 
every 4-quantity at x a family of 3-quantities tangent/cotan­
gent to 0' and to describe fibres of 9 (0') by means of these 3-
objects. Such a procedure is called the 1 +3 decomposition 
of geometrical quantities (objects) on M. We recall briefly 
this construction (see Ref. 14 and Appendix B). 

Let M ~ R X 0', (Xk) be local coordinates on 0', Xo be the 
coordinate in R. Let 

(3.6) 

Let g = (gIL") be a Lorentz metric on M such that 0', are 
spacelike surfaces for g. Let M3 x-nIx) be the field of vec­
tors orthonormal to the slicing (i.e., non = - 1 and n is or­
thogonal to every 0',). 

We decompose vectors tangent to M at XEU, into the 
normal part (parallel to n) and the tangential part (tangent to 
0',). Similar constructions can be performed for covectors 
and arbitrary tensors. In Appendix B we define such decom­
positions by means of the "bar" operation, which commutes 
with the contractions of tensors and with the covariant dif­
ferentiation. The bar operation applied to an affine connec­
tion r = (r~,,) on M gives rise to several geometrical objects 
onu,. Fourofthem(F~, Fto, F~o, F~)arespeciallyinter­
esting. The first three groups give us the fundamental forms 
of the embe~ding i: U,-M 14; the quantities F~ define a 
connection ron 0', induced by the connection r on M. By 
means of the 1 +3 decomposition (the bar operation) we 
redefine local coordinates in fibres of the bundle 9(0') and 
work with geometrical 3-objects on 0', . 

Remark: In the present section we have defined two 
kinds of slicings of spacetime into sets of three-dimensional 
surfaces. In a general case the dynamical slicing (3.1) does 
not coincide with the coordinate slicing (3.6). The most in­
teresting case is when they, however, coincide. We will as­
sume such a situation in Sec. 5. 

4. THE SYMPLECTIC 2-FORM AND THE ENERGY­
MOMENTUM FUNCTION FOR THE INTERACTING 
GRAVITATIONAL AND MATTER FIELDS 

The system is described by a metric tensor g = (gIL V )' an 
affine (nonsymmetric) connection r = (r~v)' and a tensor 

matter field cI> = r/J A = (r/J ~::::~,') on M. The interaction be­
tween the geometry and the matter is given by the 
Lagrangian 

L = (l/161T)R + Lmat' (4.1) 

where R is the Ricci scalar built up from g and rand 
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L mat = Lmat(g/ll" r~l" ¢lA, JA¢lA) 

is the Lagrangian of the matter. 
The multisymplectic bundle 1': & -+M is defined by lo-

cal coordinates (x'. g . r A • A.. A. g . r A 
• A.. A ) and 

'!lV' /1-V, 'f' 'J.LV.T' I-lv,r' ¥' ,7 

their transformation properties with respect to a change of 
local coordinates in spacetime M. 

The transformation properties of gill" r ~l" and ¢l A are 
well known; the quantitiesglll'•T , r~l'.T' and ¢l A.T have the 
transformation properties of first partial derivatives of gill" 
r~l" and ¢l A, respectively. 

The Hamilton-Cartan 4-form 8 H _C on & is given by 

8 H - C = (1I161T) [J - g(g"(38;' - gT(38~) 

X dxo A ... A dr A(3 A ... A dx3 
""v-'U 

T 

+ gl'l'(rT r u _ r T r u ) 
VJ.l aT Uj.1 VT 

xhdxO Adxl Adx2Adx3
] 

+J-gp~dxoA ... A fli-,A A .. ·Adx3 

T 

- (p~¢l A.T - Lmat)J - gdxO Adxl Adx2 Adx3
• 

(4.2) 

In the Adefinition of the bundle & the variablesglll'.T , r~l'.T' 
and ¢l .T are completely independent of gill" r~l" and ¢l A. 
However, only such sections of & for which 

gJlV.T = JTglll' , r~l'.T = JTr~l" ¢l A.T = JT¢l A. (4.3) 

are interesting. From now on we assume that the space 
Sbm(4) consists of these (smooth) sections of & for which 
relations (4.3) are satisfied. 

Proposition 314.15: Field equation (2.1) for a section F of 
& [satisfying (4.3)] 

xU-+F(xU) = (xu; gill' (XU); r~l'(xU);¢l A (XU) ... ) 

reads 

(Eq. I\Ill' = Gill' - 81T Till' = 0 J sym' 

(Eq. IIY,t = di" + 161Ts'J." = 0, 

(4.5a) 

(4.5b) 

where Gil", sym Till', di v
, s'J. l', p~ are the Einstein tensor, the 

symmetric stress-energy tensor of the matter, the hypermo­
mentum tensors of the gravitational and matter fields, the 4-
momentum tensor of the matter, respectively (see Appendix 
E). 

Equations (4.5a) have the form of the Einstein equa­
tions, equations (4.5b) give us algebraic relations between the 
connection r~l' and the pseudo-Riemannian connection'-" 

!
A fill' 

= Vil J on M (cf. Refs. 14, 15 and Appendix E). Therefore 
system (4.4)-(4.5) yields a generalization of the Einstein 
equations for cases of tensor fields minimally coupled to 
gravity. It is not a unique conceivable generalization. An­
other possibility is to take into account only connections 
compatible with metrics on spacetime. Such a theory is 
called the Einstein-Cartan theory of gravity.26.50.51 Howev­
er, the variational principle based on a metricgllv and a con-
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nection r~v gives rise to nonmetric compatible solutions of 
(4.5b). In order to get the Einstein-Cartan theory, we have to 
take fields of tetrads and anholonomic components of a con­
nection as independent gravitational variables.26.50-52 The 
third possible generalization of the Einstein theory was re­
cently proposed by Kijowski. 38

•
39 His very ingenious vari­

ational principle is based only on symmetric (holonomic) 
components r ~v of a connection; the metric gl'v is defined as 
the conjugate variable by means of the Legendre transforma­
tion. However, field equations in this theory are equivalent 
to those obtained from the Lagrangian (4.1) (in the case of a 
symmetric connection) by means of our variational 
principle. 

We give now the diagonal formula for the symplectic 2-
form [J (0) on Sbm( 4). The special case, the diagonal expres­
sion for [J on Sol, has been presented in Ref. 14. 

Let 0' be one of the surfaces of the slicing (3.6), e.g., 
0' = 0'0' Let g = (gil,.) be a metric on M such that 0' is space­
like for g. Let r = (r~l') be an affine (nonsymmetric) con­

nection on M, cf> = (¢l A) = (¢l ~::::;,') be a tensor field on M 

andp~ = (pA~::::;,') = JLmaJJ(JA¢l A) be the 4-momentum 
of cf>. The metric g induces the metric g = (gij) on 0'; we de­
note by gJ the elements of the matrix inverse to the matrix 
(gij) and g = detgij' Let .F~l' be the bar components of the 
connection ron M, i A and p~ be the bar components of the 
tensor fields ¢l A and p~ , respectively. Let Nand N k be the 
lapse function and the shift vector of the slicing (3.6) (see 
Appendix B). 

The symplectic variables on Sbm(4) are 

Ilij = rv'i(.F~b + .F~a)i';~J 
- jJ(.F~bi'b + .F~», gij (4.6) 

J/ = - (lIN)'V'i(c/: + 161TsoO!), N, 

J/ k = - (lIN)'V'i(c?J + 161Ts~, N k. 

(4.7) 

(4.8) 

. Remarks: (i) The geometrical meaning of the gravita-
tional momenta Ill) has been explained in Ref. 14 (see also 
Ap~endix B). (ii) We call Il ij, gij' 9 A' i A the canonical 
va~ables of the theory. In Sec. 5 we derive the equations 
WhICh govern their evolutions. 

P:opo;ition 4: If C4ESbm(4), YI , Y2ETc, (Smb (4)), then 

[J (0')( YI , Y2) 

= (1I321T) f (81Ilij8~ij - 82Ilij8 Ig;)dx 1 Adx2 Adx3 

JF(~ ~ 

+ ~ f (8 19 A82i A - 8/7) A81i A )dx l Adx2 Adx3 
JF(O") 

+ (1I321T) f (8 1J/82N - 82J/8 1N + 8 1J/ 8 N k 
JF(O") k 2 

- 8y11 k8lNk)dxl Adx2 Adx3, (4.9) 

where 

DaIlij, 8agij' Da9A' DaiA, 

8aJ/, 8aN, 8aJ/ k' DaN\ a = 1,2, 
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are the components of the vector fields Ya representing Ya , 

expressed in the symplectic variables. /'. /'. 
In the special case, when C4ESol, Y1, Y2ETc, (Sol) we 

have, by virtue of (4.5b), JI = 0, JI k = 0, oJi = 0, 
oJi k = 0 and formula (4.9) reduces to that given in Ref. 14. 

Remark: In order to get (4.9) from (2.2) we have ne­
glected some integrals of 3-divergencies on (T (exact 3-
forms). The terms which are to be omitted were given in Ref. 
14. 

We discuss now the energy-momentum formula. 
Proposition 5: If Z = ox"-(x').a/ax" is a vector field on 

M, then 

Xz = 8xA a/axA + ogl'ya/agl'Y + Or~y a /ar~y 

+ 8,p A a/a,p A + 8gI'V,T a/agI'V,T + Or~V'T a/ar~v" 
+ 8,p A" a/a,p A,T' 

where 

ogl'v = - (gl',avox' + gy,al' ox" 

8r~y = - (al' avo~ + r~,avox' + r;"al' ox' - r ~va,xA), 

OgI'V.T = a,ogl''' - a,ox'gl'v,,, 

or~"" = a,or~v - aT8xT~v", 
8,pA,T =a,8,pA -aT8x',pA", 

(4.10) 

Proposition 6: If Fis a section of [7 and C4 = F (M), then 

vzIC4 = - (XZ J8H_C )IC4 

= ±(-I)AeAM dxol\ ... ;, ... l\dx3 (4,11) 
A=O 

~=~(Z) 

= _ [(I/161T)(RZ A - g"{3,j> Zr~{3 + gA{3,j> Zr~(3) 

+ Lm.tZ'" - p~,j> z,p A], 
where ZA = 8~(x') and the corresponding Lie derivatives 
are (cf. Ref. 15): 

,j> zr~v = DI'D"ZA + R \TI'Z' + DI'(ZTQ~V)' 
,k> A. a",·a, _ Z TV A. a,"'a, 

J Z'I' {3, ... {3, - ,'I' {3, .. -f3, (4.12) 

_ V za,A. ra, .. a, _ ... _ V Za,A. a, .. a, I' 
, 'I' {3, ... {3, ,'I' {3, ...... {3, 

+ V Z 'A. a,"·a, + ... + V Z'A. U, ...... U, 
{3, 'I' ,{3, .. {3, {3., 'I' {3, .. {3, I € 

(D 1" V I' are the covariant derivatives with respect to the con­
nections r~v and ~v = -(:v}, respectively. 

We have from (4.11), (4,12), and (E12), (El3), (E7). 
Proposition 7: 

~(Z) = (I/81T) [(H A, - 817' can TA,)Z' 

+ 81T(V W a~A + a;w~,")Z T] 

- (1I161T)(C;W + 161TS;W)(V wZ' + ~("Z') 
+ (1/81T)VTb TA (4.13) 

where the skew-symmetric tensor b TA is aefined by 

b a{3 = 817'[ _ a~{3Z' + (1/161T)~TDTZ{3 - gT{3D,ZU) 

+ (1I161T)Z ,~(TQ~a - g/3aQ ~a)] (4.14) 
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(tensors H A" a~{3 and the canonical stress-energy tensor 
can TAT are defined in Appendix E). 

The energy-momentum formula (4.13) is the sum of 
three terms. The second of them is expressed by the left sides 
offield equations (4.5b), the third is the Riemannian diver­
gence ofa skew-symmetric tensor. We show in Appendix D 
that the first term in (4.13) can be also expressed by the left 
sides offield equations (4.4) and (4.5a, b). This result gives us 
relations between our energy-momentum formula and those 
presented by Komar7 and Kijowski38

,39 (see also the paper 
by Trautman53

). For C4ESbm(4), C4 = F(M) we have from 
(2.12), (3.6), and (4.11) 

Ez(U)=1 V -geO(Z)dx l l\dx2 I\dx3 (4.15) 
F(a) 

Proposition 8: 

V - geO(Z) = v'ieo(Z) 

= (l/161T)(Constr.oZ"° + ConstrpZP) 

+ (1I161T)(JlaoZ"° + JlpaoZP) 

- (1I161T)V'iV. [( Eq. II )g'Zo] 

- (1I161T)ViVs [( Eq. II )'fg"sZo] 

- (1I161T)ViV, [( Eq. II Y;:Zk ] 

+ (l/81T)VivJID 

+ (111617')JI( - NsasZo + ZSasN) 

+ (l/161T)Jlq( - NSa,zq + zsasNq 

- g'"I"N 2a,,(Zo/N» (4.16) 

where Vk is the Riemannian covariant derivative on (T (cf. 
Appendix B) and 

Constro = - jiO'R + (11 ji)(JlpqIlpq - ~(trJlf) 
- (lIjil!(Jlpq -1TN)(Jlpq -1Tpq) 

- Htr(Jl-1TWl - Vp(jitft) 

- Vp(.ji~g'P) + (lIji)(1Tpq - ~pqtf1T) 
X (jizr;Pg'q) - 161TJi(Lmat - (lIji) 

X ,(;j{3, ... {3, D A. a, ... a,) 
a.,,,alo: O'f' f31,··!3, 

+ jiZO/~A -!jiC';PP;,{3' (4. 17a) 

(4. 17b) 

Remark: (3) R is the scalar curvature of the metric 
g = (g;) on u. 

Among eight terms which appear in (4.16) four are 3-
divergences and therefore are not important for integral for­
mulas. In the special but the most important case when the 
dynamical slicing (3.1) coincides with the coordinate slicing 
(3.6), we have 

(4.18) 

and the last two terms in (4.16) vanish. 
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We define the reduced energy-momentum 3-density: 

/fred = (1I161T)(Constr$O + ConstrpZP) 

+ (1I161T)(vN'a$O + vN'pa$p). (4.19) 

We have from (4. IS), (4.16), and (4.19) 

Ez(u) = f /freddxIAdx2Adx3, 
JF(a) 

(4.20) 

The quantities Constro, Constrp (a scalar density and a co­
vector density on u) are called the left-hand sides of con­
straint equations (or simply constraints). They playa funda­
mental role in the Hamiltonian formulation of the theory. 

Remark: By means of (E 12) we can express vi 1;.'< by 
the canonical variables 9 A' i A. Therefore Constrp can be 
expressed by canonical variables Il pq, gpq' 9 A' i A and their 
spatial derivatives. For Constro the situation is more compli­
cated. We show in Sec. S that under some additional assump­
tions Constro can be also expressed by means of canonical 
variables and their spatial derivatives. 

The following result explains the name "constraints." 
Proposition 9: If field equations (4.4), (4.Sa, b) are satis­

fied, then 

Constro = 0, Constrp = O. (4.21) 

The proof of Proposition 9 is given in Appendix D. 
We show later that Eqs. (4.21) yield some relations 

(constraints) among initial values of canonical variables and 
that the evolution maintains these relations. We have from 
(4.19)-(4.21) 

Proposition 10: If C4ESol, then, for every u, E (u) = O. 
By virtue of Proposition 10 we see that from ~. (2.16) 

.A. 

we can only conclude that the vector of evolution Ybelongs 
to the degeneracy subspace of f1 (see Sec. 6). This result does 
not help us too much. We are not able to determine from 
(2.16) the components of Y. Therefore we have to compute 
the derivatives of E (u) in directions tangent to Sbm(4) (they 
do not vanish) and to apply formula (2.18). This problem is 
solved in the next section. 

5. HAMILTON EQUATION FOR THE COUPLED 
GRAVITATIONAL AND MATTER FIELDS 

In Secs. 2 and 3 we have presented in outline the Hamil­
tonian formulation for classical field theories. We have 
proved that the variational principle and Euler-Lagrange 
equation (2.1) [cf. (4.4)-(4.S)] give rise to Hamilton equa­
tions (2.16), (2.18). We show that the converse statement is 
also true and that Hamilton equation (2.18) is equivalent to 
the system (4.4)-(4.S): instead of the Lagrangian (4.1) and 
Eqs. (4.4)-(4.S) we postulate the energy-momentum func­
tion E (u)-(4.20), the symplectic 2-form f1 (u)-(4.9), and the 
Hamilton equation (2.18). Our main result reads 

Theorem 2: Letfbe a section of the bundle .9(u) such 
that constraint equations 

Constro = 0, Constrp = 0 (S.I) 

hold. Let' Ybe a vecto~ tangent to Sbma(3) at c3 = flu) such 
that for every vector 'VETe , (Sbma(3)) 

dE(u).'V= -2f1(u)('Y,'V) [cf.(2.18)). (S.2) 
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Let 

'Y = oIlpq alall pq + ogpq alagpq + 09 A ala9 A 

+ oi A alai A + ovN' alavN' + oN alaN 
+ ovN' k alavN' k + oN k alaN k + ... (S.3) 

be the r a -vertical vector field on C3 representing' Y. Then the 
evolution equations for symplectic variables read 

appq = oIlpq, a~pq = ogpq, 

ao9 A = 09 A' ariA = oiA, 
a~ = ovN', aoN = oN, 

a~ k = ovN' k , aoN k = oN k, 

(S.4a) 

(S.4b) 

and the system (S.I)-(S.4) is equivalent to (4.4)-(4.S). 
Remarks: (i) From (S.2) we are able to compute only 

these components of' Y which enter into the symplectic 2-
form f1 (u), i.e., 

ollpq, ogpq' 09 A' oiA
, 

ovN', oN, OvN'k' oN k. 
.A. 

(ii) We show later that the vector' Y is not only tangent 
to Sbma(3) but also to (ls)(u)-its components satisfy the 
linearized version of constraint equations (S.l) (see Proposi­
tion 14). 

(iii) Hamilton equation (S.2) gives rise to relations (S.4) 
only on u, i.e., for X O = O. Therefore, in order to get (S.4) at 
all instants of time, we have to postulate constraint equations 
on every u and to solve (S.2) also for every u. We show fur­
ther that this requirement can be reduced (Proposition 11). 

Proof of Theorem 2: (I) Let us observe that in fibers of 
the bundle .9(u) we have the following independent 
variables: 

gpq' N, N k; their spatial derivatives; 

~q = (IN"i>(1Tpq - !,gpqtm), aoN, aoN k
; 

Il pq, vN', vN' k; their spatial derivatives; 

!(r~b - r~a)' (rto - iOtr:o), 
-.< -r Ov' r:b ; their spatial derivatives; 

-.< 
aJ"v; 
i A; their spatial derivatives; 

(S.Sa) 

(S.Sb) 

(S.Sc) 

(S.Sd) 

(S.Se) 

(S.Sf) 

9 A; (S.Sg) 

Remarks: (i) Variables !(r~b + r~a)' r:o, r~ ° can be 
expressed by the independent variables (S.S) [cf. (Cl)]. 

(ii) We assume throughout this paper that there are no 
relations among the canonical momenta 9 A of the matter 
field. Degenerate cases, e.g., the Maxwell electrodynamics, 
can be treated in a similar way (cf. Ref. 13). 

(II) Let 

'V = ogpq alagpq + oN alaN + oN k alaN k + "', (S.6) 

where ogpq' oN, oN k, etc. are arbitrary variations of the inde­
pendent ~ariables (S.S), be a vector field on C3 = feu) repre­
senting 'VET(Sbma(3». We have from (4.19)-(4.20). 

Wiktor Szczyrba 1933 



                                                                                                                                    

dE (a)' V = (l/161T)1 [«5 (Constro)N + «5(Constrp)NP 
f(CI) 

+ «5J/JoN + «5J/ kJoN k + J/«5(JoN) 
+ J/ k«5(JoN k

) ]dx l Adx2 Adx3
• (5.7) 

We recall that N = ZO, N k = Z k [cf. (4.18)] and the equa­
tions (5.1) are satisfied. The formulas for «5( Constr /L) are giv­
en in Appendix C. 

We see from (C3) that the integrand in (5.7) contains 
variations o1'~v' «5(1'10 - !<511'~), «5F~q, «5(1'~b - 1'~a). 
These variations do not appear in (4.9), and therefore all 
terms containing them have to vanish. It gives rise to the set 
of equations 

( Eq. II )~V = 0, ( Eq. II )~b _ ( Eq. II )~a = 0, 
---,0 

(Eq. lI)k = ° for s~k, 

(
--- \0 -- 20 --- 30 
Eq. II») = ( Eq. 11)2 = ( Eq. 11)3 , 

( Eq. II f/ + 8;( Eq. II )b = 0. 

We have from (5.8) 

J/ = 0, J/ k = 0, 

(5.8) 

(5.9) 

and therefore the terms with «5 (JoN), «5 (JoN k) vanish from 
(5.7). 

then 

(III) Let lin.symp.var. (linearized symplectic variables) 
be the vector space consisting of systems 

PC' = (<<5ll pq, «5gpq ' «59 A' «5;j A, «5J/, «5N, «5J/ k' oN k), 

where components of f?C' define cor~sponding tensor fields 
or tensor densities on a. For every 'VET(Sbm

CI
(3» there ex­

ists a unique rElin.symp.var. [cf. (5.6)]. 
We know that equations (5.8) are satisfied and therefore 

[cf. (C2}-(C5)] the left sides oflinearized constraints define a 
linear differential operator 

P: lin.symp.var.-+C 00 (a, den) X C 00 (a, denT*(a», 

where C 00 (a, den) is the vector space of (smooth) scalar den­
sities on a and C "'(a, denT*(a» is the vector space of 
(smooth) covector densities on a. 

p(£r) = (-t, Ilk)EC "'(a, den) X C "'(a, denT * (a)) 

~= «5(Constro)' Ilk = «5(Constrk ) (5.10) 

[see (C2)-(C5)]. The space Iin.symp.var. has a natural scalar 
product. If 

zt"jElin.symp. var., j = 1, 2, /Y'j = (<<5ll
pq

, ogpq"")' 
j j 

(5.11) 

+ (11 ji)«5J/ k«5J/,g'" + ji«5N k«5NsgkS ] dx 1 Adx2 Adx3 

) 2 1 2 

+i[(1Iji)09 ArB«59 B + ji«5(fAgAB«5(fB]dxl Adx2 Adx3
, 

CI ) 2 1 2 
(5.12) 

where 

goo =1, gOk=gkO=O, gks=gks' (5.13) 

r = 1, t>k =gkO = 0, g" =t's. 

We define the symplectic operator J: lin.symp.var.--+lin.symp.var: 

J(<<5ll pq, «5[(Q, «59 A' «5;jA, «5J/, «5N, «5J/ k> «5N k
) 

= ('vi g>ag'lb«5gab , - (1Ni)gpagqb«5ll ab, vi gAB «5;jB, - (1;Vflr B«59 B' Vi «5N, - (11 vi)«5J/, 

xvi gk,«5N', - (IN"i><<5 J/sg"j. (5.14) 

We have 

J2 = - id. (5.15) 
-'" -'" 

Let 'Xl> 'X2ET(Sbmu-(3» and PC'I' PC' 2 be the corresponding 
elements in lin.symp.var. We have from (4.9) and (5.12) 

/'0. /'0. 

2!1 (a)('X1, 'X2) = g(a)(PC' I,JPC' 2) = - g(a)(J f?C' I' PC' 2)' 
(5.16) 

Let(q, Uk)EC "'(a, R) XC'" (a, T(a»: qis a scalar function on 
a and Uk is a (smooth) vector field on a. We have the natural 
pairing 

«q, Uk) \ (-t, IIp)) = (11 161T) 1 (q~ + Ukllk)dx l A dx2 Adx3
• 

(5.17) 
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By means of the scalar product (5.12) and the pairing (5.17) 
we define the adjoint operator 

P*:C "'(a, R)XC "'(a, T(a»_lin.symp.var. 

g(a)(P*(q, Uk), PC') = «q, uk)\pf?C'). 

The explicit formulas for P * are given in Appendix C. From 
(5.7) and (5.9) we get 

dE (a)' V = «N, Nk)\pr) + g(a)(..o/, r) (5.18) 

where r is the element in lin.symp. var. corresponding to ' V 
and 
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We have from (5.18) 

dE (u)'V = g(o)(J( - JP*(N, N k
) - J.9'), r), (5.20) 

and by virtue of(5.16) the solution of(5.2) is 
'?Y = - (JP*(N, N k

) + J3:). (5.21) 

'?Y determines the components (o[[pq, ogpq'''') of the right 
sides of equations (5.4). 

(IV) We have from (5.14) and (5.19) 

- J.9' = (0, 0, 0, 0, 0, aoN, 0, aoN k
). (5.22) 

From (C1), (C3), and (C6) we compute ogpq' oN, oN k com­
ponents of C:Y. They read 

ogpq = VpNq + VqNp + (2N /\/i)(1Tpq - ~pqtf1T) 
+ N [ - (Eq. II )bab)gapgbq + ~pq( Eq. II )bab)gab 

+ i( Eq. II ):Ogpq ], (5.23) 

oN = aoN + NON( Eq. II )t;b l
gab - fIN ( Eq. II n, 

(5.24) 

(5.25) 

However, we know from (5.4b) that 

a~pq = ogpq' aoN = oN, aoN k = oN k
• 

Therefore, it follows from (5.23)-(5.25) and (E22) that 
--- kO --- ,{) --- (ab) 

( Eq. 11)0 = 0, ( Eq. II)s = 0, ( Eq. 11)0 = 0 
(5.26) 

Relations (5.26) together with (5.8) give rise to 

( Eq. II )~V = 0, (5.27) 

and thus Eqs. (4.5b) hold. 

(V) From now on we assume that Eqs. (5.27) hold. Ex­
plicit formulas for -IP * in this special case are given in Ap­
pendix C. We get from (C6) and (5.4) 

aryl( = 0, aryl( k = 0. (5.28) 

This formula is in perfect agreement with (5.27) [cf. (4.8)]. 
We see also from (C6) that equation 

ao;j A = 8;j A (5.29) 

are simply the identity. Equations 

a0 9 A =89A (5.30) 

are exactly the E-L matter field equations (4.4). 
Now we explain the meaning of dynamical equations 

for the gravitational momenta 

aaII pq = 8[[ pq. (5.31) 

I t has been proved in Ref. 14 that this system is equivalent to 

v'j(.ymRpq - 81T(sym Tpq - ~pq tr sym T»g>ig'" 

- v'jgij(.ym Rab - 81T( sym Tab - ~ab tr sym T) )gob 
= O. (5.31') 

Remark: In order to prove the equivalence between 
(5.31) and (5.31') we have to use equations (5.27) and (5.30). 

(VI) Relations (D 1) give rise to the following result: If 
Eqs. (5.27) and (5.30) hold, then 

Constro = 2Vg(Goo - 81T sym T°o) 
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= 2v'j[(GOo -81T sym TOo) 

- Nr(Gor - 81T sym Tar)]' 

Constrp = 2v'j(Gop - 81T sym TOp) 

= 2VgN(G op - 81T sym Tap)' 

(5.32a) 

(5.32b) 

These equations show that the constraint equations (5.1) are 
equivalent to 

GOA-81TsymToA=0. (5.33) 

It is also easy to prove that Eqs. (5.31 ') and (5.33) are equiv­
alent to (4.5a). The proof of Theorem 2 is now complete. 

Let us observe that if constraint equations (5.1) do not 
hold, we get a nonconsistent system. In fact we would have 
then the additional term (1I161T)(Constra8N + Constrp 8NP 
in (5.7) and instead of (5.28) we would have 

aryl( = - (Constro), aryl(p = - (Constrp ), (5.28') 

which would be in contradiction with (5.27). [In this way we 
have proved that the constraint equations (5.1) give the nec­
essary and sufficient conditions for the solvability of (5.2).] 

We have pointed out in Sec. 4 that Constrp can be ex­
pressed by canonical variables and their spatial derivatives. 
In a general case this is not true for ConstrQ • However, ifEqs. 
(4.5b) are satisfied, then we see from (C2)-(C5) that 
8 (Constr 0) can be expressed by variations of canonical varia­
bles and their spatial derivatives only. 

Let us assume that Eqs. (4.5b) and (4.4) are satisfied. 
We know that Constr /" are now related to the Einstein tensor 
by (5.32) and the Einstein tensor satisfies the contracted 
Bianchi identities (cf. Refs. 14, 15). 

VA(G A/" -81TsymTA/") =0. (5.34) 

All these facts give rise to the following: 
Proposition 11 (see Refs. 14 and 15): IfEqs. (4.4), (4.5b), 

(5.31 ') are satisfied for every XO = 0, then constraint equa­
tions (5.1) are satisfied for all xo. 

6. THE DEGENERACY DISTRIBUTION OF THE 
SYMPLECTIC FORM AND THE ACTION OF DIFF M IN 
THE SPACE OF SOLUTIONS 

'" The left action A of Diff Min &' generates a right action 
A in the space Sol: 

(Diff M X Sol) 3(<1>, C4)-A(<I»(C4)ESol. (6.1) 

" IfC4ESoi isthe image ofasectionF:M_&' , thenA (<I> )(C4 ) is 
the image of the section 

M3x_A (<I>-I)(F(<I> (x»}E&'. (6.2) 

A one-parameter family of diffeomorphisms of M (<I>, )'Eat 
defines the vector field on Sol: 

(6.3) 

where U(x) = (d Idt )<I>,(x) J,~o; xEMis a vector field onM. 
Proposition 12: The vector Y (C4) is represented by the T­

vertical vector field Y 

Y= -(Xu -dFU) (6.4) 

In local coordinates we have 
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u = ox" a/ax", 

Y=ogl'v a/agl'v +or;v a/ar;v +o¢Aa/a¢A 

+ ogl'v .... a/agl'v .... + Or~V.T a/ar~v .... 
+O¢A .... a/a¢A .... , 

ogl'v = Vp'oxv + Vvoxp.' 

or;v = Dp.DvoXA + R \TP.OX'" + Dp.(ox"'Q~v) 
o¢ A = oxTV T¢ A _ V ... oxa ,¢ ;~., ... ;. _ ... 

_ V oxakA., a, .. a • . ' ,7 
7 'f' fJ, ...... fJ. 

+V ox7A.,a''''ak .. , V oxTA.,a, ...... a. fJ, 'f' 7fJ, .. fJ. + + fJ. 'f' p, .. P . .. ,7' 

OgP.V.7 = a.,.ogl'v or~v . .,. = a70r~V O¢ a . .,. = a.,.O¢ A. 
(6.5) 

Proposition 13: Let a k = oxk = oxk + Noxo, P = oxo 

= Noxo be the tangential and the normal components of the 
vector field U at points of u. Then the components (oil pq, 
ogpq' 09 A' of A) of Yare given by formula (C6) withs =/3, 
Uk = a k

; the components oN, oN k are 

oN = acP - NiVs/3 + aiVsN, 

oN k = Jpk + aSVsN k _ NSVsak + pVkN _ JVVkp. 
(6.6) 

Remarks: (i) In order to get Proposition 13 from (6.5), 
we have used the canonical form offield equations (5.4). 

Oi) For special cases of the Einstein and Einstein-Max­
well theories the correspodning formulas have been present­
ed in Refs. 11-13. 

(iii) It follows from (6.6) that by means of the appropri­
ate choice of a\ p we can get arbitrary values of oN, oN k, 
JrfiN, arfiN k on u (on e3 ). 

Let C4ESol. By means of(3.2) we can split C4 into a one­
parameter family of initial surfaces (,e3),EIt. We have proved 
in Sec. 5 that on every initial surface le3 we are able to deter­
mine [from the Hamilton equation (5.2)] components (oil pq, 
ogpq' 09 A' of A) ,Q,fthe vector field' Y representing the vec­
tor of evolution' Y. Therefore we can construct aT-vertical 
vector field Yon C4 • We show now that Y represents a vector 
Y tangent to Sol and that this vector coincides with that 

'" given by the action A in Sol. We can expect this result if we 
recall the considerations in Sec. 2 which gave rise to Theo-

'" rems 1 and 1'. We prove also that Y belongs to the degener-
acy subspace of the symplectic 2-form [J on Sol. Also this 
fact is understandable by virtue of (2.16) and the fact that the 
energy-momentum function E vanishes on Sol. 

For C4ESoi we define the vector space lin.can.var. (lin­
earized canonical variables) which consists of systems 
:?E' = (8 llP\ 8gpq , 89 A' of A). The components of fC' re­
present families of geometrical 3-quantities on u depending 
on the parameter xu. We assume that they satisfy the linear­
ized constraint equations 

8 (eonstro) = 0, 8 (Constrp ) = 0 (6.7) 
(thUS fC'Eker P). 

Remark: We recall that for C4ESoi the linearized con­
straints depend 0tW' on onpq, ogpq' 09 A' of A. It is clear 
that every vector Y tangent to Sol at C4 defines an element 
QYElin.can.var. 

/'-. /'-. 

Proposition 14: If Y = dA (C4 )U [cf. (6.3)], then 
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(i) the corresponding element QY Elin.can. var. is equal to 

qy = -JP*(UO, Uk) [see (C6)] , (6.8) 

(ii) im JP * C ker P, (6.9) 
'" (iii) for every vector X tangent to Sol at C4 

'" '" [J(Y,X) = 0 (6.10) 

Statement (i) follows directly from Proposition 13; (ii) is the 
/'-. 

consequence of the fact that YET c. (Sol); (iii) follows from 
(5.16) and the properties of adjoint operators. 

Remark: It is possible to prove (ii) directly substituting 
(C6) into (C2)-(C5) but the calculations are rather long. 

'" Corolhjty: T!le vector of evolution' Y is determined by 
the vector Y = dA (C4)Z, where Z is the vector field on M 
given by the dynamical slicing (3.1), and the isomorphism 
between Te. (Sol) and Tc. «Is) (u». 

The degeneracy subspace We. (the gauge subspace) of 
the symplectic 2-form {} is 

We. = {YETe. (Sol): {} (Y, X,> = 0 for every XETe• (Sol)}. 
(6.11) 

/'-. 

We know from (6.1~ that im dA (C4 ) eWe •. The question 
arises whether im dA (C4 ) = We •. We have the following: 

Proposition 15: (i) If the matter field Lagrangian L mat is 
regular, that is, if the momenta fj A are in a 1-1 correspon­
dence with XO derivatives of ¢ A 

(ii) and ifEqs. (4.5b) determine r~v as function of 

gp.v' JAgp.v' ¢A, JAt/>A, 

then 

(6.12) 

where the closure is taken in the C "" -topology of sections. 
Remark: For the proof we need Remark (iii) of Propos i-

/'-. 

tion 13. We think that it is possible to provetbat imdA (C4) is 
a closed subspace, i.e., 

(6.12') 

For the Einstein theory (6.12') has been proved independent­
ly by Fischer-Marsden-Moncriefil· 34 and the present author 
11,12 by means of the theory of elliptic differential operators. 
It seems that the methods presented in those papers can be 
also adopted for more general cases. 

Proposition 16: If (6.12') holds, then 

kerP = (ker Pnker(PJ)) EB im JP * (6.13) 

For the Einstein theory the decomposition (6.13) has been 
proved by Moncrief34 and, independently, by the present au­
thor. II

,12 The subspace ker Pnker (PJ) describes the genuine 
degrees offreedom (in the tangent space), the subspace 
im JP * describes the gauge directions. 

Remarks: (i) Examples of regular matter field Lagran­
gians (cf. Ref. 15): 

the covector field L mat = ~(g"'v~/3DI,¢aDvt/>fJ - m 2¢ a¢a); 

the Fermi electrodynamics 

L mat = - (1!161T)Fp.vFp.v - (1!81T)(g"'''Dp.Av)2, 

Fp.v = Dp.Av - D"Ap.; 

(ii) If L mat = 0, the we have from (E7) r~v = -t;v} 
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- XI"8~, where XI" is an arbitrary function on M. Therefore 
we have an additional degeneracy of n connected with the 
transformation r;v-T;v = r;v - XI" 8 ~ (in the Einstein 
case r;v = r~1" and XI" = 0). 

(iii) Example of a nonregular Lagrangian: the Einstein­
Maxwell theory L mat = - (1I161T)/I"Jl"v,Jl"v = al"Av 
- a vA Jl . We have 9 0 = 0, 9 A = (0, §)~, i A = (.40, ~) 

and the additional constraint equation V k §) k = 0 on a. In 
this case we have only three dynamical equations for mo­
mentaao§)k = (roi<WY(cf. Ref. 13). The gauge subspace W 
is determined by the action of the semidirect product of Ditr 
M and of the gradient gauge group of electrodynamics. 

7. THE HAMILTON-JACOBI RELATIONS 

In classical mechanics we can view the action integral 

S = FL (xi(r), xi(r), r)dr 

as a function of final values of coordinates qi in the configura­
tion space and a final instant of time t. (Initial values of 
coordinates it and an initial instant of time to are kept fixed). 
We have 

and 

as as 
aqi = Pi> at - H(pi> qi, t) 

(cf. Ref. 16, Chap. 21). The above formulas give us the Ham­
ilton-Jacobi equation in classical mechanics. In the present 
section we deal with a similar problem in field theory. 

LetFbe a section of the bundle &', C4 = F(M), §) be a 
compact four-dimensional domain in M and a§) be its 
. boundary. Let (CJls )SER be a one-parameter family of ditreo­
morphisms of &' (in general not preserving fibres of 9). 
This family generates a family of four-dimensional submani-

folds (C 4) in &' and a family of domains (§) S )SER in M: C 4 
s ~R s 

= CJls(C4 ); §) s = (roCJIs of) (§). We compute an infinites-
imal change of the action integral 

S(C 4 ) = r B H- C ' (7.1) 
s JF(V'~) 

Let Vbe the vector field in &' defined by the family (CJls)SER 

V(P)=~CJls(p)1 . (7.2) 
ds s~o 

We have 

~S(C4)1 = r . .f VBH-C 
ds s S~O JF(Y) 

= r (VJdBH-c + d(VJBH_C )' (7.3) 
JF(!fl) 

Proposition 17: IfF satisfies field equation (2.1), then 

~S(C4)1 = r VJ8H _C ' 
ds s s~o JF(aY) 

(7.4) 

Let U be the projection of Vonto M 

U=r.v. (7.5) 

In local coordinates 
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V = 8~ a/a~ + 8gl'v J/Jgl"v + 8r~v a/ar~v 
+8~Aa/a~A + .... 

U = 8xA a/axA. 

(7.6) 

Let Xu be the vector field in &' defined by (2.7) and (4.10). 
In local coordinates 

A A A A 
V - Xu = ogJlV a/ agl"v + 8r JlV a/ ar I"V 

+ 8~ A a/a~ A + "', (7.7) 

where 

Sgl"v = 8gl'v - 8xTJrgl"" +.f ugJlV' 

sr;v = 8r;" - oxrarr;v + fur;", 

S~A = 8~A - oxTar~A +.f U~A, etc. 

[the corresponding Lie derivatives are given in (4.12)]. 

(7.8) 

We explain now why quantities 6gl'v, sr ~v' S~ A, etc. 
are important in our considerations. In previous sections we 
have dealt with geometrical quantities on a given three-di­
mensional surface a in spacetime. This surface was an ele­
ment of the coordinate slicing (3.6). Ifwe perform now the 
action of the family (CJlS)SER in &' we get a family as of three­
dimensional surfaces in M. However, these surfaces are not 
consistent with the slicing (3.6). Therefore, formulas (B2b) 
and (B 11) for the metric g on a .. for the fundamental forms 
of embedding K, S, for the canonical components of field 
potentials i A and their momenta 9 A , for the lapse function 

N and the shift vector N k are not valid in this case. We must 
compute these quantities by means of their geometric defini­
tions (cf. 12, 14, 16,54). In the first order approximation (for 
small s = E) we have on a, 

,gpq <;;!!fgpq + ESgpq , ,Kpq <;;!!fKpq + ESKpq , 

,Spq <;;!!fSpq + ESSpq ' 

,i A <;;!!f i A + Esi A, , 9 A <;;!!f j3) A + E89 A , 

,N<;;!!fN + E8N, .Nk<;;!!fN k + ESN k 

(7.9) 

and8gpq , 8Kpq}Spq" t;,tc. can be expressed by means of(7.8) 
(in particular, 8gpq = ogpq)' We omit here these complicated 
formulas. 

Let us suppose that a§) consists of two three-dimen­
sional surfaces ao and a and that Vvanishes on ao. We have 
from (7.4) 

~(~4)ls~o 
= r XU J8H_C + r (V -XU)J8H _C 

JF(U) JF(U) 

= -Eu(a) + r [-(1I161T)gpq8npq+9AsiA 
JF(U) 

- (1I321T)8cv'i(spq - Kpq)g'~]dxll\dx2I\dx3 

+ (l/161T) r Vg[Vp(8NP/N) + Vp«NP/N)aoOxo 

JF(U) 

+ (lIN)aoOxP)]dx l l\dx2I\dx3
• (7.10) 

But C4 satisfies field equations, and therefore, by virtue of 

Wiktor Szczyrba 1937 



                                                                                                                                    

Proposition 10, Eu(u) = O. The last integral can be also 
omitted and we get 

Proposition 18: 

~S(C4)1 = r [-(1I161T)gpqc5llpq+9Ac5;jA 
ds, s=o JFla) 

- (1I321T)c5(ji(Spq - Kpq)g"q)]dxll\dx2I\dx3. 
(7.11) 

We have expected such a result; only the term 

- (1I321T)c5(\1g(Spq - Kpq)g"~ is a bit surprising. There­
fore, in order to get a correct formula for the generating 
function we substract from B H _C the exact 4-form (cf. Ref. 
14)-the proof of Theorem 1) 

B = - (1I321T)d(\lg(Spq - Kpq)g"q)dx'l\dx2I\dx 3. 
3 

The generating functional S, is 

S,(C4 ) = r (BH _C - B) 
JF('/) 3 

and 

{)S, 1 {)S, '9 
c5ll pQ - 161T gpq , c5;jA = A' 

Formulas (7.14) generalize those of the Einstein 
theory. '2,16,54 

8. CONCLUDING REMARKS 

(7.12) 

(7.13) 

(7.14) 

(i) In the present paper we have defined the energy­
momentum (Hamiltonian) 3-form V z and proved that the 
corresponding energy function E determines Hamilton 
equation (2.18) which is equivalent to the variational Euler­
Lagrange equation (2.1). A similar problem was earlier in­
vestigated by Kondracki. 47 His paper outlines, however, 
only how to pass from E-L equation to Hamilton equation in 
field theories in flat Minkowski spacetime. The solution of 
the inverse problem presented in Ref. 47 seems to be 
incorrect. 

Our formula for the energy momentum 3-form vz , 
(4.13), is a generalization of Komar's formula 7 (cf. Ref. 53) 
and Appendix D). An elegant derivation of Komar's formula 
given in Ref. 55 explains to us why our result generalizes that 
of Komar. Recently Kijowski and Tulczyjew·1x have present­
ed their own ingenious approach to the notion of energy­
momentum in classical field theories. Kijowski39 investigat­
ed the problem in a theory of gravity (with a symmetric, 
metric noncompatible connection) and derived the formula 
which (almost) coincides with ours (cf. Appendix D). At first 
glance the approach presented in Ref. 39 seems very differ­
ent from ours. However, the discussion of the problem in 
Ref. 38 reveals deep relations between our 3-form V z and 
their original definition of energy-momentum. 

(ii) The theory developed in this paper works only for 
spatially closed spacetimes, that is, M is diffeomorphic to 
R X u, where u is a compact three-dimensional manifold 
without boundary. For a noncompact uwe have to take into 
account boundary integrals in the formula for the symplectic 
2-form n, (4.9), in the definition of the energy-momentum 
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function E, (4.15)-(4.20), and in the formula for JP"', (C6). A 
detailed discussion on these questions will be presented in 
the next paper. We shall show their relations between our 
approach and those developed earlier by ADM, 10 DeWitt, 51> 

Regge-Teitelboim, 22,57 Murchadha-York, 29 and Cho­
quet-Bruhat, Fischer, and Marsden5x for spatially noncom­
pact spacetimes. 

(iii) In the present paper mutter is described by a finite 
representation of the group of general coordinate transfor­
mations (the local GL (4, R) group). Therefore we have only 
tensor matter fields. In order to describe SL(2, C) spinor 
matter fields (the Dirac field), one has to work in the frame­
work of the tetrad formulation of gravity (gauge formula­
tion) and with the local Lorentz group as the transformation 
group for fields of tetrad. 26,51,52 In this case the connection 
on M is always metric compatible, i.e., D;.gp." = O. One of 
our next papers52 is devoted to problems of the Hamiltonian 
formulation of theories of gravity in the language of tetrad 
fields. Spinor matter fields can be also discussed in this 
schema. 

'V 

Remark: Recently Ne'eman and Sijacki have discov-
ered some nontensorial representations ofGL(4, R). Corre­
sponding bandors (generalized spinors) are to be related to 
strong interactions. 59 
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APPENDIX A: LINEARIZED FIELD EQUATIONS 

Let Fbe a section of 9 satisfying (2.1) and C4 = F (M). 
A vector field Yon C4 (tangent to 9) represents a vector 
YET (Sol) if and only iff or any extension Yof Yonto a neigh­
borhood ~ of C4 in 9 and for every vector field X in uk' we 
have (cf. Refs. 3, 12) 

(1' y(XJdBH_C») I C4 = O. (AI) 

Using properties of Lie derivatives and (2.1), we see that 
(AI) is equivalent to 

(XJd (YJdBH_C») I C4 = 0 (A2) 

or 

(XJd (YJdBH_d)(Zo, ZI' Z2' Z3) = 0 on C4 , 

where Z;. are vector fields given in W C 9 and tangent to C4 

at points of C4 • 

On the other hand, we have from (AI) 

(YJd(XJdBH _C) + d(YJXJdBH _C») IC4 = 0 (A3) 

or equivalently (cf. Refs. 3, 12) 

Y«XJdBH_C)(Zo, ZI' Z2' Z3») 
3 _ __ _ _ 

+ I (-1);' + I(X JdBH_C)([Y' Z;.], Zo,";:", Z3) 
;. =0 

= 0 on C4 • 
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We have two equivalent formulations oflinearized field 
equations for components of Y. We see from (A2) that these 
equations do not involve partial derivatives of X, Z and from 
(A3) we see that they depend only on values of Yon C4 and 
derivatives of Y in directions tangent to C4 • 

Formulas (A2)-(A3) imply also the following facts: 
(i) We can consider only r-vertical vector fields X, Y. 
(ii) Condition (A 1) does not depend on prolongations of 

X, Y beyond the submanifold C4 in g;. 
(iii) In a local coordinate system in g; we get system of 

linear partial differential equations for vertical components 
ofY. 

APPENDIX B: THE 1 +3 DECOMPOSITION OF 
GEOMETRICAL OBJECTS IN SPACETIME 

In Ref. 14 we have defined the "bar" operation for geo­
metrical objects in spacetime M. This operation gives us de­
compositions of tensor fields on M into normal and tangen­
tial components to a given three-dimensional surface U in M. 
We present now a somewhat different approach, which 
works also beyond U in M. Let U t = ! xEM: Xo = t J be a slic­
ing of M in a family of three-dimensional submanifolds. Let 
g = (gIL V ) be a Lorentz metric on M such that all surfaces U t 

are spacelike with respect to g. The lapse function and the 
shift vector field are defined by 

N = ( - goo)-1/2, N k = g'''g~, 

where [g'''] is the inverse matrix of [gks]. We define the 
matrices [A ~], [B ~], where B = A-I: 

A 0 - N A k - N k A 0 - 0 A k _ f:.k o -, 0 - , s -, s - us' 

(Bl) 

Bg = liN, Bg = _Nk/N, B~=O, B;=o;, 

and N = N(xO, x), N k = Nk(xO, x). For a tensor field c!> on 
Mwe define 

(B2) 

Geometrically i A(t, Xk) are the normal and tangential com­
ponents of c!> on the submanifold U t ; e.g., for a vector ua we 
have 

if = Nuo = - v'n, it = Uk + NkuO = Uk + (v·n)n\ 
(B2a) 

where n = (n") = (liN, - Nk/N) is the unit vector field 
normal to the slicing U t • Definition (B2) coincides for t = 0 
with that given in Ref. 14. For a given tensor field c!> on M, 
(B2) gives a family of tensor fields on U t • The valency of 

i;: :::;: is determined by nonzero indices; the index 0 refers to 
scalars. For the metric tensor g we have 

goo = -1, gOk =gkC) = 0, gpq =gpq' 

(B2b) 

goo = -1, ~k = ~o = 0, g'q = [gpq ]-1. 

Other examples (cf. Ref. 14) 

1939 

iipq =apq ' i)°o=boo-Nsbo" i)°k = Nbok,···. 
(B2c) 

Remark: We can also treat i A as a family of tensor 
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fields on U = Uo parametrized by xu. At points XEUt quanti­
ties i A coincide with corresponding components of c!> in the 
normal coordinate system on U t • However, we cannot treat 
i A as components of c!> in some coordinate system in M be­
cause equations 

axfi =Afi 
axv v 

are not integrable. 
We define formal differential operators 

aIL = B ~aa (B3) 

and formal coefficients r~v' where r = (r~J is an affine 
connection on M 

r~v =A~B~B~r~{3 +A~aILB~, 

r T 
- Bc.AfiA "r-" +Bc.J A x 

a{3 - " a {3 ILV "a {3' 

(B4) 

For the Riemannian connection Y;;v = tv} in M, we have 

rooo = 0, 110 = 0, 

].Roo = ( liN )VP N, Yk 0 = Ng'uy-;,k' 

?ok = (lIN)Vk N, 11s = N!1" 

Y~k = Ng'ur~k + (lIN)JkNs, y%, = YKs + Nr!1s' 
Remarks: (i) r-;,v is not a symmetric quantity. 

(B5) 

(ii) ~v on U t do not coincide with the corresponding 
components of y in the normal coordinate system on U t [cf. 
Ref. 14 formulas (A.2.8-9)]. It is only true for the elements of 
the second column of (B 5). 

(iii) Property (ii) holds also for an arbitrary connection 
r. 

(iv) Because of (iii), the change of the notation in com­
parison with Ref. 14 does not affect the important formulas 
of that paper. 

(v) Quantities y%s are coefficients of the Riemannian 
connection given by the metric g = (gij) on u, (cf. EI9); all 
other quantities (with exception of ?ok) have transformation 
properties of 3-tensor fields on U t • 

For the covariant derivative of a tensor field c!> on M we 
have according to (B2) 

(B6) 

and 

We have the following formulas for the Riemann tensor, the 
difference tensor, and torsion: 
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The bar operation commutes with the contraction of tensors 
and with their covariant differentiations. 

(B12) 

The fundamental forms of the embedding i:a_M can 
be expressed by means of the bar operation (cf. Ref. 14) 

that is, r = (r;p) is the connection induced on a by r. The 
gravitational canonical momenta are [see (4.6)] 

(Bll) 

the covariant derivative D for a vector field Y k on a is given 
by 

APPENDIX C: THE LINEARIZED CONSTRAINTS-OPERATOR P 

It follows from (4.6), (4.8), (E7), (E13) that 

!Vi(r~q + r~p) = (Ilpq - !,gpq trIl) + ~pq(\lizgo - NJI), 

(B13) 

Vir~ = -l(\lizgo - NJI + 2trIl), (el) 

Vir~o = v'i(r~k - ~d + v'i7!f -NJlk· 

Remark: The terms.ji Zf can be expressed by i A
, '9 A' (E12), and ~k can be expressed by gab and their spatial 

derivatives (E19). If 

~ = o(eonstro)' (e2) 

(e3) 

Remark:,3>R pq, (3'R are the Ricci tensor and the scalar curvature of the metric g = (gij) on a. If 

llk = o(eonstrk ), (e4) 

then 

llk = - 2 Vp(ogksIlP1 + IlabVkogab - 2gks VpoIlPS - Vp (o(\lit}{» + 16rro '9 A vki A + 16rr '9 A vkoi A (e5) 
Lemma: If 

(Eq. I1Y.{v = 0, '?!I = - JP *(s, Uk), '?!I = (oIl pq, ogpq' 0'9 A' of A, DJI, oN, oJi k' oN k), 

then 

oIlpq = V,(Ilpqu') -Il,qV,up -Il'PV,uq - ji((3)R pq - Wq (3)R)s + jiVpvqs 

- g>q.jiVkVkS - (21 jiHrrPa ~q - ~rrPqtf1T)s + (1!2ji)g>q(rrab rrab - !(trrr)2)s + ~Ji~gqvps + ~ji~gpvqs 
+ !../iC'f.pr;.pg>qs + 8rr sym Tad"pgt'qjis + ~(~ + ~')g"P(rr9, - ~o;trrr)s + ~(~ + ~')g"q(rrP, - ~8,:trrr)s 

+ !../i [V, (z;,qs)g"P + V,~s)g"q + V,(z;.'s)g"P + V,(ZI;;'s)g"q] -ljiV'(ZI;qs + Z'l/s) + !Ji(C'~Pr:.pg"P 
+ caP?'. g=q)s - 1 ig-(cq". g=P + cp". g=q + (!I'". g=P + cr.'". g=q)s u a{J 4'./ T EU r €u r UtE r UtE , 

ogpq = Vp Uq + V q Up + (21 jiHrrpq - !8"pq trrr)s, 
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APPENDIX 0 

We discuss relations between our energy-momentum 
formula (4.13) and those given in the literature. We need the 
following result, which follows from the Belinfante-Rosen­
feld identities for matter field Lagrangians (cf. Ref. 15) and 
(E1S)-(E16). 

Lemma: IfEqs. (4.4) and (4.Sb) are satisfied, then 

G A.I" - 81T sym TA.l" 

= HA.l" - 81T can TA.l" + 81T(V",a:A. + a~"'r~",) (01) 

We get from (4.13) and (01) 

~ (Z) = (l/81T)(G A. T - 81T sym TA.T)ZT + (l/81T)V Tb TA.. 
(02) 

The above formula was given by Komar7 for the Einstein 
theory (without matter). Recently KijowskPs.39 has present­
ed an interesting, nonstandard approach to the energy prob­
lem. He considered a theory with vanishing torsion (sym­
metric connection) and obtained a formula which (almost) 
coincides with (02). Nonessential small differences in the 
divergence term (l/81T)V Tb TA. between Kijowski's and our 
formulas follow from the fact that the Belinfante-Rosenfeld 
identities for symmetric theories do not coincide with those 
given in Ref. 15. 

APPENDIXE 

The Riemann tensor: 

R {3al"v = al"rea - avr~a + r~ar~T - r~areT' 
(El) 

The Ricci tensor, symmetric Ricci tensor, curvature 
scalar: 

Rav = R {3a{3v' symRav = ~(Rav + R va )' R = [f'{3Ra{3' 

The Einstein tensor: 
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GI"V = sym R I"V _ ~vR. 

The H-tensor: 

HI"v = ~(R I"v + [f'{3R I"av(3) - W:'R. 

The torsion tensor: 

(C6c) 

(C6d) 

(C6e) 

(E2) 

(E3) 

(E4) 

The (pseudo-) Riemannian connection of the metric g 
onM: 

~v = ev} = ~T(al"gvT + avgl"T - aTgl"v)' (ES) 

The defect tensor (the difference tensor): 

~v =r~v -~v' 
c';tv = g'"vr~A. + [f'{3r~{3lY;, - gTVr:.A. - gTI"r~T 

(the inverse formula to (E7) was given in Ref. 14). 
The symmetric stress energy tensor: 

I"v _ aLma. v 
sym T - 2 --+ g'" Lma.' 

agl"v 

The canonical stress--energy tensor: 

TI" = lY:L _ aLma. D A 
can A. A. rna. a(al"¢A) A.¢ . 

The hypermomentum tensor of matter field: 

aLma. 
sl,fv=--. 

ar~v 
4-momentum of matter: 

Invariance properties of Lma. imply 
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Lma! (¢' A, a;.¢, A, gJlv' r~v) = Lma! (¢' A, D;. ¢' A, gJlv' Q~v)' 

Let a~v = 2 aLmatlaQ~v' We have 

~v + (l!161T)T,t = a~v. (E13) 

The current of matter field 

. aLma! 
JA = a¢' A • (E14) 

The Belinfante-Rosenfeld identities (cf. Ref. 15). 
If matter field equations (4.4) are satisfied, then 

The bar operation for metrics on M: 

N=(_gOO)-'/2, Nk =gOk' Nk=g(SN
s

' 

gl'q =gt'q - (NPN qIN 2), goo = - N 2 + NWs ' 

gOp = NPIN2, 

(EI7) 

g=detg"v' g=detgij' J-g=Nji, (EI8) 

Y;q = ~S(apg,q + apg,p - asgpq ) [cf. (BS)], (E19) 

17"'j = Vi [~q - gpq(y';bF'b) ]gt'ig'll, 

~q = (l/Vi)(1Tpq - !gpq tr1T), tr1T = gab 1T"b, (E20) 

a;.gJlV =gJlaJ1v +gvaJ1Jl , 

a~,j = V,~ + VjN, +2Nyt. 
(E21) 

(E22) 
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We define path integrals for systems with time-dependent metrics in terms of prodistributions and 
discuss the relation ofthe path integral quantization to the Schrodinger one. We work an example 
that displays the elegance and utility of the prodistribution definition. We also discuss how our 
definition is particularly suited for changing integration variables. 
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INTRODUCTION 

Cecile DeWitt-Morette has introduced a definition of 
path integrals in terms of projective systems of distribu­
tions. I

-
5 Her definition takes full advantage of the vector­

space nature of the space of paths and of the Gaussian nature 
of the free particle (and other simple) integrals. Her defini­
tion gives the same results as Feynman's in those cases where 
his definition can be used; however, hers is much more versa­
tile, applying in more cases and being very suitable for study­
ing general problems of integration such as the effects of 
changing variables. In particular her definition yields direct­
ly the "normalization factors" that are so difficult to obtain 
using the time-slicing approach. The extension of her prodis­
tribution definition to systems with curved configuration 
spaces (i.e., with spatial-dependent metrics) has been pre­
sented in Ref. 5. Here we extend the definition to include 
systems with a time-dependent (but spatially flat) metrics. 
(The case of time-dependent metrics in one dimension has 
been considered in Ref. 6. The case of arbitrary dimensions is 
contained implicitly in Ref. 4, however the true nature of the 
time-dependent metric is perhaps obscurred by the addition­
al complications of phase space. Also, unlike Ref. 6, our 
philosophy is not to construct path integral solutions of a 
given Schrodinger equation, but rather to quantize a given 
classical system directly in terms of its Lagrangian.) As an 
example, we quantize the system of a particle SUbjected to a 
random classical force, where the effects of friction are also 
treated as classical. This problem, although simple, illus­
trates the power and elegance of the prodistribution ap­
proach to path integration. 

Unlike Feynman who considers all continuous paths 
that go from some initial point, a, to some final point b, in a 
given time interval T= [tb' ta ], we begin with the space of 
paths which all end at the origin and begin anywhere. This 
space, called X., forms a vector space. Since many of the 
paths are continuous, but not differentiable, we cannot write 
expressions like dqldt and give them meaning for all paths. 
We do, however, want to construct an object (a prodistribu­
tion) that corresponds to the Dx of Feynman plus the expo­
nential of the free particle part of the Lagrangian of the sys­
tem under consideration. 

THE PRODISTRIBUTION 

In the same way that a normalized Gaussian measure 
(or distribution) yon R " is most simply described in terms of 
its covariance G if, and infinite-dimensional Gaussian pro­
measure or prodistribution can be defined by its covariance 
G (t, s). In the finite dimensional case 

dy(x)===dx l ••• dx"(21Ti) - n/2(detG iT 1/2exp(VxiG;; lxi). 

Two important properties of yare its moments and its Four­
ier transform: 

f dY(X)Xixi = iG if 

and 
(:2y)(y)= f dy(x)e - ix-y = e -\iy,G,jYj. 

Note that the Fourier transform is much simpler than y it­
self. More importantly, under linear mappings of R n (either 
onto R n again or onto R m for m < n) the transformation of y 
is very simple whereas that of y is in general quite complicat­
ed. It is this property of y that makes it, rather than y, the 
object of study in a system of projective distributions for an 
infinite-dimensional space (such as the space of paths). In 
defining path integrals for quantum systems, the physical 
input is that the prodistribution should contain all the infor­
mation about the kinetic energy part of the Lagrangian. [It is 
in fact possible to incorporate much more of the Lagrangian 
into the prodistribution. However, we always begin with the 
simplest prodistribution and incorporate other parts of the 
Lagrangian by a change of integration variables (See Ref. 5, 
pp. 271-284 for a full discussion of this procedure.)] 

The Gaussian prodistribution appropriate for quantiz­
ing a system with a time-dependent metric is defined by the 
covariance G.(t, s) which is a Green function of the small 
disturbance (or Jacobi) operator of the free particle part of 
the system's Lagrangian. (The definition of G. and a discus­
sion of its properties are given below.) Then, to quantize a 
Lagrangian 

L=~mga/3(t)(t(t)tf(t)+qa(t)Aa[q(t),t] - V[q(t)]. 
(1) 

We define a wave function t/J(b, t b ) in terms of its initial value 
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z/;(a, ta)=z/;O(a) 

by the path integral 

z/;(b, tb )-1 dr + (x)exp{l_J [Aa (q(t), t)] dqa(t) 
x, I! Jr 
- V[q(t)dtl}z/;o[q(ta)]. (2) 

r + is the prodistribution defined by G +. X + is the space of 
all paths in R n (parameterized by t E [ta' tb ]) that end at 0. 
The path q is b + J.lx. Thus, we add b to all paths x so that 
they end at the point of interest, b. The paths are scaled by 

the factor J.l = ~ I!lm because our prodistribution is defined 
for I! = m = 1. (It would have been possible to include the 
mil! in the definition of r +, however, it is more convenient 
for doing the semiclassical expansion of a path integral to 
have the factors of I! explicitly displayed in the integrand 
instead of in r). For the velocity dependent potential, we 
write fA odq instead off A oqdt because q is a stochastic vari­
able and q really has no meaning. Equation (2) is the generalized 
Feynman-Kac formula. Perhaps a justification for it will 
come below when we show that z/; satisfies a Schrodinger 
equation 

il!az/; = fiz/;, 
at 

where fi is the quantum Hamiltonian formed from L (1) by 
the symmetric factor ordering. The propagator K (b, tb; a, ta ) 

is given by the path integral (2) with z/;o(a) given by 
8 [q(ta) - a]. 

We now construct the covariance G + of r + from the 
classical Lagrangian L given by Eq. (1). We consider a classi­
cal system with a time-dependent metricgaP(t). We requireg 
to be fiat, in the sense that for each t, the curvature tensor 
formed from g is zero. For example, in Cartesian coordi­
nates, g might take the simple form 

gap(t) = I(t )8ap · 

More generally, g might not vary the same in all directions. 
Thus, we might have a g given by the line-element 

ds2 = II (t Hdx 1)2 + 12(t Hdx2)2 + .... 
In order to construct the prodistribution appropriate to 

this system, we consider the covariance G +(t, s) that is a 
Green function of the free particle part of L. Thus. 

Lo - iq(t )·g(t )·q(t ), 

(where the dots denote contraction of indices). The action is 

So = ( dt Lo Jr 
and its first and second variations are 

S b [x] = x(t ).g(t ).q(t) 1;/0 

+ L dt [ - x(t ).g(t )·ij(t) - x(t )·g(t ).q(t )] 

and 

S[{[x,y] = x(t)·g(t).y(t) I;:: + lX(t)·LI""(t).y(t)] dt, 

where / ap is the small disturbance (or Jacobi) operator, 
given by 

1945 J. Math. Phys., Vol. 22. No.9, September 1981 

The Green function G + is defined by 

fap(t )GP.r (t, s) = 8(t - s)8~, 

with 

and 

d 
-G + (t = ta , s) = 0. 
dt 

G + can be written conveniently in terms of the Jacobi matri­
ces: Let KPY(t, s) and JPY(t, s) be the solutions to 

with 

and 

and 

with 

fap(t )KPY(t, s) = 0, 

K ap (s, s) = g"P (s), 

d -KaP(t = s, s) = 0, 
dt 

JPa(t, t) = 0, 

!!:....JPY(t = s, s) = gPY(s). 
dt 

Then G + is given by 

G +(t, s) = e (s - t ).K (t, ta )·N(ta' tb ).J (tb' s) 

- e (t - s)J (t, tb)-N (tb' ta ).K (ta' s), 

where N is the inverse of K: 

KaP(t, s)Npy(s, t) = 8~ 

and 

K ap (t, s) K Pals, t). 

(3a) 

(3b) 

(3c) 

In practice J and K are much easier to calculate than is G + 

directly. Also, in general discussions it is convenient to have 
an explicit representation of G +. 

In order to discuss the Schrodinger equation satisfied 
by z/; defined by (2), we follow the discussion of Ref. 7 (p. 76). 
For simplicity, we first consider the case of V = A = ° in 
order to bring out the effects of the time-dependent metric in 
r +. We then show how the A and V terms affect the results. 
Thus we have 

The integrand in this case is a simple cylindrical function (see 
Ref. 5, pp. 259-271 for a full discussion of the techniques of 
integrating cylindrical functions with Gaussian prodistribu­
tions) and reduces immediately to an integral over R n (the 
configuration space): 

z/;(b, tb ) = f(21Tir/2l~t G 11/2 exp(~ixjG;; 'xi) 

X z/;(b + /-lX, ta)· 
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HereG G(ta' tal = K(ta' ta)·N(ta' tb)·J(tb' ta)' Wenow 
let tb = ta + E, for E small. We expand (b, ta + E) in powers 
of E and 1f;(b + }lx, ta) in powersof}l. Also,J, N, and K can be 
expanded in powers of E. Using the Jacobi equation, we have 

and 

K(t + E, t) =g-l(t) + a (E2), 

N(t, t + E) =g(t) + a (E2), 

J(t + E, E) = Eg-1(t) + a (E2). 

Thus 

G = Eg-1(t) + O(€2). 

The expansion of 1f; is then 

1f;(b, tb ) = if;(b, tal + E a1f; + a (E2) 
at 

_ r dx elil2)x G x 

Jx + (21Tir12 1 det G 1'/2 

X [1f;(b, ta) + }lx·Vif;(b, ta) + ~2x'X'VV1f;(b, ta) + a (X 3)]. 
The integrals are standard Gaussian integrals. Let 

dyn) dxn elix .G . '.x 

(2m")"!21 det G I' /2 

Then 

f dynl(x) = 1, 

f dynl(x)xa = 0, 

f dy n)(x)xax{3 = iG a{3 = iE~{3(t) + a (E2), 

f dynl(x)xax{3xYxo = a (E2). 

Thus 

E aif;~; t) = }l2\iEga{3 (t ))Va V (31f;(b, t) + a (E2) 

or, as E~O, 

(4) 

(since }l=~ fzlm ). fj (t ) is just the quantum operator formed 
from La = (mI2)ga{3(t )4a(t )q!3(t) in the usual way. 

In order to include the A and V terms of L, we approxi­

mate S:: + 'V[b + }lx(t )]dt by EV(b) + a (E2) and 

s:a +<}ldxa(t)Aa [b + }lx(t)] 

by 

( 
}lX(ta)) 

- }lXU(ta)Au b + -2- . 

(the midpoint rule). 

1946 

The exponential 
e(i/fiIS(A.dq - Vdt) 
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is expanded up to first order in E, second order in x, and the 
terms integrated as above. The result is, as expected, 

ifzaif; = -fz
2

gu{3(t)[aa - iA a(b)][a{3 -iA/3(b)]if; 
at 2m 

+ V(b)1f; (5) 

for if; defined by (2). 

EXAMPLE 
As an example of a system that has a time-dependent 

metric, we consider a particle subject to a frictional force and 
a random fluctuating force! The classical equation of mo­
tion is 

ij = - (3q + af(t ). (6) 

For simplicity, let/be white noise [i.e., given by a Gaussian 
measure with the simple covariance {; (t - s)]. This equation 
has been studied often (See Ref. 8, for example.) If the fric­
tion and the random force are due to some background sys­
tem at temperature T, then the equipartition theorem re­
quires that as t~ 00, qq2 )--!kT. This requires a relationship 
between the magnitude of the damping and the magnitude of 
the associated fluctuating force: 

(7) 

A review of the quantization of (6) in terms of the Schro­
dinger equation can be found in Ref. 9. (See also Ref. 10.) In 
order to quantize this system using path integrals, we note 
that (6) can be derived from a Lagrangian with a time-depen­
dent metric: 

L = !ef3tq2(t ) + aef31(t )q(t ). (8) 

(Note that we could just as well work the problem in several 
dimensions with different friction constants in the different 
directions. ) 

One could consider this to be a particle without friction 
viewed on a movie that runs slower and slower, according to 
the factor e- /3t

• For this system 

and 

,f (t ) = - ef3rv~ - (3e/3 tV r, 

J(t,s)= ~(e-/3S_e-/3t) 

K (t, s) = e - /35, 

G ( ) 
1 ( - /3t, - maxi', - t. t, - .51) 

+ t, S = - - e + e 
(3 

where max(t, s) is the larger of t and s. 

(9) 

First, we construct the propagator for L. This illus­
trates the use of our y+ for time-dependent metrics and the 
power and elegance of the prodistribution method for evalu­
ating path integrals. 

Let the initial wave function be simply 

if;a(a) = eip.
a

/
fi

• 

(We take ta = 0.) The evolution of 1f; is given by the general­
ized Feynman-Kac formula (2): 
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t/J(b, tb) = r dy + (x)exp{ -.!:...- r'"dsef3saf[s(b + ,ux(s)] } Jx, Ii Jo 
xexp{ ~ [b + ,uX(O)]p}. 

y + is defined by the covariance G + given by (9). The parts of 
the integrand independent of x can be taken out, leaving 

t/J(b, tb) = exp[ - i~b ldsef3j(s)]exp( ~ bp)1, 

where 1 is the simple path integral: 

1=L, dy + (x)exp [ - i~ ldsef3j(S)x(s)]exp[ ~X(o)P]. 
1 is a simple cylindrical integral: Consider the linear map P 

P:X+-R 1 

defined by 

X-U _alds[ef3j(S)x(S)] + x(O)=(v, x), 

[where v is the measure (in X*+-j given by 

dv(s) = aef3j(s)ds + 80(s). ] 

The prodistribution dy + is mapped to dyl, given by 

dyl(U) = exp ~G -l(tb)UZ , dU ( . ] 
[211'iG (tb)]1 2 

where 

G (th )=S Sdv(t )dv(s)G +(t, s) 

= G +(0,0) + 2pa lefJj(S)G (0, s) ds 

+ aZllef3ref3j(r)f(s)G+(r, s) drds. (10) 

Th us 1 becomes a simple integral over R 1: 

1= r dyl(u)exp(i,uU)=exp[_iG(tb)]. 
JR' Ii 21i 

The wave function t/J is now completely evaluated: 

t/J(b, tb) = exp ~ [bP + ab l ef3j(S)dS _ G~b)]. 
G (tb ) is given by (10), or explicitly as 

G(t)=Pz(l_e-fJ,)+ 2pa l'ef3j(s)(e-fJS-e-fJ')dS 

/3+ 2a
z 

r'dr!r ds j!,. ef31(r)f(s)(e - fJr _ e - fJ1). 
/3 Jo 0 

CHANGE OF VARIABLES 

It is possible to make a linear change of integration var­
iables in the integrals for y.,just as in the case ofprodistribu­
tions defined for time-independent metrics. The results are 
essentially the same as given on pp. 271-282 of Ref. 5. The 
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difference is that here, the Jacobian of the transformation is 
in terms ofthe Jacobi matrixK defined by (3a). Thus, consid­
er the linear transformation 

M:X.-X. 

given by 

y(t )-x(t) = y(t) + fK (t, O).N (0, r)y(r) dr, 

where Kis itself some Jacobi matrix, dy +(y) will be mapped 
to dy + (x) times the exponential of some quadratic terms. 
The Jacobian of the transformation is 

DetM= IdetK(t, 0)1 1
• 

detK(t, O) 

These linear transformations are used to incorporate the 
quadratic terms of the semiclassical expansion of a path inte­
gral into a larger Gaussian prodistribution. Thus, we always 
begin with the simple Feynman-Kac formula (2), and gener­
ate new and improved prodistributions by changes of varia­
bles. The Jacobians of these transformations are usually the 
functions of time that are sometimes left unevaluated in oth­
er approaches to path integration. 

As pointed out by the referee, although still the wave­
function t/J satisfies a Schrodinger equation with a self-ad­
joint Hamiltonian [as, for example, Eq. (4)] if the normaliza­
tion of the wave function is taken to be the natural invariant 

one with the measure being Jidx: 

f t/J*(x, t )t/J(x, t ),V g(t ) dx, 

then the norm will not in general be preserved due to the time 

dependence in V;. 
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The conditions are derived under which a symmetry operator quadratic in the momenta exists for 
a spin-zero structureless point charge interacting with an externally applied uniform magnetic 
field in the presence of a potential field. The conditions apply to the possible forms of the potential. 
The explicit form of the symmetry operator in general is constructed and some particular 
examples are examined. 
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1. INTRODUCTION 

Geometrical symmetry groups involving point trans­
formations of the coordinates alone are the source of the first 
applications of group theory in quantum mechanics. The 
group operators are linear expressions in the momenta ef­
fecting displacements in space and time. As is well known, 
the fundamental conservation laws follow from the invari­
ance of the dynamical equations under these operations. In 
fact, the transformation operators themselves represent con­
served quantities. For example, the nonrelativistic Hamil­
tonian of a point particle moving in a Coulomb potential 
field commutes with all of the operators of the three-dimen­
sional rotation group S03' However, Fock 1 showed that a 
higher symmetry group viz. S04 exists, each of whose opera­
tors also commutes with the Hamiltonian and thus ex­
plained the degeneracy of the energy levels of the hydrogen 
atom. The group SO 4 contains, of course, the purely geomet­
rical S03 as a subgroup. It was the first example of a nongeo­
metrical symmetry group. The nongeometrica1, or more 
generally dynamical, groups depend for their existence on 
particular types of interactions rather than on assumed 
properties of space and time. They reflect the existence of 
more subtle in variances involving simultaneous transforma­
tions of coordinates and momenta. A dynamical group can 
determine the energy spectrum, the degeneracies of its eigen­
values, and all of the quantum numbers of a quantum me­
chanical system. Accordingly, it is a matter of considerable 
practical and theoretical interest to demonstrate the exis­
tence of dynamical groups wherever possible. 

This paper establishes the conditions under which a 
higher order (quadratic) symmetry operator exists for a 
point charge interacting simultaneously with a constant uni­
form magnetic field and an arbitrary potential field. The ap­
proach adopted is to determine the explicit form of an opera­
tor L quadratic in the momenta which commutes with the 
Hamiltonian. The latter is written in a gauge-independent 
formulation in order to maintain the generality of the results. 

A study of dynamical symmetry groups for the interac­
tion with a poteptia1 field alone has been carried out in both 
nonrelativistic classical and quantum mechanics by Winter­
nitz et al. 2 and by Makarov et at. 3 Yanagawa and Moriya4 

have constructed in the quantum mechanical case a realiza­
tion of a Lie Group using first order infinitesimal operators, 
and a special choice of gauge, with only the magnetic field 
present. The Lie algebras associated with the classical rela-

ti vistic motion of a charge in the presence of both the mag­
netic field and a potential have been presented by Mitchell.5 

2. DETERMINATION OF THE SYMMETRY OPERATOR 

The quantum mechanical nonrelativistic Hamiltonian 
of a spin-zero structureless point charge e of mass m moving 
in an externally applied electromagnetic field described by 
the potentials (A,rp ) is 

A- ft2 e A- A A A- e2 
2 

H = - - - (A.p + p·A ) + --A + erp. (1) 
2m 2me 2me2 

This expression can be rewritten, while making allowance 
for the presence of any additional scalar potential V (r), in the 
form 

A- peA- iefz 2 
H=-- -A-ft+--V.A+-

e
-A2+U 

2m me 2me 2me2 

(2) 

on using the relationship 
A- A-

ft·A -A-ft = - ifzV·A, (3) 

with 

U = erp + V. (4) 

If consideration is now confined to the time-indepen­
dent two-dimensional caseA = A (x,y), U = U (x,y), the usu­
al CaJ!esian coordinates being represented)JY (x,y,z), then 
[ftz,H] = O. The commutation offtz and H implies transla­
tional in variance in the direction of the z-axis with the con­
comitant conservation of the corresponding component of 
the linear momentum which will be denoted by pzO' It is 
convenient for the purposes of the following analysis to in­
troduce complex pairs of coordinates, momenta and mag­
netic potentials defined by 

XI =x+(y, AI =A, -iAy 

(5) 

A A .A 2fz a 
PI =Px -IPy = -. -a ' 

I XI 

(6) 

A A .A 2fz a 
P2 =Px +IPy = -. -a . 

I X 2 

(7) 

Using these definitions one can write the Hamiltonian (2) as 

fj = fttP2 _ !!... (A tP2 + ALftI) + ifl (aA I + JA2) 
2m fz aX2 aX I 

2mfl2 
+~AIA2 + U(X I,X2) + const 
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= P~2 _ 1!.. (A~2 + A2fi.) + W(x.,x2), (8) 
2m ." 

in which,u = efz/2mc. Although the magnetic field of inter­
est from this point on is a uniform constant field of strength 
B in the z-direction, specification of explicit forms of A. and 
A2 will not be made in Eq. (8) other than to note that in 
general 

aA. = aA 2 _ iB. (9) 
aX2 ax. 

In this way a gauge invariant formulation will ~e maintained 
throughout the work. The quadratic operator L is now taken 
in the form 

f = Il p~ + 12p~ + 13Pl pz + 14P. + IsP2 + 16' (10) 

where the six functions/;(x.,x 2), i = 1, ... ,6 are arbitrary. 
This is a symmmetry operator if it commutes with the Ha­
miltonian. The commutation condition can be expressed, on 

A A 

expanding the bracket [L,R], by equating to zero the coeffi-
cients of the various powers of the momentap. andp2' The 
expansion is carried out by using Eqs. (6) and (7) in conjunc­
tion with the relations 

[J, ~2] 4'1. al ~ 4".2 a
2
1 . 1 2 ,Pi = ITt -Pi + n -; 1= , , 

ax; ax~ 
(11) 

rl"~ ~ ] = 2i'" al ~ +2i." al A +4.,,2 ay (12) 
II,PtP2 a PI a P2 a a ' x 2 XI Xl X 2 

which are valid for any I(x 1,x2)' In summary, it is found that 
the ten conditions are as follows: 

all = a/2 =0, 
aX2 ax. 

all + aJ; = aJ; + a/3 = 0, 
ax. aX2 aX2 ax. 

~ ah -A2 a/. +2/. aA2 +/3 aA 2 =0, 
2m,u axz aX I ax. aX2 

~ Jfs -A. aJ; +2/2 aA I +J; aA. =0, 
2m,u ax. aX2 aX2 ax. 

~ (a14 + al s ) _ ifz2 a% + ~ (A .I.) 
2m,u ax. aX2 m,u ax .ax2 ax. 

+ I, aa~· + ~ (AJ2) + 12 aA2 
x. aX2 aX2 

+/3(aA I + aA2)=0, 
aX2 aX I 

~ al6 +fs aA I +/4 aA I -A2 als 
2,u aX I aX2 ax. aXI 

-AI afs _ i.,,2 a2fs _ J; au 
aX2 m,u aX laX2 ,u ax. 

-2 iliJ; az A. _ 2ilif a
2
A I 

aX laX2 2 ax~ 

_l:!!... 12 au _ 2ifif. a
2 
A. = 0, 

p. aX2 axi 

~ ah, +fs aA2 +/4 aA2 -A2 al4 
2,u aX2 aX2 ax I ax. 
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(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

-A. al4 _ ifz2 a
2
/4 _ 13 au 

aX2 mp. ax.ax2 p. aX2 

2 '~I" azA2 2'~1" a
2
A2 - ITft3 --- ITft2 --

ax.ax2 ax~ 

_ l:!!.../. au -2ifif. a
Z
A2 = 0, (19) 

p. ax. ax~ 

aY6 . A al6 . A al6 im I" aw ---Ipm 2 --Ipm • -- -J5-
ax lt3x2 ax. aX2'" aX2 

_ im 14 aw -2mJ; a
2
w 

." ax. ax.ax2 
a2 w a2 w 

-2mJ; --2ml. - =0. (20) 
ax~ ax~ 

The first three functions/l./2, andJ; are easily found from 
Eqs. (13) and (14) to be 

I. = ia.xi + b.x. + c. 

12 = ialx~ + bzX2 + c2 

13 = - a.xlx2 - bzX. - blX2 + c3, 

(21) 

(22) 

(23) 

where a., b l , b2, c., C2, C3 are arbitrary constants. Oncombin­
ing equations (14) and (15) and utilizing Eq. (9), the fourth 
function is determined to be 

14 = (-2mp./"')(2A I / I +2iBxd. +Ad3 - tP.). (24) 

Similarly on making use of Eqs. (14), (16), and (9), one finds 
the fifth function in the form 

Is = ( - 2mp/fz)(2Ad2 - 2iBx.l2 + A.l3 - tP2)' (25) 

In Eqs. (24) and (25) the two functions 

tP. = - iBbzX~ + Ylx. + 8., 

tP2 = iBblx~ + YZX2 + 82, 

in which 8.,02 are arbitrary constants while 

Y. + Yz = - i(.,,2/mp)a l 

Thomas P. Mitchell 

(26) 

(27) 

(28) 
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(30) 

Equations (18) and (19) also require, however, that the con­
sistency requirement a2j~axlax2 = a2/~aX2aXI be satis­
fied. This requirement can be reduced to the form 

a2u a2u 
2/1--2/2 -+3 

axi ax~ 
=0. 

d/l au -3 dl2 au 
dX I aX I dX2 aX2 

(31) 

Finally the established expressions for the six functions/;, 
show that the tenth condition Eq. (20), is tantamount to 

(
d/l _ 2imf.l .1. _ 4f.lm Bx r) au 
dX I fz2 'f'1 fz2 2) 1 aX I 

( d12 _ 2if.lm .1. 4f.lm Bx /) au 
+ dX2 fz2 'f'2 + fz2 I 2 aX2 
= O. (32) 

The general solution of the latter equation is 

U [ 
2f.lB 2 r 2f.lB 2/ f.lB 2 2 

U = 7X2JI + 7X1 2 - a l --:jjlX I X2 

the functional dependence on the argument being arbitrary. 
Accordingly, it can be asserted that the operator Lis a sym­
metry operator of the Hamiltonian fj for those potentials of 
the form given by Eq. (33) which satisfy equation (31). The 
operator being quadratic should of course contain the Ha­
miltonian itself. It is easily seen .9.n using Eqs. (23) thro9,.gh 
(30) that the coefficient of C3 in L is in fact equal to 2mH, 
omitting the additive constant term in p~. 

Equation (32) can also be satisfied by setting the coeffi­
cients of the partial derivatives separately equal to zero. This 
choice leads to II = 12 = rP I = rP2 = 0, 13 = C 3' the operator 
" L becoming proportional to the Hamiltonian, and hence is 
not of interest. However in the absence of the magnetic field 
this choice is not so restrictive2 and potential functions other 
than those possessing the geometrical symmetry in Eq. (33) 
satisfy equations (31) and (32). The presence of the magnetic 
field effectively removes this possibility. The application of 
the foregoing results to three particular field geometries will 
now be briefly examined. 

3. POTENTIAL FIELD CONFIGURATIONS 
A. Axially symmetric field 

The potential is a function of the argumentx lx 2 • Equa­
tion (31) is identically satisfied and the form prescribed by 
Eq. (33) is met if b l = b2 = CI = C2 = 0 1 = O2 = O. The qua­
dratic symmetry operator is expressible in the form 

L" a I L"2 .z. ( 2' f.lm )L" = 2 I + ITt a I - I --:jjl Y I I 

in which the first order operator 
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(34) 

also commutes with the Hamiltonian. 
This result applies in particular to the isotropic 

oscillator. 

B. Nonisotropic oscillator 

The potential in this case is 

U(X I,X2) = H(k 1 - k 2)xi +2(k l + k 2)X IX2 

+ (k l - k2)X~ ] (36) 

the unequal oscillator constants being represented by k I and 
k 2• It is a member ofthe class defined by Eq. (33) and satisfies 
Eq. (31) ifa l = b l = b2 = 0 1 = O2 = 0 and 

fz2 
C 1 = C2 = -- (k l - k z), (37) 

16f.lB 

- ifz2 
YI = - Y2 = -- (k l + k2)· (38) 

8f.lm 
The second-order operator can be now written without diffi­
culty. It is noteworthy that no first order symmetry operator 
exists for the nonisotropic oscillator, because by Eq. (37) 
C I of- 0, even though a second-order one does. 

C. Magnetic field alone 

Here U = 0 and Eqs. (31) and (32) are identically satis­
fied without restrictions on the functions/;U = 1, ... ,6). The 
full quadratic operator contains within it three linear opera­
tors found by letting II = 12 = h = 0 and consequently 

2f.lm 14= T(YIXI +0 1), (39) 

2f.lm Is = T (Y2X 2 + O2), (40) 

f.l 2m 2 

16 = -4 --:rr- [(YIX I + 01)A1 + (Y2X2 + 02)A2] 

. f.l 2m 2 

-41--:rr-B(YIXIX2 - 02XI + 0IX2) (41) 

with YI + Y2 = 0 from Eq. (28). On setting the independent 
coefficients Y I' 0 I' O2 equal to zero in pairs one finds the three 
operators 

LI =PI - 2f.l; Al - 2i f.l:
B 

X 2 , 

L" A 2f.lm A 2' f.lmB 
2 = pz - -- 2 + I -- X I' 

fz fz 

L3 =XI(PI - (e/c)AI) -X2(P2 - (e/c)A2) 

2 ·f.lmB 
- I--XIX 2· 

fz 

Their commutators are 

[LIOL2] = 4f.lmBi, 

[L'z.f3] = 2ifzf2, 

[L3,LI ] = 2ifzfl , 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

and of course each commutes with the Hamiltonian. The 
expressions for these operators are the gauge-independent 
forms of the operators utilized by Yanagawa and Moriya4 to 
construct a realization of the four-dimensional Lie algebra 
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with the basis £1' fz,~, 1. These authors' choice of gauge 
corresponds to A I = - (iB /2)x2' 

'v. A. Fock, Z. Physik. 98, 145-54 (1935). 
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Exponential perturbations of the harmonic oscillator 
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The operators H (j3) = p: + x 2 + (3e rx(rER \ [ 0 I ) in L 2(R) are studied. The spectrum is discrete for 
larg81 < '"'., the ei?~nv~ues admit an asymptotic expansion as 1f31-0, and they have no Bender­
~u type smgulanhes In the analytic continuation to any punctured sector of a logarithmic 
RI~mann su~a~e. For {3 '.< 0, H (f3 ') ~efines a symmetric operator with deficiency indices (1, I), and 
alllt~ self-adJOl~t extensIOns have dIscrete spectrum; however, any eigenvalue of H (f3 '), when 
contmued to {3 < 0, can be interpreted as a resonance of the problem. 

PACS numbers: 03.65.Ge 

I. INTRODUCTION 

The object of this paper is any Hamiltonian of the form 
H (j3 ) = p2 + x2 + f3e rx(rER \ [ 0 I ), viewed as a quantum-dy­
namic operator in the Hilbert space L 2(R). Though some 
similar perturbation problems have been widely studied in 
recent years (see Ref. 1 for a review) no treatment seems to 
exist for nonpolynomial perturbations of the harmonic oscil­
lator which misbehave at infinity. In such cases, for example, 
it is not clear what kind of singularity can be expected for the 
eigenvalues at f3 = 0: here, for smalll{3 I, we have analyticity 
on an arbitrary sector of a logarithmic Riemann surface, as 
we shall see. Notice that the perturbation coefficients give a 
stronger divergence than in the examples of perturbation 
series recently treated (Refs. 1 and 2): the interest of this 
research is mainly in view of a rigorous study of such singu­
lar perturbation series, as well as for the anharmonic oscilla­
tor. Besides, the one-dimensional potential 
x 2 + (3 , erx(f3' < 0) is not complete (see e.g. Ref. 3), and all 
self-adjoint extensions of the symmetric operator H (j3') have 
discrete spectrum, in spite of the shape of such potentials, for 
which the barrier penetration would rather suggest a con­
tinuous spectrum along ( - 00, + (0), and "unstable states" 
or resonances: a "pathology" which is also verified in other 
noncomplete potentials (see Ref. 4). These self-adjoint exten­
sions are not very significant, and we shall rather study the 
analytic continuation to f3 ' < 0 of the eigenvalues of H (f3 ), 
1 arg8 1 < 1T. The consideration of such continued eigenvalues 
is common in physical literature (see, e.g., Ref. 5, p. 1622, 
where the authors considerp2 + Xl + f3 'x 4 ,{3' < 0) when they 
are found to be nonreal: then their real part in interpreted as 
the energy of the unstable state, and the imaginary part is 
assumed to be exponentially related to the lifetime (see also 
Ref. 1, XII. 6). In some important cases, it has been proved 
that such a continuation can be obtained as a second sheet 
pole of matrix elements of the resolvent of the given self­
adjoint Schrodinger operator (and this way the most correct 
definition of resonance can be given; see Ref. 1, XII. 6). 

Now, let us consider the analytic continuation to{3' < 0 

"'Partially supported by G.N.F.M., C.N.R. 
"'Permanent address: Istituto Matematico, Universitii di Modena, 41100 

Modena, Italy. 

oftheeigenvaluesofH (j3), larg81 < 1T. First we can show that 
they are related to the self-adjoint extensions of H (j3 ') 
through a spectral concentration phenomenon (see Refs. 6, 
or 1, XII. 5). Then our question is whether they can be ob­
tained as second sheet poles of "resolvent" matrix elements, 
taking into account that the resolvent of any self-adjoint ex­
tension of H (j3 ') cannot even have a second sheet, because 
each spectrum is discrete. To answer this question we can 
use the notion of generalized resolvent of a given symmetric 
operator. Recall that if A is a symmetric operator in Hilbert 
space dY' with deficiency indices (n,m) [so that (A - E)-I is 
well defined on the range of (A - E) for 1m E> 0] a general­
ized resolvent of A is a bounded, densely defined extension of 
(A - E)-I which canbe expressed asP +(B + - E)-I, where 
P +: dY'+ -dY' is the orthogonal projection onto cW' from 
some larger Hilbert space dY'+ ~ 3Y'; and B + is a self-adjoin t 
extension of A acting in £'+ (for a detailed discussion see 
Ref. 7). In these terms, the result is the existence of a unique 
generalized resolvent .91(E) ofthe symmetric operator H (j3 '), 
such that its scalar products, on some dense set in L 2(R), 
admit second sheet poles; and these poles are exactly the 
above eigenvalues ofH (j3 )whencontinued tof3' < O. Thus we 
can say that our problems admit a natural notion of reso­
nance, although all self-adjoint extensions have a discrete 
spectrum, by simply replacing their resolvents by >/I(E). At 
this point, we can give &t(E)a physical characterization, as a 
limit of resolvents, corresponding to problems with poten­
tials locally approximating our one. 

In Sec. II the perturbation theory of H (j3), 1 arg81 < 1T, is 
discussed, by introducing the translation 
x-x + r- llog(j3 -I), and by referring to Ref. 8 whenever 
possible. As a result, the existence and asymptotic expansion 
of the eigenvalues as 1{31-----0 and the absence of Bender-Wu 
type singularities are shown, and these properties are ex­
tended to N-dimensional cases. In Sec. III the Hamiltonian 
H (j3 '), f3' < 0, is considered: it is proved that the real part of 
any eigenvalue of H (j3 ), when continued to f3' < 0, is a pseu­
doeigenvalue of any self-adjoint extension of H (j3 '); it is also 
proved that any such continued eigenvalue is a second sheet 
pole of the generalized resolvent 3f(E). In the Appendix 
::/?(E) is also characterized as a weak limit of the resolvents of 
certain Schrodinger operators, whose potentials locally ap­
proximate x 2 + f3' erx

. 
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II. PERTURBATION THEORY 

In the following, we mean by p the differential operator 
( - id Idx), acting in L 2(R) and unitarily equivalent to the 
multiplication operator by p through the Fourier transform. 
The other symbols of operator theory are also taken in the 
usual meaning. The natural logarithm of w is denoted by 
In(w). First consider the differential expression 
H (a,/3) = pl + Xl + ax + /3erx, reR \ {o I, in order to prove 
the above mentioned results. 

Lemma 11.1: The operator H (0, 1) = p2 + Xl + erx is 
self-adjoint on thedomainD = D (Pl + x 2)nD (erx ). H (0, 1) has 
compact resolvent and, for all uED, 

11(P2 + x 2)ull l + !llerxuI1 2<II(Pl + x 2 + erx )ul1 2 + b lIuI1 2.(I11) 

Proof By standard arguments, H (0, 1) is self-adjoint on 
D with compact resolvent if(I11) is proved. To this end, it is 
enough to remark that, for some constant b, 

(pl + x2 + erX)l = (pl + Xl)l + e2rx + erx(pl + x2) 

+ (Pl + x2)erx 

>(p2 + x2f + e2rx + p( _ irerx + erxp) + erJ'p2 

= (p2 + Xl)2 + e2rx _ rerx + 2perxp 

;;.(P2 + x 2f + ~e2rx _ b. 

Taking expectation values (for uED ), the lemma is proved. 
By the same methods, the following property can be 

seen. 
Lemma II.2: The maximal mulstiplication operator by 

X isH (0, I)-relatively bounded with an arbitrarily small rel­
ative bound. On the basis of Lemmas 11.1 and II.2, by exactly 
repeating the arguments of Ref. 8, pp. 83-84, one can prove 
the following theorem. 

Proof As quadratic forms on D ® D, we have 

Theorem 11.3: For any complex a, and /3 > 0, 
H (a,/3) = pl + x 2 + ax + (3 erx is defined as a closed opera­
tor on the domain D, with compact resolvents which are 
analytic in a. Moreover, [H (ao,(3) - z] - I is analytic in/3for /3 
in a neighborhood of any positive number. All eigenvalues 
E (a,(3 ) of H (a ,(3 ) are nondegenerate and analytic in both var­
iables in a neighborhood of any real a o and positive (30' 

These facts allow labeling of the eigenvalues by an or­
dering: En (a,(3), n = 0,1,2,.··. To study them in more detail, 
let us introduce a convenient translation. 

Theorem 11.4: Let n = 0,1,2,. ... For (3 > 0, A > ° and 
wherever an analytic continuation is possible, 

E" (0,(3) = (r- IIM)2 + E n (2r- I IM,(3A). (112) 
Proof Let us define [U (Alf](x) = fIx + r-IIM ). Then 

U (A ) is a group of unitary translations for A > 0, and 

U(A) (p2 + x 2 + /3erx)U(A )-1 = pl + x 2 + (r-IIM)2 

+ 2(r- 11M )x + (3J.erx, 
which proves (112). 

Remark: As a consequence of Theroem 11.4, for 
J. =/3-1 we have 

En(O,(3) = (r- l ln(3 -1)2 + En (2r- l ln(3 -1,1), (113) 

which will be useful later and allows us to state the following: 
Corollary II.5: Let n = 0, I,.··. Then En (0,/3) has a con­

vergent expansion in powers of In(3 near (3 = 1. 
Lemma 11.6: Let/3be complex with Irnf3 #0, and let 

X = (x + r-Iln(m)), mEN. Then, for all vED, the following 
estimate holds: 

all(pl + X2)v112 + al(3121lerxvlll 

<11(P2 + X 2 + (3erX )vI12 + b IIvl1 2 (114) 

for some a, b, m depending on (3. 

(p2 + X2 + lJerx ) (P2 + X 2 + (3erX ) = (p2 + X 2 + mlJerx) (p2 + X 2 + m(3erx ) = (P2 + X2f + m21(311e2rx 

+ m(Re(3) [(P2 + X2)erx + erx(p2 + X2)] + im(Irnf3) (pVx _ erxp2) = 1(3 -IRe(3I(p2 + X 2 ± m 1(3lerx ) 

+(I-I(3-IRe(3I)[(p2+Xlf+m21(3IVrx] + mr(Irnf3)(perx + erx» (with 2a= 1-1(3-IRe(3I) 

2a[(p2 + Xl)2 + 1(311m2e2rX] + ImrIrnf3I(p ± erxf _ ImrIrnf3I(p2 + e2rX) 

>a[(p2+X2f+ 1(312e2rX]-b+ [a(p2+X2)2-lmrIrnf3lpl+b] + [am21(3IVrx_lmrIrnf3le2rx]. 

By a suitable choice of m and b = b (m), the last two terms can be made positive, whence (114). 

Theorem 11.7: H (0,(3 ) = p2 + x 2 + (3erx, defined on 
D = D (p2 + x 2)nD ( erx),is an analytic family of type A with 
compact resolvent for larg(31 < 1T. 

Proof LetUm v(x) = v(x - r-Iln(m)): then the unitary 
translation Urn leaves unchanged the domain D, so that any 
uED can be written as u = Um v, where vED. In the notation 
of the preceding lemma, 11(P2 + X 2 + (3 erx)vll 
= IIU ,;; 1(p2 + x 2 + (3erx )Um vii = 11(P2 + x 2 + (3e rX )ull,and 

H (0,(3) satisfies a quadratic estimate similar to (114). Thus, as 
a consequence of this estimate, exactly as in Ref. 8, Theorem 
11.9.2, the statement is verified. 

Theorem 11.8: H (a,O) = p2 + x 2 + ax, aEC, defined on 
D (p2 + x 2

), is an entire family of type A with compact resol­
vent and analytic eigenvalues En (a,O) = 2n + 1 - all 4. 
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Proof If aElR, H (a,O) has compact resolvent by a trans­
lation x~x - a12; moreover, the resolvents are analytic in a 
neighborhood of any real a, since x is infinitesimally small 
with respect to H (a,O). For Ima #0, again as quadratic 
forms we have: 

(p2 + Xl + ax) (p2 + x 2 + ax) = p4 + lal 2x2 + 2ReaxJ 
- 2 

+ 2px2p + Rea(p2x + Xp2) + iIma [p2,X] 

>(1 - la-'Real) (p4 + lal 2x2) + la- 1Real(p2 ± lalx)2 

+ X4 + 2Reax' - 2 + Imap. 

As in Lemma 11.6, one can find a,b > ° such that 
ap4 + ax4 <(p2 + x 2 + ax) (p2 + x 2 + ax) + b. This implies 
that H (a,O) is closed on D (P2)nD (x 2) and that x is small with 
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respect to H (a,O), whence the assertion about H (a,O). Then, 
by the above translation En (a,O) = 2n + 1 - a 2/4. 

Theorem 11.9: Let aEiC, I argj3 I < Jr; then 
H (a,/3) = p2 + x 2 + ax + /3 erX, defined on D, is an analytic 
family of type A with compact resolvent. For any purely 
imaginary a, 

(115) 

for all uED, with a,b independent of a, 1/31. 
Proof For aER, pl + x 2 + ax + /3erx is unitarily equiv­

alent to pl + x 2 - all 4 + /3e - ra12erx by a translation 
X---+X - a12; so it is closed on D with compact resolvents by 
Theorem 11.7. On the other hand, by the quadratic estimate 
(114), x is infinitesimally small with respect to p2 + x2 + /3e rx 

when Imf3 #0. So, by Theorem 1I.3,H(a,/3) is an entirefam­
ily of type A for any fixed /3 in the cut plane. Since it has 
compact resolvents for real a, the property extends to the 
whole region of analyticity. In order to show (115) it is 
enough to consider, as quadratic forms on D ® D, 

(p2 + x 2 + ax + 1/3lerx ) (p2 + Xl + ax + 1/3lerx ) 

= (p2 + x2 + ax) (p2 + Xl + ax) + 1/3l l e2rx 

+ 1/31 [erx(pl + x 2) + (p2 + x2)erX ] 

;;;. 1/31 prx + 1/31 (p2erx + erxpl), 

and to proceed in analogy with the preceding estimates. So 
the assertion is proved. 

The above propositions allow us to get a norm resolvent 
convergence of H (a,/3 ) as/3---+0; it is known that an analogous 
convergence holds for every x 2

,"_ perturbation of the har­
monic oscillator (mEN, Ref. 8), as well as/3x2m + 1_ perturba­
tions (for nonreal /3 only, Ref. 4). Let H (a, 1/31) be given as in 
Theorem 11.9, and let H (a,O) be defined by Theorem 11.8. 

Theorem 11.10: If Rea = ° and d> ° is given, 

II[H(a,I/3I)-E]-I- [H(a,O)-E]-III---+O as 1/31---+0 

for some EErC and uniformly for lal <d. 
Proof If Rea = 0, the union of the numerical ranges of 

H (a, 1/3 I) is contained in a half-plane; so there are EEiC and 
c > ° such that II[H (a, 1/3 I) - E]-III <c. We have 
Ll =[H (a, 1/3 I) - E]-I/3 - [H(a,O) - E]-I = - [H(a,O) 
-E]-I(1 + Ixl)(lnl/311/2Ir)-1 
(lnl/3l- 1/2'rl) (1 + Ixl)-II/3lerX [H(a,I/3I) - E ]-1. Now, 
(Inl/31112rf (1 + Ixl)-21/31 2e2rx< 1/3l l e2rx + 1. Indeed, it is 
enough to show such inequality for (1 + Ixl) <In 1/31- 1/21

r l. 

For such values of x, (In 1/3 I - 1/2irl)ll/312e2Irxl 

«lnl/3l- 1/2Irl)21/31 < 1, uniformly for ° < 1/31 </30' for some 
/30> 0. By this inequality and by (115) we have 
(Inl/311/2Irl) (1 + Ixll-II/3lerx [H (a, 1/31) - E ]-1 bounded 
uniformly over a and /3, Rea = ° and ° < 1/31 </30' On the 
other hand, if d is fixed (1 + Ix I) is relatively bounded with 
respect to H (a,O) uniformly for la I < d (see, e.g., the proof of 
Theorem 11.8). This implies that IILl 11---+0 as 1/31---+0, at least as 
( _ Inl/31112lrl)-I. 

Theorem 11.11: Let Rea = 0, d> 0, and let En (a,O) be 
the nth eigenvalue of H (a,O). Then, for small 1/31, there is 
exactly one eigenvalue En (a, 1/31 )ofH (a, 1/31 ) near En (a,O). As 
1/31---+0, one has En (a, 1/31 )---+En (a,O) uniformly for lal < d. 

Proof A direct consequence of the norm resolvent con-
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vergence of Theorem 11.10. 
Theorem 11.12: There is a B > ° such that for 1/31 < B, 

largj31 < Jr, H (0,/3) has exactly one eigenvalue near 2n + 1. 
Such eigenvalues are analytic functions of /3 for largj31 < Jr, 
1/31 <B, and admit an analytic continuation across the real 
axis, on a logarithmic Riemann surface, to any sector 
1/3:0 < 1/31 <B, largj31 < e j, e> Jr, fi = fi(e ) ... 

Proof For largj31 < Jr, 1/31 small, by setting A 
= exp ( - iargj3) in (112), 

EI/(O,/3) = (- ir- Iargj3f + EI/( - 2ir- l argj3,I/3I), 

so that EI/ (0,/3 ) tends to 2n + 1 as /3---+0. By the same reason, 
it admits an analytic continuation to any sector as above. 

Theorem 11.13: LetE (0,/3) denote an arbitrary eigenval­
ueof H (0,/3), largj31 < Jr, 1/31 < B. Then the Rayleigh-Schro­
dinger formal series is uniformly asymptotic, as /3---+0, to the 
function E (0,/3) in any sector I argj31 < e, e;;;'Jr. 

Proof Since E (0,/3) = a 2 + E (2a, 1/31), where 
/3 = 1/3 Ie "', it suffices to see that E (2a, 1/31) admits asymp­
totic expansion uniformly for la I < Ir- Ie I, when a is purely 
imaginary. Let S (R) be the Schwartz space and let SI CS (R) 
be the subset offunctions that decrease at infinity faster than 
any inverse power of cosh(x). Since every unperturbed eigen­
vector ¢ (2a,0) of H (2a,0) belongs to SI' setting 
V = erx , H(3 = H(2a,I/3I), the formal equality, 

N 

(H(3 _E)-I = L (-/3)k(Ho-E)-I[V(Ho-E)-I]k 
k~O 

+ (-/3)N + I(Hf3 - E)-I [V(Ho - E)-I1'" t I, 

holds on t,b(2a,0). Moreover, if E (2a,0) is the unperturbed 
eigenvalue and ¢ESI' one can prove that [V(Ho - E)-I] N¢ 
is continuous in Eon 1 E: IE - E (2a,0) I = E j, for small E. SO, 
by the norm resolvent convergence of Theorem 11.10, one 
can apply the arguments of Ref. 1, Theorem XII. 14, and the 
assertion is proved. 

It is clear that all the preceding arguments do not de­
pend on the dimension. This fact allows extending the results 
ofthis section to any N-dimensional case (compare with Ref. 
8, Theorem 11.2.1). 

Theorem 11.14: Let 

Ho = ktl (Pi + wiqk 2) and V = expctlakqk). 
where W k ,akER\ 1 ° I for all k; let En (0,/3) be an eigenvalue of 
Ho + /3 v. Then in any sector largj31 < e, e> 0, En (0,/3 ) is 
analytic for small 1/3 I and the Rayleigh-Schrodinger series is 
asymptotic in the sector. 

By a reasonable expectation about the perturbation co­
efficients, the Rayleigh-Schrodinger series is not conver­
gent. In Ref. 2 the authors estimate the perturbation coeffi­
cients by the method of Lipatov, and the result is that the 
divergence is faster than (km)! for any kEN. Thus, from now 
on, we shall make the assumption that /3 = ° is a singular 
point for the eigenvalues. Then, since En (0,/3 )---+En (0,0) as 
/3---+0, the negative half-axis must be a cut, and the eigenval­
ues admit an analytic continuation across the cut, for small 
1/31, to arbitrary sectors of a logarithmic Riemann surface. 
Notice the complete absence of Bender-Wu type singulari­
ties (see Ref. 1 for related references). 
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III. SPECTRAL ANALYSIS 

As already mentioned in the Introduction, the potential 
x 2 + ye rX , y < 0, does not give rise to a continuous spectrum. 
This behavior is not very exceptionaV and is intuitively re­
lated to noncompleteness of these potentials. The following 
proof is also analogous to the corresponding one in Ref. 4. 

Lemma III. 1 : Let H (y) = p2 + x 2 + yerX (y < 0) be the 
symmetric operator defined on D. Its closure jj (y) has defi­
ciency indices (1,1), and admits infinitely many self-adjoint 
extensions, which have discrete spectrum. 

Proof Only the last assertion has to be verified (for the 
remaining ones, see, e.g., Ref. 9). For y < 0, r> O,let U a (x) be 
a solution of the differential equation - y" + x 2y + ye rX 

y = iy such that lim [u a (x)u~ (x) - u~ (X)U2(X)] = 0 and let 
x_+ 00 

Va (x) be a (linearly independent) solution which is L 2 at 
- 00. Then it is well known that the Green function 

.' _ {W(a)-IVa(X)Ua(y), - 00 <x';;Y< + 00, 
Ga (X,y,l) - 1 

W(a)- Ua (x)va (y), - 00 <y<:x< + 00, 

W(a) being the Wronskian ofua and va' specifies the integral 
kernel of (Ha - i) - I, where Ha is a self-adjoint extension of 
H (y). Through standard "WKB type" estimates (again Ref. 
9 can be seen), one easily finds the following asymptotic 
behaviors: 

IUa (x) 1_lxl-11!2)ell /2)x'(x---. - 00 ), 

IVa (x) 1-lxl- I / 2e- (112)X'(X---. - 00), 

IUa(x)l_e-rXI4(x---.+ 00), 

IVa (x) I-e - rxI4 (x---. + 00), 

so that an easy computation yields 

f-+ 0000 f-+ 00'" I G (x,y;i) 12dx dy < - 00. 

Hence (Ha - i) -I is Hilbert-Schmidt, and Ha has a dis­
crete spectrum. Since all self-adjoint extensions have the 
same essential spectrum (again Ref. 9) the assertion is proven 
for r> O. For r < 0 the proof is analogous. 

From now on, let Ha (y) be any fixed self-adjoint exten­
sion of H (y), y < O. Let H (f3 ) be the operator family ofTheo­
rem II. 7 and let E (f3) be any eigenvalue of H (f3), largl3l < 1T. 
The following theorem is a consequence of the results of Sec. 
II. 

Theorem 111.2: Let 1131 be small, largl3l < 1T. Then the 
analytic continuation of E (f3) to the negative half-axis is such 
that 

lim E (13) 
(arglJ) ." 0 

is not identically zero. 
Proof Call E (a ,13 ) any eigenvalue of 

p2 + X2 + ax + 13erx (defined on D ), so that E (0,13) = E (f3). 
Set 

lim E (f3) = E (113le ilT
) 

(arg{l) -TT - 0 

and 

lim E (13 ) = E (113l e ilT). 
(argfl). IT +- () 
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By analyticaly continuing (113), we get 

E (113le ilT
) = (r- 1lnl131 + r- 1i1T)2 

+ E ( - 2r- llnl131 - 2r- 1i1T,1 )j, 

E(I13le- ilT
) = (r-llnl13l-r-li1T)2 

+ E ( - 2r- 1lnl131 + 2r- 1i1T,I). 

So it (113le ilT
) = E (113le - ilT) and 

(2i) lim ImE (13 ) 
(arg/J).rr 0 

gives the difference across the cut. Since E (f3 ) is not analytic 
near 13 = 0, this value is not identically zero. 

Remark: Let y < 0; then the perturbation series ~ak yk 
has real partial sums because every ak is real. thus ifIm E (y) 
is the above defined limit, Iyl- k lmE (y)---.O as y---,O, for 
any kEN; and ReE (y) has ~ak yk as an asymptotic expansion 
to all orders in y. We can now specify the relation between 
such continued eigenvalues and the self-adjoint extensions of 
H(y), y<O. 

Theorem 111.3: Let y < O. As y---,O, the spectrum of any 
self-adjoint extension Ha (y) of H (y) is asymptotically con­
centrated to all orders in y near the eigenvalues of the har­
monic oscillator Ho. If E (f3 ) is an eigenvalue of H (f3 ), 
largl3l < 1T, the real part of its analytic continuation toy < Ois 
a pseudoeigenvalue (to all orders of y) of any self-adjoint 
extension Ha (y). 

Proof For y < 0, Ha (y) converges strongly in the gener­
alized sense to Ho as y---.o; in fact, for every 
UEC [f (R), Ha (y)u---.Hou as y---,O, and C [f (R) is a core of 
Ho; so Corollary VIII. 1.6 of Ref. 6 can be applied. Thus, by 
the standard criteria of the spectral concentration (Ref. 1, 
Theorem VIII.5.4 and Remark VIII.5.6; see also Ref. I, 
XII.S), if Eo is an eigenvalue of Ho and I is an open interval 
such that Jna(Ho) = ! Eo I, for all positive integers N, there is 
a functionjIN)(y) obeying Iyl- NJiN ) (y)---.O as y---,O, such 
that the part of the spectrum of H a (y) in I is asymptotically 
concentrated in the interval 

(takyk - jIN)(y),takV + JlN)(y))' 

where ~ak V is the Rayleigh-Schrodinger expansion. Since 
Re E (y) admits this series as an asymptotic expansion (Re­
mark after Theorem 111.2), it satisfies the same property as 
y---,O. Hence, it is a pseudoeigenvalue of Ha (y), to all orders 
in y (see Ref. 6, Remark VIII.5.S). 

The second result involves the notion of a generalized 
resolvent of a given symmetric operator. The eigenvalues of 
H (f3 ), in the limit y < 0, are proved to be second sheet poles of 
a uniquely determined generalized resolvent of the symmet­
ric operator H (y). Recall that an operator-valued function 
F(t ):R---.B (X )[XisacomplexHilbertspace,B (X ) the space of 
all bounded operators on X] is a spectral function if (a) 
F( - 00) = 0, F( + 00) = I, (b)F(t - 0) =F(t), tER (c) for 
s> t, F(s) - F(t );;;.0. An operator-valued function 
.9((E ):C\R---.B (X) is a generalized resolvent ofa symmetric 
operator A:X ---.X, if it can be represented, in the weak sense, 
as 
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,Cfl(E) = f-+ 00

00 

(t - E )-'d F(t), 

where F (t ) is a spectral function, and Yl (E ) ::) (A - E ) - I, If 
F (t ) is an orthogonal spectral family, Yl(E ) is the resolvent of 
a self-adjoint extension of A, (for a more detailed discussion, 
see Ref. 7). 

For this proof, the analytic translation methods are 
needed (compare with Ref. 10). Set U (0 )fIx) = fIx + r-IO). 
Then, for real 0, 

H (j3,0) = U(O )H(j3 )U(O )-1 = p2 + (x + r- 10)2 + fJ/'e'x 
(1111) 

is unitarilyequivalenttoH (j3). As Oiscomplex, by the resuIts 
of Sec . II, H (j3,0 ) is an analytic family of operators with com­
pact resolvents for I arg(j3eo) I < 1T, when defined on 
D = D (p2 + x2)nD (re'X).u(O )too.lnparticular, theeigenval­
ues of H (j3,0 ) do not depend on 0 by the analytic translation 
property, and when largIJl < 1T, they coincide with theeigen­
values of H (j3 ) because for real 0 the translation is a unitary 
operation. Let Y < 0,0 = 0 1 + i02, 0 < O2 < 1T/2. Let 
H (y,Od = p2 + (x + r- ' Od2 + yeO'e'X [unitarily equivalent 
to H (y)]; and let H (y,O) be the family of compact resolvent 
operators defined on D by (1111). 

Lemma III.4: Let y < 0,0 < O2 < 1T!2. Then the numeri­
cal range of H (y,O ) is contained in the half-plane Rez 
>(cot02)lrnz - c, where the constant c is independent of O2 , 

Proof Letz = (H(y,O)u,u),llull = 1. Then Rez 
= (P2U,U) + «(x + r- 101)2u,u) - r- 2 O~ (u,u) 
+ yeo'(cos02)(e'Xu,u). 
Irnz = 2r- 102«(x + r-IOI)u,u) + yeO'(sin02)(e'Xu u). 

Hence, for some constant c, independent of O2 , 

Rez 
> «(x + r-'Oiu,u) - r- 20 i(u,u) + yee'(COs02)(e'Xu,u) 

>(cot02) (2r- 102)«(x + r-IOI)u,u) 

+ yeO'(cot02) (sin02)(e'Xu,u) - c 

= (cot02)lrnz - c. This proves the lemma. 
Let us define He (y,O) = H (y,O) + c, c as in Lemma 

111.4, so that its numerical range lies in the half-plane Rez 
>(cot02)lrnz. Similarly, let He(Y) = H (y) + c. 

Lemma III.5: Let Irnz > 0,0 < ImO < 1T/2. Then 
[e - (We (y,O ) - z] - I converges strongly to [He (y) - z] - I 
on R (He(Y) - i) = L 2 - Ni as 0-0 [where Ni is the defi­
ciency subspace of He (y)], uniformly on compacts in z. 

Proof First remark that, by Lemma 111.4, the compact 
resolvent [e - Il He (y,O ) - z] - I is uniformly bounded by 
(Irnz)-' for 0 < ImO < 1T/2. In addition, [He(Y) - z] -I act­
ing on R (He (y) - z), Irnz> 0, is bounded. Now, for 
uER (He(Y) - i) we can write 
[He(y,O) _Z]-IU - [He(Y) _Z]-IU = [He(y,O) -Z]-I 
[He (y,O ) - He(Y)] [He(Y) - z] -IU---+O as 0---+0, because 
He (y,O )u---+He(Y)u for uED as 0---+0. Now, R (He(Y) - i) is a 
dense set in R (He (y) - i) because D is by definition a core of 
He (y). Hence, by the uniform boundedness, the convergence 
takes place on the whole of R (He(Y) - i), with the stated 
uniformity. 

Lemma III. 6: Let y < 0 be fixed, Irnz> 0 and 
0< ImO < 1T/2. Then the resolvent 
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SIl(Z) = [e - °He(y,O) - z] -I weakly converges, as 0---+0, to 
some operator S (z), which is bounded and analytic for 
Irnz>O. 

Proof By the same remark of the proof given above, 
S Il (z) is uniformly bounded by (Irnz) - I. Moreover, if Q is a 
dense set of translation analytic vectors, then for u, UEQ, 
u(O) (x) = u(x + r-IO), every scalar product 

([e- 'We (y,O + 7]) - z] -IU(7]),U(1]) (1112) 

is an analytic function of 7] in the strip - ImO < Im7]-
< 1T!2 - ImO. Since it does not depend on the real part of 0, 
it is also constant in the whole strip and coincides with 
(So(z)u,u). If we fix 7] in the strip, with Im7] > 0, (I112) con­
verges as 0---+0, because [e - ° He (y,O + 7]) - z] - I converges 
in norm to [He(y,7]) - z] -I. Then, for every U,UEQ, 

where the right hand side does not depend on 7] by the trans­
lation analyticity still. Since U,U can vary in a dense set, and 
by the uniform boundedness, (1113) means that So (z) satisfies 
a weak Cauchy condition as 0---+0. Thus So (z) weakly con­
verges to some bounded operator S (z), which is so defined for 
all z in Irnz> O. Again, the convergence is uniform on com­
pact subsets of the upper half-plane, so that every function 
(S(z)u,u) is analytic for Irnz>O. 

Remark: By (1113), 

(S(z)u,u) = ([He(Y'O) -z]-'u(O),u(B) (I114) 

identically in the strip 0 < ImO < 1T/2, when U,UEQ. On the 
other hand, by definition of So (z), at least for all z such that 
Rez = 0, Irnz>O, [e-IlHe(y,O) - e-Oz]-I =So(e- ez) (by 
keeping, e.g., 0 < ImO < 1T/4; see again Lemma 111.4) 
whence, by (1114) 

(S(z)u,u) = (e-OSe(e-Oz)u(O),u(B). (I115) 

The identities (1114) and (1115) are useful for the following 
proof. 

Theorem 111.7: Let y < 0 (Iyl small) and let H (y) be de­
fined on D. If Q is a dense set of translation analytic vectors, 
there is a uniquely determined generalized resolvent Yl(E ) of 
the symmetric operator H (y) such that any function 

fu(E) = (Yl(E)U,U),UEQ (1116) 

a priori analytic for lmE> 0, has a merom orphic continu­
ation to the lower half-plane lmE .;;0. The set of singularities 
IE lfu hasapoleatEforsomeuEQ 1 coincides with O'(H (y,O )), 
0< ImO < 1T!2. 

Proof It is convenient to show the analogous statement 
for the symmetric opertor He(Y) = H(y) + c (c being the 
positive constant of Lemma 111.4); then Theorem 111.7 will 
follow by replacing z---+E = z - c, S (z)---+81(E) = S (z - c). 
Take S (z) as in the preceding Lemma. For UEQ, 
0< ImO < 1T!2, from (1114) we have 

(S(z)u,u) = ([He(y,O)-z]-'u(O),u(B). (III7) 

By Lemma 111.6 the left hand side is a priori analytic for 
Irnz> O. Since the right hand side is merom orphic in the 
whole z plane with poles given by the eigenvalues of He (y,O) 
(which exist at least for small Iyl), the left hand side admits 
poles in the continuation to Irnz';;O, so we have only to prove 
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that S (z) is a generalized resolvent of the symmetric operator 
He (y). 

First, it is clear that S (z) is an extension of the resolvent 
[He (y) - z] - I. Indeed, by Lemma III.5, [He (y) - z] -I is 
the strong limit, as e-o, of Se(z) ~ (L 2(R) - N i ) [Ni being 
the deficiency subspace of He (y)]. So, by Lemma 111.6, S (z) 
extends [He(Y) - z ]-1 as a weak limit of Se(z) on the whole 
of L 2(R). 

In order to prove that S (z) is a generalized resolvent in 
the sense above specified, we can use a result of Dolph 1 1.12 

about maximal closed operators in a Hilbert space with nu­
merical range in a half-plane; from that, we know that 
Se(z) = [e -eHe(y,e) - Z]-I is a generalized resolvent, i.e., 
there exists a spectral function Fe (t ) such that, for u,vEL 2(R), 
Imz>O, + 00 

(Se(z)u,v) = f- '" (t - z)-Id (Fe(t )u,v). 

In particular, by setting u = v, e fixed, we see that the func­
tion (So (z)u,u) can be expressed as an integral where the 
measure is given by a nondecreasing function of bounded 
variation, p(t) = (Fe (t )u,u). So (see, e.g., Ref. 7, Theorem 
59.3) (So(z)u,u) has a nonnegative imaginary part in the 
half-plane Imz> O. Besides, setting z = x + iy, (So ((y)u,u > 
,;;;;; (U,U)y-1 since IISo(z)11 ,;;;;;y-I. These properties are carried 
into the weak limit as e-o; so (S (z)u,y) , which is analytic for 
Imz > 0 by Lemma 111.6, has a nonnegative imaginary part 
and satisfies the inequality (S (iy)u,u);;;. (u,u )y-I. 

Using this inequality and repeating the argument of 
Ref. 7, Appendix 1.4, we obtain a representation of the oper­
ator S (z) in the form 

(S(z)u,u) = f_+",oo(t-z)-ld(F(t)U,V). (1118) 

Here too, F(t) is a nondecreasing left-continuous operator 
function which tends to zero as t- - 00, and satisfies the 
condition (F(t )u,u),;;;;; (u,u).Moreover,F(t )hasastronglimit 
as t- + 00, as an increasing, uniformly bounded family. So, 
to complete the proof, it remains to show that 
(F(t )u,u)-(u,u) as t_ + 00, for every u in a dense set. By 
the representation (1118), this is equivalent to the conver­
gence (iy)(S(iy)u,u)_ - (u,u) asy- + 00. This in turn is 
true for UEQ since by (1115) + 00 

Y ~i~",(iy)(S(iy)u,u) = y~i~",(reiY)f_oo (t-e-eiy)-I 

Xd (Fe(t Jure ),u(e), 

where the right hand side is equal to - (u(e ),u(8) because 
Fe( + 00) =1. Since (u(e),u(O) = (u,u) by the translation 
analyticity, F( + 00) = I. Since we have already remarked 
that S (z) extends the resolvent of the symmetric operator 
He (y), S (z) is a generalized resolvent of He (y) and the theo­
rem is proved. 

Remark I: The analogous statement for odd anhar­
monic oscillators p2 + x 2 + yx2m + I, yER \ [0 J, has been 
proved in Ref. 4, by means of the well-known connection 
between symmetric operators cyclically generated and the 
classical moment problem. Modulo some technical details, 
that procedure could be applied here and vice versa. The 
proof exposed here emphasizes the existence of a bounded 
extension of [H (y) - E] - I, lmE> 0 (which admits a mero-
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morphic continuation to lmE < 0) independently of its inter­
pretation as a generalized resolvent. Explicitly, it is the weak 
limit, as B-O, of[H(y,B) - E]-I, which is compact when 
0< 1mB < 1T/2. 

Remark 2: Exactly as in Ref. 4, Therorem 111.7 implies 
that the analytic continuation of <a>(E )u,y) along any path 
crossing the real axis is not single valued, i.e., the real axis is a 
cut for the generalized resolvent a>(E), which is a priori ana­
lytic for lmE> 0 and for lmE < O. In this sense it admits 
"second sheet poles", which can be interpreted as resonances 
of the problem. 

APPENDIX 

The purpose of this Appendix is to show that the gener­
alized resolvent a>(E ), introduced in Theorem 111.7, is deter­
mined by Hamiltonians whose potentials locally approxi­
mate x 2 + yerx

• Let us consider, for fixed r~O, y < 0 and 
small, 0 < c < 1, the bounded potentials 

V.(x,y) = (2x 2 + 2yerX
) (c2x 4 + c2yVrx + 4)-1/2 (AI) 

If TE(y) = p2 + V.(x,y) is the self-adjoint operator defined 
onD (p2), itis well known (see, e.g., Ref. 1) that its continuous 
spectrum is the half-line [ - 2c- I, + 00] and it tends to cov­
er the whole real axis as 1:-0. We wish to prove that 
[T. (y) - E] -I for lmE > 0 is weakly convergent as c-O and, 
among all bounded extensions of [H (y) - E] - I, the limit is 
just the generalized resolvent 8f(E). We define 
TE(y,e) = p2 + V. (x + r-1e,y), at least for lIme I < 1T/4, on 
the domain of TE (y). 

Lemma A.I: TE(y,e) is an analytic family of type A in 
the whole strip lIme I < 1T / 4. If 0,;;;;; Ime < 1T /4 and if V is the 
union, over cE(O, 1), of the numerical ranges of T. (y,e) + 2c 
(where c is the constant of Lemma 111.4), V is contained in 
the region [EEC: -1T,;;;;;arg(E),;;;;;Ime]. 

Proof Since V.(x + r-1B,y) is a bounded holomorphic 
family for e in the strip, the first assertion is immediate (Ref. 
6, Problem VII. 1.2). For the other one, it is enough to see 
that V. (x + r- Ie, y) + 2c lies in the stated region when 
Ree = 0, by unitary equivalence with respect to different 
values of Ree. We have 

V.(x + r-1e,y) + 2c 
= (2(x + r- le)2 + 2yeeerx + 2c)p(x,e )-Ie - i"ix.O) 

+ (2c - 2c p(x,e )-Ie - hl'ix .O )), 

where p(x,e) > 2 and o';;;;;ip(x,e ),;;;;;Ime for aU xER, 
O';;;;;lme < 1T/4. By Lemma 111.4 the first term is contained in 
the desired region, taking into account the bounds over p and 
ip; the argument of the second term does not exceed Ime. So 
the lemma is proved. 

Lemma A.2: Let y,c be given as above and 
0< Ime < 1T/4. Then [T.(y,e) + 2c - E] -I strongly con­
verges to [H (y,e) + 2c - E ]-- I as c_O, for E such that 
Ime < arg(E ) < 1T. 

Proof By Lemma A.I, every E with Ime < arg(E) < 1T is 
a regular point for T. (y,e) and 
II [TE(y,e) + 2c - E ] -III ,;;;;;k, where k -I = dist(E, V). Be­
sides, if 0 < Ime < 1T/4, E is in the resolvent set of H (y,e) by 
the results of paragraph 3. Finally, for UEC (';" (R), 
T.(y,e )u-H(y,e)u as c-o, and C ;(R) is a core of H(y,e). 
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Then, by Theorem VIII.1.5 of Ref. 6, the strong resolvent 
convergence holds. 

Theorem A.3: For lmE> 0, [T. (y) - E ] - I is weakly 
convergent, as E---->-O, to the generalized resolvent &t(E), de­
fined by Theorem 111.7, of the symmetric operator H(y). 

Proof Let u,v belong to a dense set of translation analyt­
ic vectors for lIme I <17'/4. By Lemma A.I and the usual 
analyticity arguments ([T.(y,e) + 2c - E ]-lu(e),v(O) is 
constant for lIme I < 17'/4 and hence it is equal to 
([T.(y) + 2c - E] -'u,v). For Ime < arg(E) < 17', by 
Lemma A.2 anyone of these scalar products converges to 
([H(y,e) + 2c - E]-Iu(e ),v(O)asE---->-0.By(1I14)(andbythe 
proof of Theorem 111.7) this in turn coincides with 
(&t(E - 2c)u,v). So, for u,v in a dense set we have 
([T.(y) + 2c - E ]-'u,v)---->-(&t(E - 2c)u,v) as E~. Since 
T. (y) is self-adjoint, its resolvent is uniformly bounded with 
respect to E, so the weak convergence follows for 1mB 
< arg(E ) < 17'. By letting 1mB be arbitrarily small, the conver­
gence extends to any E with lmE> 0. 
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Symmetry of time-dependent Schr()dinger equations. I. A Classification of 
time-dependent potentials by their maximal kinematical algebras 
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Potentials for the time-dependent Schrodinger equation [ - ~axx + V(x,t )]IJI (x,t) = ia, lJI(x,t) 
are classified according to their space-time or kinematical algebras in a search for exactly solvable 
time-dependent models. In addition, it is shown that their dynamical algebras are isomorphic to 
their kinematical algebras on the solution space of the Schrodinger equation. 

PACS numbers: 03.65.Ge 

1. INTRODUCTION 

The quantum mechanics of time-dependent systems 
has considerable importance for our understanding of de­
caying or oscillatory systems. The usual approach to solving 
time-dependent Schrodinger equations has been time-de­
pendent perturbation theory. 1 Although this method will 
probably remain the primary computational method, much 
could be gained from the study of exactly solvable, time­
dependent models. A classification of potentially, exactly 
solvable Schrodinger equations with time-dependent inter­
actions seems, then, to be appropriate. In this regard, sym­
metry, particularly the space-time or kinematical symme­
tries,2 admitted by these equations would be a powerful 
investigative tool. 

In this paper, we begin with a linear Schrodinger equa­
tion with an arbitrary time-dependent potential V(x,t), 

/7('1JI (x,t ) = [ - 4a xx + V (x,t )] IJI (x,t ) = ia, IJI (x,t ), 
- (1.1) 

where our analysis is limited to a single spatial dimension. 
Extensions to higher dimensions would seem to be straight­
forward. In Sec. 2, we determine the general restrictions on 
the form of the interaction, V (x,t ), essential for the existence 
of kinematical symmetry. Then we show that both the time­
dependent oscillator and linear potential g2(t )x2 + gdt)x 
have the Schrodinger algebra Y 1 = sl (2.R.)Dw 1 as their kine­
matical algebra, analogous t02 the time-independent case 
UJ2 x 2 12 + kx. Here g 2 and glare arbitrary functions of time. 
The algebras sl (2,R.) and WI are the Lie algebras of the two­
dimensional, real special linear group and the Heisenberg­
Weyl algebra in one dimension, respectively. Using these 
results, we calculate in Sec. 3, the form of the time-depen­
dent potentials consistent with the subalgebras of the Schro­
dinger algebra, Y I' Our analysis employs the sub algebra 
decompositions of .Y' 1 obtained by Boyer et al., 3 for their 
calculations on nonlinear, time-dependent Schrodinger 
equations. In Sec. 4, we explore the possibility of broadening 
our classification using dynamical symmetries. However, no 
new interactions or symmetries are uncovered which implies 
that, at least for one spatial dimension, it is sufficient to com­
pute the kinematical algebra only. 

2. THE OSCILLATOR AND LINEAR POTENTIALS 

Let us rewrite Eq. (1.1) in a more convenient form 

QIJI(x,t) = [axx +2ia, -2V(x,t)]IJI(x,t) =0. (2.1) 

We wish to find those space-time symmetries which trans­
form solutions of (2.1) into solutions. Generators of these 
symmetries have the form 2

.4 

L = A (x,t lax + B (x,t )a, + C (x,t), 

where L must satisfy the operator equation 

[Q,L ] = A (x,t )Q 

(2.2) 

(2.3) 

and A (x,t ) is an arbitrary function of its arguments. 2
,4 Let [§ 

be the collection of all such generators L. Then, if L,L ' are 
two members of ,0/ , the [L,L '] is a member of f§ also, where 
[L,L '] = LL ' - L 'L, the usual commutator bracket. f§ is 
then a Lie algebra4 called the kinematical algebra. 

By substituting (2.1) and (2.2) into (2.3) and identifying 
the coefficients of corresponding derivatives in the resulting 
equation, we obtain the following set of coupled partial dif­
ferential equations for the coefficients A (x,t), B (x,t), C (x,t), 
and A (x,t): 

(2.4) 

Axx + 2iA, = 2iA, 

Bxx + 2iB, + 2Cx = 0, 

AV, +BVx +AV= -iC, -~Cxx' (2.5) 

where Ax = aA lax and Axx = a2A lax2
, etc. Solving the 

system (2.4) yields the following forms for A, B, and C: 

A (x,t) =A (t), 

B (x,t) = y1.x + b (t), 

C (x,t ) = -lL.ix2 - ibx + e(t), 

(2.6a) 

(2.6b) 

(2.6c) 

where for the moment the functions A (t), b (t), and e(t) are 
arbitrary functions of time and A = dA Idt. 

Substitution of (2.6) into (2.5) generates a first-order 
partial differential equation for the potential V(x,t), 

A V, + (y1.x + b)Vx + A V = - !AX2 - bx - ic + FA'. (2.7) 

The general solution to this partial differential equation has 
the form 
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V(x,t) = V(x,t) + g2(t )X2 + gdt)x + go(t), (2.8) 

wherego(t ),gdt), andg2(t ) are arbitrary functions of time and 
V(x,t ) is solution to the homogeneous first-order linear par­
tial differential equation 

(2.9) 

Now, if we substitute (2.8) into (2.7), we obtain a system of 
ordinary differential equations for A (t ), b (t ), and e(t ): 

A' + 8g2(t)li + 4g2(t)A = 0, (2.1Oa) 

b'+2g2(t)b = -~I(t)li-gl(t)A, (2.1Ob) 

C = iA' + i[go(t)li + go(t)A 1 + ibg,(t). 

Next we shall consider the case where 

V(x,t) = g2(t )x2 + gl(t)x + go(t), 

(2.1Oc) 

(2.11) 

that is, where V(x,t) vanishes and is the trivial solution to 
(2.9). We wish to find a set oflinearly independent solutions 
to the system of ordinary differential equations (2.10) such 
that closure of the symmetry algebra :-1 is guaranteed. If we 
assume that ({I,,({I2' and ({I3 are three linearly independent 
solutions of the ordinary differential equation (2.1Oa), then 
the general solution is a linear combination, 

3 

A (t) = I/3j({lj' (2.12) 
j~ I 

where the /3j are constants. For closure of the algebra :-1, 

I 
({Ij({l k I tPjk = .. 
({Ij({lk 

(2.13) 

must also be a solution of (2.1Oa). That this is indeed the case 
is shown in Theorem 1 of the Appendix. Furthermore, by 
Theorem 2 of the Appendix, if X I and X 2 are two linearly 
independent, nontrivial solutions of the homogeneous 
equation 

b' + 2g2(t )b = 0, 

then we can choose 

(2.14) 

(2.15) 

where the Wronskian of solutions to (2.14), W(x I,X2) = a, is 
a constant. Together Eqs. (2.13) and (2.15) imply (by Theo­
rem 2) that 

tPI2 = ({I3' tP31 = - 2({11' tP32 = 2({12' (2.16) 

A general solution to Eq. (2.10b) can be written as followss: 

3 {1[f' .. b(t) =/34X, +/3sX2 + j'"fl/3j -;; XI X2(~I({Ij +gl({lj) 

- X2f~,(~,<pj + g,({ld]} , (2.17a) 

3 

= (34XI +/3sX2 + I/3j!.£fJa), (2.17b) 
j~ I 

where 

and 

1960 

.£f l = - XI '6' I' 

sf2 = - X2'6' 2' 

.if3 = - (xICC 2 + X2'6' I)' 
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(2.18) 

(2.19) 

The.£fj of (2.18) were obtained from a partial integration of 
the integral expressions of the third term in (2.17a) followed 
by a substitution of (2.15) for the ({Ij' 

With expressions (2.12) for A (t) and (2. 17b) for b (t), Eq. 
(2.1Oc) can be integrated for e(t): 

e(t) = 1...1 + igoA + J'bg, + i/36 

= ±/3j{i<Pj +igo({lj + .!....-9j } 
j~ I a 
+ /34! i'6' II + /35 (i'6' 2l + i/36' (2.20) 

where fiJj is defined by 

9 j = f'gl.£fj , l.;;;j.;;;3. (2.21) 

Integrating (2.21) by parts and substituting (2.18) for the .vlj 
yields 

9 1= -~'6'L 9 2= -~'6'L 9 3 = -(G'1'6'2' 
(2.22) 

Expressions for the coefficients B (x,t ) and e (x,t ) can 
now be obtained by substitution of Eqs. (2.12), (2.17b), and 
(2.20) into (2.6b) and (2.6c). Thus, 

and 

3 {i i· 1· e (x,t) = I/3j - - ¢5jx2 
- - .Q(jx + 4 ({Ij 

j~ I 4 a 

+igo({lj+ ~ .01 j }+/34{-iXIX+ i(G'I} 

+ /3s{ - iX2 + iCC 2} + i/3o' (2.24) 

The symmetry generator L is given by 
6 

L = I/3jLj , 
j~ I 

where the {Lj ,1 ..;J.;;;6} form a basis for the kinematic poten­
tial (2.11). The form of the generators of these kinematic 
symmetries, the L j , can be obtained from the generator (2.2) 
and the coefficients (2.12), (2.23), and (2.24). They are 

L j = ({Ija, + {~<pjX + (lIa).vlj }ax - F¢5jx
2 

- (i/a)sf> + l<pj + igo({lj + (i/a)fi'!j' 1..;J.;;;3, 
(2.25a) 

L4 = Xlax - (¥IX + i(G' I' 

Ls = X2ax - iX2 + i(G' 2, 

Lo = E = i. (2.25b) 

To find the specific kinematical algebra we must com­
pute the commutators of the generators of (2.25). For 1 <J, 
k.;;;3, the nonzero commutators are 

[Lj,Lk] = tPjka, + {~¢jkX + (lIa).£fjk }aX - F¢jk X2 

- !i'~jkX + i¢jk + igOtPjk + (i/a)9 jk , (2.26) 
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~~e:j~~::~;:::~:J -~JA,). }1<j, k<3. 

iiJ k = q;iiJ k - q;J:/Jj - (lIa)('#r#'k - .s¥j'#k) 
J J (2.27a) 

After some algebra it is possible to show that 

'#12=.if3, slf31 = -2'#'1' .s¥32=2.s¥2 

(2.27b) 

/3J 12 = iiJ 3' !iJ 31 = - 2!iJ I' iiJ 32 = 29 2 

and thence by (2.16) that 

[L I,L21 = L 3 , [L"LIl = - 2L, [L 3 ,L2 1 = 2L 2 • 

(2.28) 

The generators (L uL z,L3 1 with the commutators (2.28) 
form a sl (2,JR) algebra. 5 Because 

[L4,L5] = - aE, 

we will find it convenient to define the generators 

BI = - (lIy'a)(xIJx -IXIX + iC(; d, 

B2 = (1Iy'a)(x2JX - IX2X + iC(; 2)' 
with commutator 

(2.29) 

(2.30) 

The generators (B I ,B2,E I with commutator (2.30) form a 
Heisenberg-Weyl algebra WI in one dimension. Again, after 
some calculation we have the commutators 

[LI,B I] == 0, 
[L I ,B2] = - B I , 

[L 2,B I ] = B2, 

[L z,B2] = 0, 
[LJ,B I] = - B I , 

[L J,B2] = B2 , 

(2.31) 

which implies that the maximal kinematical algebra for the 
time-dependent harmonic osciIIator and linear potential is 
the semidirect sum sf (2,JR)Ow I' the Schrodinger algebra Y I' 

A n umber of special cases are mentioned in Table I. The 
free particle, the attractive and repulsive oscillators, and lin­
ear potential [gl(t) = K, a constant] have been discussed by 
Boyer. 2 The solutions to i; + 2g2b = 0, where g2 = alt 2, is 
included for three different values of the constant a. 

The interpretation of the generators of sf (2,JR) for the 
free particle case as a space-time dilation, a conformal sym­
metry, and time translation 2

-4 is apparent from the action of 

TABLE I. Solutions to Eq. (2.141 for different values of g,(1 I. 

g,(t ) x, 

0 
(V' /, 11/ V (V ICOS(VI 

-(v'l, (l/y/(vlcosh(ul 

_ 1/111-ll
t

" 

2t' 
1/81' I' 

3/41' 

'''See Boyer, Ref. 2. 

x, 

I 

(I I V (ulsin(ul 

(1IV(vlsinh(vl 

Remarks 

Free particle" 
Attractive 
Oscillator .,' 
Repulsive 
Oscillator'" 

-----:-, 11)2, 11 integer 
(211- III" 

l'lnl 
I' 
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the corresponding group elements3
,4 on an arbitrary func­

tion of x,t. Similarly, the Heisenberg algebra consists of oper­
ators generating a spatial translation and a Galilean boost. 2-4 

The specific interpretation of the generators will depend 
upon the form of the q;j chosen and will vary with the choice 
ofg2 • 

It is perhaps surprising that the time-dependent linear 
potential does not break the symmetry of the oscillator term. 
That this is in fact the case when V(x,t) of(2,8) is nonvanish­
ing will be demonstrated in the next section. 

3. CLASSIFICATION OF POTENTIALS 

In this section we shall find the potential V(x,t ), solution 
to (2,9), which reduces the symmetry of 
V(x,t) = V(x,t) +g2(t )x2 + gl(t)x + go(t ) from '/1 to a subal­
gebra of.Y I' Thus we must compute the form of V (x,t ) which 
satisfies the first-order partial differential equation 

(3.1 ) 

and is consistent with the subalgebra .JV of Y I under con­
sideration. The first-order equation (3.1) can be solved by 
integrating the subsidiary conditions 

dt dx dV 
-=-=-~, (3.2) 
A B AV 

where A and B are given, in general, by (2.12) and (2.23), 
respectively. 

The subalgebras, or rather conjugacy classes of subalge­
bras where conjugacy is with respect to the Schrodinger 
group SI' have been determined by Boyer et af.,-' employing 
standard methods. Since condition (3.1) for Vhas no refer­
ence to the coefficient C (x,t): 

(i) It is unnecessary to consider one-dimensional subal­
gebrasofthetype IX + aE I where Xis a generator for .Y' lor 
higher-dimensional subalgebras of J' I containing elements 
of this form.n 

(ii) Subalgebras containing the central element E can be 
excluded. 7 The remaining subalgebras determined for by 
Boyer et al.,' Y I can be found in Table II. 

For multidimensional algebras, the number of condi­
tions of the type (3.1) for Vwill equal the dimensionality of 
the subalgebra, and V(x,t) must be consistent with each of 
these conditions. Subalgebras and their associated interac­
tions, V(x,t), are listed in Table III for the two casesg l (t ) = 0 
and gl(t) #0. Below a few examples are worked for the for­
mer case; the potentials for the latter follow analogously. 

(a) Any subalgebra containing BI or B2 as an element 
will have ~ = 0 as a minimal condition. Since Vis then a 
function oft only it can be absorbed into thego(t) term in (2.8) 

TABLE II. Proper subalgebras of.Y, classified under S,. 

Subalgebra 
. i)/" 

Dimension of the subalgebra.r 
123 

!L,I 
!L, +L21 
IL,1 
!B,I 
IL, +B,I 

!L"L,I !L"L"L.j 
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TABLE III. Potentials and their associated kinematical algebras. 

Kinematic algebra Potential V(x,t) 

sf (2,JR)Ow, 
sf (2,JR) 

g2(t)x2 + g,(t)x + go(t) 
K/X2 + g2(t )x2 

{LJj= lor3 

and these cases are excluded from Table III. Furthermore, 
for .Y I and any subalgebras of dimension 3,4, or 5 contain­
ing B I or B2 we require V = 0. 

(b) !LI +B2J. Here we have 

A = <PI' B = !q;IX + X2h/ a, 

and the subsidiary conditions are 

dt 

<PI 

dx -dV 
q;I V ' 

which may be integrated to give 

V(x,t) = *f( <p~/2 - )a r <p~~2} 
wherefis an arbitrary function of its argument. 

(c) !L I ,L2 ,L3 J =s/(2,R). We have three conditions on 
the potential V(x,t): 

<p)7t +!q;jxVX +q;jV=O, 1<i<3. 

Eliminating the V; dependence leaves us with the single 
condition 

~xv. + V= 0, 

which has Klx2 as its solution. Since Klx2 has sl (2,R) as its 
kinematic algebra, it will also be an invariant interaction for 
the two-and one-dimensional subalgebras of sl (2,R). The 
generators in this case will have the form 

L, = <pA + ~q;jXaX -licpjx
2 + Aq;j' 1<i<3, 

where <Pj are solutions of (2. lOa). Even though the Heisen­
berg-Weyl algebra is not a symmetry algebra of Klx2

, we can 
still define the differential equation (2.14) and use its solu­
tions to construct the <Pj as in (2.15) so that they have the 
property (2.16). This is the situation in the time-independent 
problem where the kinematical algebras for V = ° and 
V = Klx 2 are realized by the same set of three operators,2 
and similarly for V = uix2/2 and V = (j)2x2/2 + Klx 2

• 

For the one-dimensional problem, the existence of kine­
matical symmetry is intimately related to separation ofvar­
iables.~ For each of the algebras listed in Table III, it is possi­
ble to partition its elements into orbits of operators. To each 
of the nontrivial orbits4 it is possible to associate a separable 
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coordinate system. For example, each one-dimensionallge­
bra corresponds directly to an orbit and so separates irone 
coordinate system. For cases with sl (2,R) and Y'I symmtry, 
separation occurs in more than one coordinate system De­
tails for the one-dimensional free-particle Schrodinger ~ua­
tion have been worked out by Kalnins and Millerx and lill­
er.4 Thus in the sense of separation of variable, if the 
separated ordinary differential equations can be solved,hen 
the Hamiltonians with potentials found in Table III ccre­
spond to exactly solvable models. 

4. DYNAMICAL SYMMETRIES 

In this section we explore the relationship betwee the 
kinematical algebras for the quantum mechanical systels in 
Table III and their dynamical algebras, including conSlnts 
of the motion. 9 We do this with a view to extending our kt of 
solvable models in Table III. It is possible to find dynalical 
symmetries for the Schrodinger equation (2.1) by compting 
those generators 

S = F(x,t )axx + G (x,t lax + H(x,t) 

which satisfy the commutator relation4
.
9 

[S,Q] = 0, 

(4.1) 

(4.2) 

where Q is given by (2.1). The S operators will be constats of 
the motion for (2.1) since they satisfy the relation 10 

dS = as + i[,)Y,S ] = 0, (4.3) 
dt at 

where 7r is the Hamiltonian specified in (1.1). The exres­
sion (4.3) vanishes because of (4.2). 

Substitution of (2.1) and (4.1) into (4.2) yields theet of 
coupled partial differential equations 

Fx =0, 

F" + 2Gx + 2iFt = 0, 

Gu + 2H, + 2iG, + 4FV, = 0, 

H" + 2iH, + 2FVxx + 2G Vx = 0. 

Equations (4.4) imply that 

G (x,t) = - 2iUFx + g(t)], 

D. Rodney Huax 

4.4a) 

k4b) 

(4.5) 

(4.6) 

(4.7) 
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where F is a function of t only and - 2ig(t) is an arbitrary 
function of time resulting from the integration of (4.4b) with 
respect to x. Furthermore, (4.S) can be simplified by (4.7) and 
integrated to give 

H (x,t) = - (~Fx2 + 2FV + 2gx) + 2ih (t), (4.8) 

where 2ih (t ) is an arbitrary function of time. When (4.7) and 
(4.8) are substituted into (4.6), we obtain a first-order partial 
differential equation for V, 

FV, + [!Fx + g(t)] Vx + FV = - !FX2 - gx + iii + !iF. 
(4.9) 

The treatment of(4.9) proceeds analgously to that of(2.7) to 
which it is essentially equivalent. Again we partition Vinto 
two parts: a solution g2(t)x2 + gl(t)x + go(t) to the inho­
mogeneous equation and V(x,t) and a solution to the homo­
geneous equation 

(4.10) 

which is identical in form to Eq. (2.9). The solution to the 
inhomogeneous equation yields the following differential 
equations for F, g, and h: 

F + 8g2(t )F + 4g2(t)F = 0, 

g + 2g2(t)g = (~,(t)F - gl(t )F, 

(4.11a) 

(4.11b) 

Ii= -!F-i(goF+goF)-ig,(t)g. (4.11c) 
If we restrict ourselves for the moment to 
V(x,t) = g2(t )x2 + gl(t)x + go(t), theseequations(4.11a)and 
(4.11 b) are identical to (2. lOa) and (2. lOb), respectively, and 
therefore have the same solutions 

(4.12) 

and 
3 

g(t) =/34XI +/3SX2 + I/3 (sf'/al, (4.13) 
j~1 

where X I and X2 are solutions to the homogeneous equation 
g + 2g2(t )g = 0. The specific form for C{Jj' 1 <J<3 is given by 
(2.1S) with property (2.16). Equation (4.11c) may now be in­
tegrated if we substitute for F (t) and g(t), (4.12) and (4.13) 
respectively. Hence 

h (t) = I/3j { - !cPj - igoC{Jj - ~ fiJj} 
j~ I a 
+/34( -N;'.J +/3s( -i'021 +!f36' (4.14) 

Thus, for G (x,t ) and H (x,t ) we have 

G (x,t) = I/3j { - 2i(cPj ~ + cif/a} 
j~ I 2 

+/34( - 2iX.J +/3S( - 2ix21 (4.1S) 

and 

H (x,t) = jtl/3j { - !(¢j + 4g2C{Jj)x2 - 2(gIC{Jj + d/a)x 

i· 2} . - "2 C{Jj + -;; fiJ j + /341 - 2X lx + 2'G' d 

+/3s( -2K2x + 2'0 2 1 +i/36' (4.16) 

respectively. 
The generator Sl can be written as a linear combination 
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(4.17) 

where 

Sj = C{JjaXX - 2i(~cPjx + sf'/a)ax - ~(¢j + 4g2C{Jj)X
2 

- 2(glC{JJ + d/a)x - VcPj + (2/w)£i1 j , 1<J<3, 
(4.18) 

S4 = - 2i(xlax - iXlx + i'0 d, 
Ss = - 2i(x2ax - iX2X + iCC 2)' 

S6=E= i. 

(4.19) 

Clearly, the algebra (S4,Ss,S61 can be identified with 
the Heisenberg-Weyl algebra (B I ,B2,E J of Sec. 2. Because 
of (2.16) and (2.27) we have the commutators 

[SI,S2] = S3' [S3,S,l = - 2SI, [S3,S2] = 2S2· (4.20) 

Thus, the algebra of (SI,S2,S3J with commutators (4.20) is 
s! (2,JR) and is isomophic to the algebra of [L I ,L2,L3 J with 
commutators (2.28). In addition, 

[SI,B I ] = 0, [S2,B I ] = B2, 
[S"B 2] = - B I' [S2,B 2] = 0, 

[S3,B I J = - B
" [S3,B2] = B2, 

(4.21) 

which implies that for the time-dependent oscillator and lin­
ear potential, the algebra of the constants of the motion 
{Sj' 1 <J<6}iss! (2,JR)Owl, isomorphic to the kinematic alge­
bra. The isomorphism between the two algebras {S"S2,S31 
and (L I ,L2,L3 J occurs because of the mappingSr-.. Lj on the 
solution space of (2.1).4.9 In this case, Sj + R (x,t)Q is also a 
symmetryof(2.1), whereR (x,t )isanarbitraryfunction. Ifwe 
choose R = - C{Jj' then Sj - C{JjQ = 2iLj' 1 <J<3. 

We mention that for the time-dependent oscillator and 
linear potentials the Sj are second degree polynomials in the 
nontrivial elements of the Heisenberg algebra 

SI=Bi, S2=BL S3= -[BI,BJ+, (4.22) 

where [X,Y]+ = XY + Yx. 
It is clear from the identity of Eqs. (2.8) and (4.10) that 

the only potentials with dynamical algebras will be those of 
Table III. Furthermore, their dynamical algebras will be iso­
morphic to their kinematical algebras, related by the map­
ping described above. No new dynamical symmetries are 
obtained unlike some situations in higher dimensions.9 This 
implies that, for one spatial dimension, we can discuss the 
model systems of Table III entirely in terms of their kinema­
tical algebras. 

In conclusion, we point out the interesting comparison 
between the dynamical algebra s! (2,JR)Ow l for the time-de­
pendent quantum oscillator and the algebra of the five invar­
iants as computed by Leach II for its classical analog. Both 
the quantum and classical algebras haves! (2,JR) components, 
but their Heisenberg algebras are distinguished by the fact 
that in the former [B I ,B2 ] = Ebut in the latter [B I ,B2 ] = 0. 
The identity E is not a component of the classical algebra. 

APPENDIX 

Lemma 1: Let C{JI,C{J2 , ... , C{J1l be n linearly independent, 
nontrivial solutions to the homogeneous, linear ordinary dif­
ferential equation 
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yin) + a2(t )yln - 2) + ... + an _ I (t )y' + an (t) = 0, 

n»2, a,(t)=O. (AI) 

Then the Wronskian of the solutions 

C{J, C{J2 C{Jn 

W(C{J"C{J2' ... , C{Jn) = 
C{JI C{J2 C{Jn 

C{J It - ') C{J~n-') C{J ~n - I) 

(A2) 

is constant. 
Proof This follows directly from the fact that5 

W'(C{JI,C{J2,···,C{Jn) 
------= -al(t)=O. 

W(C{Jl,C{J2,···,C{Jn) 
Theorem 1: Let C{JI,C{J2,C{J3 be three linearly independent, 

nontrivial solutions for the homogeneous, linear ordinary 
differential equation 

;1'+ 2g(tjA +g(t)A = O. (A3) 

Then, 

(A4) 
I 

is a nontrivial solution of(A3). Furthermore, the three func­
tions tPI2,tP23,tPl3 are linearly independent. 

Proof It is straightforward to show from (A3) that for 
l<.k<l<.3, 

I ~·k~: 1 = - 2gl~k~/l, (AS) 
C{JkC{J1 C{JkC{J1 

and 

I ~·k~: 1 = g l~k~1 I. 
C{JkC{J1 C{JkC{J1 

(A6) 

Hence, we have from (A4), (AS), and (A6), 

'Pkl = I:::: I, (A7) 

¢kl = _gl~k~/l_ 2gl~k~/l· 
C{JkC{J1 C{JkC{J1 

(AS) 

Substitution of (A4), (A 7), and (AS) into (A3) yields 

¢kl + 2g(t )'Pkl + g(t )tPkl = 0, 

and so tPkl is a solution of(A3). Ifwe assume that for k # I, tPkl 
is the trivial solution, then tPkl = C{JkcPl - cPkC{J1 = 0 which 
implies that C{Jk = CC{JI C a constant. This is contrary to our 
assumption that C{J k and C{J I are linearly independent. 

Now let us assume that the tPkl are linearly dependent, 
that is, 

(A9) 

where a"a2, and a3 are not all zero. Now by Lemma 1, the 
Wronskian of the solutions C{Jl,C{J2' and C{J3 is 

C{JI C{J2 C{J3 

W(C{Jl,C{J2,C{J3) = ¢, ¢2 ¢3 = c, a constant. (AlO) 

¢1 ¢2 ¢3 
By the properties of determinants and elementary transfor­
mations of rows and columns we have 
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W(C{Jl,C{J2,C{J3) = _1_1 ~12 ~131 = __ 1_1 ~12 ~231 
C{JI tPl2 tP13 C{J2 tP'2 tP23 

= __ 1 1~'3 ~231 = c. (AI) 
C{J3 tPl3 tP23 

If a 1 #0, we can substitute for tPl2 in W(C{J"C{J2,C{J3) in (AI): 

W(C{Jl,C{J2,C{J3) = ~ 1 ~13 ~231 = _1_1 ~13 ~231. 
a ,C{J, tPl3 tP23 C{J3 tPl3 tP23 

Hence, a.C{Jl = a3C{J3' a contradiction. If a. = 0, then 
a2,a3#0 if the tPjk are linearly dependent. But then by (An), 
W(C{J.,C{J2,C{J3) = 0 which implies that theC{J"C{J2,C{J3 are linealy 
dependent contrary to hypothesis. Thus the tPjk' 1 <j < k; 3 
must be linearly independent. 

Theorem 2: Let C{J.,C{J2,C{J3 be three linearly independot, 
nontrivial solutions to the homogeneous, linear ordinary <if­
ferential equation 

(A2) 

Now let Xl,X2 be any two linearly independent, nontrivit 
solutions to the homogeneous ordinary differential equatJn 

(A3) 

Then the product XjX k is a solution of the differential eq.a­
tion (A12) and furthermore we can identify three linearl~ 
independent solutions 

C{J, = (l/a)XT, C{J2 = (l/a)x~, C{J3 = (2/a)X1X2 (A4) 

such that 

tP'2 = C{J3' tP3' = - 2C{J" tP32 = 2C{J2' (AS) 

where the Wronskian W(x"X2) = a. 

Proof ThatXjXk is a solution of(A12) can be showmy 
substitution into (A12) and using (A13). That the three sou­
tions (A14) are linearly independent follows from Theorm 
2. That Eqs. (AlS) hold can be demonstrated by direct 
computation. 

'See for example, A. Messiah, Quantum Mechanics, Vol. 2. 3rd ed. (Wi:y, 
New York, 1961). 

'c. P. Boyer, Helv. Phys. Acta 47,589 (1974). 
'c. P. Boyer, R. T. Sharp, and P. Winternitz, J. Math. Phys. 17, 1439 
11976). 

·W. Miller, Jr., Symmetry and Separation of Variables (Addision-Wesly, 
Reading, Mass .. 1977). 

'E. A. Coddington, An Introduction to Ordinary Differential EquatiOn!; 
(Prentice-Hall, Englewood Cliffs, N. J., 1961). 

'If I X + aE j is a kinematic algebra for V, then so is I X j. 
'If.;Visasubalgebraof.Y" Eis not a memberoLW', and.5Y isa kinemri­
cal algebra for a Schrodinger equation, then so is .lVul E j. 
'E. G. Kalnins and W. Miller, Jr., J. Math Phys. IS, 1728 (1974). 
<'D. R. Truax, J. Math. Phys. 21, 807 (1980), and references therein. TI! 
analysis in this paper is for three-dimensional Schrodinger equations \\th 
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'"A. Messiah, Quantum Mechanics, Vol. I, 3rd ed. (Wiley, New York, 
1961). 

lIP. G. L. Leach, J. Math. Phys. 21, 300 (1980). 
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The recently developed combinatoric methods for handling partition-labeled operators in N­
particle scattering theory are studied from an abstract point of view. The relation of these methods 
to approaches of the cluster/cumulant type in many areas of mathematical physics is pointed out. 
The concept of connectedness is defined abstractly and the mathematical structure of the 
partition lattice is considered in detail. Many of the useful results of combinatoric scattering 
theory are shown to be natural expressions of properties of the partition lattice. The conditions on 
these results can then be stated with precision. A number of new operator theorems are also 
obtained by means of applying simple extensions and analogs of the known properties of the 
partition lattice. 

PACS numbers: 03.65.Nk, 03.80. + r, 02.1O.Eb 

I. INTRODUCTION 
Recent developments in time-independent nonrelativis­

tic multiparticle scattering theory l-7 have yielded a number 
of previously unfamiliar relations among operators labelled 
by channel or partition indices. It has since been observed 
that many of these relations follow directly from the lattice 
structure of the label set.8,9 In this paper we explicate the 
abstract relations behind the practical ones which have been 
obtained, generalize them to obtain new relations, and clari­
fy the assumptions and conditions inherent in some previous 
work. By so doing we are able to see the relation of the scat­
tering theory structure to similar structures in other fields. 
In addition, these techniques provide powerful and concise 
tools for deriving and determining the structure of operator 
equations. 

The goal of scattering theory is to construct transition 
or resolvent operators for an N-particle system given the 
interactions present in the fewer-particle systems and the 
boundary conditions. 10-13 One method of doing this which 
has been highly successful in the two_ 14, 15 and three- 12 parti­
cle problems has been through the numerical solution of 
compact kernel integral equations which incorporate both 
the dynamical input and sufficient boundary conditions to 
specify a unique solution. As is now well known, obtaining 
such integral equations (and in particular the proof that the 
kernel is compact) is decidedly nontrivial for three or more 
particles. 13, 16, 17 In most cases such proofs rely on restrictions 
on the behavior of the interparticle potentials and on the 
construction of a kernel such that some iterate is completely 
connected, i.e., involves every particle with every other by a 
chain of interactions, A completely connected operator con­
structed from resolvents and few-particle interactions is 
compact given sufficiently restrictive assumptions on the na­
ture of the potentials. 16 

With the above result, connectivity becomes the central 
issue in the construction of well-posed integral equations for 
the N-particle problem. It is therefore important to have a 

alPresent address: Los Alamos Scientific Laboratory, Los Alamos, New 
Mexico 87545. 

sharp specification of what is meant by connectivity and 
which of its properties are needed for which results. A sharp 
definition should permit the development of a better under­
standing of the relation between compactness and the var­
ious possible notions of connectivity. 

The underlying notion of connectivity is graph theoreti­
cal and depends only on the abstract concepts of lines and 
vertices. 18 In N-particle scattering theory we can use Wein­
berg graphs, 10 in which each particle is represented by a line, 
and each interaction by a line or blob connecting different 
groups of particles. If one puts the system in a box of volume 
L 3, in the limit oflarge volume the matrix elements of a given 
graph will be proportional to the volume raised to a power 
equal to the number of linked parts the graph contains. 19 

This notion of connectivity can be restated in more conve­
nient terms in the infinite volume limit in terms of the trans­
lational symmetry properties of the operators.9 These con­
nectivity properties are classified in terms of partitions: 
assignments of a way of grouping particles to operators. The 
set of partitions forms a lattice. 20.21 The relation of the lattice 
structure of the partition set and the operator product is the 
central feature required. We discuss the lattice structure of 
the partition set in Sec. II. This leads to an abstract definition 
of connectivity. 

The classification of various N-particle operators by 
their connectivity leads to nontrivial combinatoric problems 
associated with operator decomposition theorems and prod­
uct rules. This was clearly recognized by Weinberg III who 
pointed out that some of the same problems have been en­
countered, solved, and applied in a host of other mathemat­
ical and physical contexts. 22 Central among these are the 
cluster/cumulant expansions which appear in statistics,23 
the theory of functions of random variables,24 the theory of 
fiuids,25-27 quantum field theory,28-32 and S-matrix the­
ory,33 as well as in several other contexts.6.7.34.35 

Since modern multiparticle scattering theory is con­
cerned with the formulation of exact as well as with a wide 
variety of approximate integral equations,5 one must be able 
to treat very general situations. As a result, standard com­
binatoric techniques are not adequate for the operator analy-
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sis one encounters there. (In fact, some of the combinatorial 
questions which have arisen remain unanswered at pre­
sent. 36

) This circumstance has led to the development of new 
methods for handling the combinatorics. '} 

Some of the most interesting techniques have been de­
veloped in conjunction with the generalization extension of 
Sloan's37 four-particle equations to N particles. 3H ,39 These 
are based on the idea of distribution laws: intercluster poten­
tials are divided up among the various partitions in different 
ways. 1-3,40-44 In particular, the distribution law found in 
Ref. 1 was accompanied by important combinatoric results 
which have led to further developments and applications, in 
particular with the possibility of deriving connected-kernel 
equations reflecting various physically motivated approxi­
mations.4 We put these distribution laws in context by expli­
cating and elaborating a number of results concerning the 
structure and properties of the partition lattice. In Sec. III 
we present these results emphasizing the mathematicallat­
tice structure. Taking this viewpoint allows us to see symme­
tries in the structure and thereby to obtain new results analo­
gous in structure to previously known ones. In particular, we 
observe that the duality structure of the partition lattice 
leads to results for the completely disconnected partition 
(the minimal element of the lattice) analogous to the ones 
known for the completely connected partition (the maximal 
element of the lattice). 

In Sec. IV these abstract lattice-theoretic results are 
used to generate operator theorems. Many well-known theo­
rems, such as the distribution laws mentioned above, are 
seen in this context not as the surprising accidents they once 
appeared, but rather as a natural and fundamental expres­
sion of the mathematical properties of the partitioning pro­
cess. In addition to providing a new perspective, the lattice 
theory results allow us to obtain relations involving a new set 
of operators. These operators satisfy a cluster!cumulant 
type of expansion involving the standard coefficients, and 
distribution laws involving a different natural set of coeffi­
cients from those used previously. 

Section V contains a brief summary of the paper. 

II. PARTITIONS AND CONNECTIVITY 

In this section we introduce the notion of partition and 
consider its structure as a mathematical lattice. The general 
concept of connectivity is then defined in an abstract sense. 
The specific connectivity arising in the case of N-particle 
scattering theory with potentials of compact support is dis­
cussed and relation with the structure of the translation 
group is presented. Finally, an application is considered in 
which a matrix notation is introduced. This notation is of 
considerable importance for later developments. 

We begin by reviewing briefly the structure of the parti­
tion lattice. (For more extensive treatments the reader is re­
ferrred to Refs. 20 and 21.) A partition of a set X of N ob­
jects45 is a grouping of the N objects into K (1 <X <N ) 
nonempty disjoint equivalence classes. In the N-particle 
case, the equivalence classes are referred to as clusters. We let 
lower case Latin letters, a, b, c,. .. denote partitions of X into 
na ,nb ,nc ,'" clusters. Exceptions to this notation are made in 
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the case of the two partitions which are uniquely specifie:l by 
their number of clusters. We denote the N-cluster parti:ion 
by 0, and the I-cluster partition by 1. Let 9 denote the s~t of 
all partitions of X. -

Given two partitions a and b, one says that a contans b 
(denoted as a -;Jb) if any two particles which are equivaent 
under the equivalence relation associated with b are neces­
sarily equivalent under the relation associated with a. 'That 
is, each cluster of b is wholly contained within some chster 
ofa. 

The binary relation -;J on f'J X f'J can be shown to be a 
partial ordering on .9 in the sense that it is reflexive (a2a­
VaEf'J), anti symmetric (a -;Jb and b -;Ja implies a = b ),and 
transitive (a -;J band b -;J c implies a -;J c). A lattice structtre is 
defined on ,0/ by introducing two operations. Thejoin or 
union) of two partitions a and b is the least upper bound of a 
and b with respect to -;J. It is the unique partition c satisfy­
ing: if c-;Ja, c-;Jb, and Vd-;Ja,b, then d-;Jc. This is the Jlirti­
tion c obtained by joining in the same cluster all partid:s 
which are in the same cluster of either a or b, The meel (or 
intersection) of the partitions a and b is the greatest lover 
bound of a and b with respect to -;J. It is the unique parttion 
c satisfying a-;Jc, b-;Jc, and Vd-;Ja,b then c-;Jd. This isthe 
partition obtained by requiring that those pairs which ie in 
different clusters in either a or b lie in different clusters in c. 
We denote the union of a and b by aub and the intersecticn by 
anb. 

It is easy to show these relations are commutative 
(Va,bE.UfJ, aub = bua, anb = bna), associative [Va,b,c­
EP,(aub )uc = au(buc) and (anb )nc = an(bnc)], absorptiv~ 
[Va,bE(7,au(bna) = an(bua) = a], and idempotent (Va­
E.'7,aua = ana = a). This gives (,'7 ,u.n) the abstract stnc­
ture of a lattice. This lattice was introduced by Birkhoffand 
is called the partition or Birkhoff lattice. 20 It is nondistlibu­
tive and semimodular. The semimodularity turns out to be 
an essential ingredient in studying the class of N-body e'lua­
tions labeled by chains of partitions. D 

The concept of connectivity is introduced in order to 
specify what groups of particles are mutually associated in 
some way. We specify this abstractly by introducing the ;on­
cept of connectivity structure. 

Definition: A connectivity structure on an operator llge­
bra.'/J over 'f: is a triple (.2', cr: ,C) where .Y' is a lattice,(' is 
a linear subspace of 2JJ , and C is a map ,Y' X 'C ---+ ((,' 

satisfying 

(i)VAECC I C(a,A) =A. (2. I) 

(ii) If {a I, ... ,a,,} are a set of distinct elements of ,Y' then 
the nonvanishing elements of the set C(a;,A),i = I, ... ,n, are 
linearly independent for all AE(C. 

(iii) The functions C(a,.) are linear. 
(iv) If A,BEcC then 

C (c,C (a,A )C (b,B)) = 0 (2,2) 

unless c = aub. 
We refer to the map C as the connectivity map. For tyfO­
graphical simplicity we write the operator C (a,A ) as [j ) a . 

This operator is referred to as the part of the operator A uhich 
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has connectivity a. Condition (i) says that the operators in C(;' 
are those for which the operator is the sum of its parts of all 
possible connectivities. Equation (2.1) is referred to as the 
cluster expansion.46 The condition (2.2) is particularly im­
portant as it guarantees the consistency of the lattice union 
and the operator product. We refer to this condition as the 
connectivity product rule. Here we only consider the case 
where 51' is the partition lattice for N distinguishable 
objects. 

A prototype for this structure is obtained by consider­
ing the space C(;' 0 = sums of finite strings of operators which 
are (alternating) products of pair potentials of compact sup­
port with free resolvents. The map C is specified by defining 
it on any single string, tJ. A unique partition a" can be 
assigned to tJ by defining all mutually interacting particles 
as equivalent. The partition a" is the one whose clusters are 
the equivalence classes under this relation. The operator Cis 
then uniquely defined by 

C(a,&) = &8 (a,a" ). (2.3) 

We refer to the connectivity structure so defined as string 
connectivity. As an example, consider the string 
(/ = V'2GO V34 in the five-body problem (see Fig. 1). The con­
nectivity assigned to this operator is a" = (12)(34)(5). 

We restrict ourselves to the space C(;' 0 even though we 
eventually will want to work with some larger set of opera­
tors C(j o::J C(;' o' What the largest space of operators on which 
a connectivity structure can be defined is an interesting ques­
tion, but one beyond the scope of the present paper. 

The physical connectivity structure defined above has a 
number of interesting properties. One of these is that if an 
operator A has string connectivity a, then its momentum 
space matrix elements have the form 

(P,"'PN IAIP; ... P;') =A red(p, ... PN;P( ... PN) 

x it 8 (P(a,i) - P'(a,i)), (2.4) 
i= 1 

where 

(2.5) 
JEU, 

is the momentum of the center of mass of the /1h cluster a i of 
a. The function A red is only defined on the manifold 
{P(a,i) = P'(a,i)}, i = 1, ... ,na , and possesses no delta func­
tion singularities. One should note that the statement (2.4) is 
not adequate in itself to provide a definition of connectivity. 
To sayan operator A has a momentum conserving 8 function 
in the momentum representation is equivalent to the state­
ment that A is invariant under the unitary group (of trans la-

I--r-------
2-~------

3-----r---

4-----L---

5--------
FIG. I. Weinberg graph of the operator V'2 Go V34 for N = 5. This graph 
has the connectivity 112) (34)15). 
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tions) generated by the conserved momenta. If we restrict 
our attention to the space of bounded operators on N-body 
Hilbert space, 5I'(JY' N'JY' N)' then the set of operators A in­
variant under this group form a subspace of 2'(dY' N' JY' N)' 
Since 2' (J¥' N' JY' N) is not a Hilbert space, there does not 
exist a unique decomposition of an arbitrary element into a 
part contained in a given subspace and a part not contained 
in that subspace. This implies that additional constraints are 
needed to make this decomposition unique. 

The 3N-parameter unitary group of translations, oJ-, 
gives a useful characterization of string connectivity as well 
as a constructive procedure for obtaining the cluster decom­
position of a given operator. Define the group of unitary 
translation operators of the N-body system to be the distinct 
elements of the set of operators 
{Ua (y,,. .. ,Yn. )laE2', yjER 3.j = 1, ... ,na }, where 

Ua ({yJ)= Ua (y\,. .. ,Yna ) = exp[ - ij~,p(aj)'Yj l 
The operator Ua (Y " ... ,y n. ) translates the CM of the ith clus­
ter of partition a by Yi' 

To each partition aE2', ~ has a subgroup OJ- a 

= (Ua(y,,· .. ,yn.!IYiER3 ,i= 1, ... ,na J. The connections 
among the group and lattice properties are illustrated by the 
following propositionsR.9

: 

(i) ~ a is a subgroup of OJ- b iff a;;;? b, 
(ii)uJ- aub is the largest group that is a subgroup of both 

~ aand ~b' 
(iiijOJ- anb is the smallest group that contains both 

~ aand ~ b as subgroups. 
This implies that the lattice of subgroups of the transla­

tion group contains a sublattice isomorphic to the partition 
lattice. 

The role of the lattice structure in many of the standard 
operator manipulations of N-particle scattering theory can 
be seen through the following example. If the operator A is 
an element of C(;' then it admits a cluster decomposition 

(2.1') 

For an arbitrary partition a we have the decomposition 

A =Aa +A a, (2.6) 

where we define the interior and exterior maps of 
2'XC(;'---+C(;',M1andME , by 

Mda,A) A a=2>:lab [A lb' 
b 

ME(a,A) A a=IJ"ab [A lb' 
b 

(2.7) 

(2.8) 

We refer to Aa as the a-interior part of A and to A a as the a­
exterior part of A. The containment and noncontainment 
matrices.::l and J" are defined by 

{
I ifa;;;?b,} 

.::lab = 0 otherwise' 
(2.9) 

J"ab = 1 - .::lab' (2.10) 

The matrices.::l and J" play an essential role in constructing 
cluster and cumulant expansions and in generating various 
powerful sum rules. We consider their properties in detail in 
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Sec. III. We also introduce the general multi-index notation 

A::::::: = ~.1 b,e ... .1 bme,Ia,c ···,Ia"e (A 1 c. (2.11) 
CEY' 

If string connectivity is used then Aa is the part of A 
invariant under '11 a while A a is that part that satisfiesX

,9 

Ua ({yJ)A aUa ({yJ)t_o, \Yi\--OO 'Vi. 

The convergence is strong, These properties can be used to 
extend the definition of string connectivity. If we define 

(2.12) 

the parts of various connectivities [A 10 may be obtained 
from the set of operators {Aa} by the cumulant expansion 
discussed in Sec. IV below. Physically, this process corre­
sponds to extracting the various disconnected parts of the 
operator by going to that region of configuration space 
where only the particles within the clusters of the partition a 
are close and the c.m.'s of the clusters are very far apart. The 
parts of subordinated connectivities, e.g., b ~a, are extracted 
from the asymptotic region of partition b. Ohce all the subor­
dinately connected parts are determined and extracted from 
A a , the part [A 10 is what is left. It is clear that this definition 
of connectivity agrees with string connectivity on '?J o' We 
refer to this connectivity as translation-in variance 
connectivity. 

We suppose that the N-particle Hamiltonian can be de­
composed into a total kinetic energy Ho and the sum of all 
interactions among the N particles, V: 

H=Ho+ V. (2.13) 

In most cases of interest, V has a cluster decomposition 

V= I [Vla· (2.14) 
a~ / 

This corresponds to expressing Vas sum of pair-wise, three­
body, etc., terms. Thus, 

[VL =0 forai:Y'N_l, (2.15) 

where ,Y' N _ 1 is the set of partitions aEY' that have only a 
single cluster with more than one particle. The partitions 
aEY' N .. I represent the classification of the subsystems of 
the N-particle system in the manner used by Weinberg. 10 

The potentials Va and va represent the familiar channel 
(or internal) and residual (or external) interactions, respec­
tively. The partition Hamiltonian corresponding to the par­
tition a is 

Ha =Ho+ Va' 

By virtue of (2.6) 

(2.16) 

H = Hu + va, (2.17) 

and we note Ho is the 0 connected part of H. 
The eigenstates of Ha on which all of the clusters of the 

partition a are bound are referred to as maximally bound 
asymptotic states, or channel states. If a partition Hamilton­
ian possesses such states the partition is referred to as stable. 
It is generally assumed (though proved only for a few cases) 
that if the potentials are short-ranged and not "pathologi-
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cal" that all of the unbound eigenstates of H look asymptoti­
cally like maximally bound states of some Ha ' The transition 
amplitude for the scattering from one channel state corre­
sponding to the partition a to another eigenstate \<Pb) of Hb 
is given by the on-shell matrix element47 

(<pblrt':-I\<Pa)' (2.18) 

where the transition operator Tt:) is 

rt:) = Vb + VbG (Z )Va, (2.19) 

and 

G(Z) = (Z _H)-l (2.20) 

is the resolvent of the full Hamiltonian with parametric ener­
gy Z. The resolvent G can be expressed in terms of the parti­
tion resolvents 

Ga(Z) = (Z - Ha)-I 

by means of the second resolvent relations 

G(Z) - Ga(Z) = Ga(Z)V°G(Z) 

= G(z)VaGa(Z). 

(2.21) 

(2.22a) 
(2.22b) 

The identification of G a (Z ) as the a-invariant part of G (Z ) 
follows immediately from (2.21) and (2.22). It follows that 

GU(Z) = Ga(Z)VuG(Z) (2.23a) 

= G(Z)VuGa(Z). (2.23b) 

Equations (2.22) can be rewritten in a matrix notation in 
the partition indices. 48 If we let fj and V represent diagonal 
matrices with elements Ga 8ab and V a8ah , respectively, then 
(2.22) becomes 

G,Y' - GY = GPG,Y = GP.Y'G 
= GYVG, 

(2.24a) 

(2.24b) 

Here Y denotes the matrix with elements (Y'Lh = 1, and G 
is the diagonal matrix (G)ab = 8ab G(Z). 

The matrix forms ofEqs. (2.24) immediately suggest the 
introduction of channel coupling schemes defined by the 
stipulation that 1,40-44 

(2.25) 

Here, the elements (7/)be of the matrix '}/ are not necessarily 
diagonal in the partition indices. Then, since (2.19) can be 
written as 

TI + ) = VY + VGY'V, (2.26) 

we obtain, using (2.33a) and (2.24), the set of coupled integral 
equations (in matrix form) 

(2,27) 

Several significant avenues of investigation have been pur­
sued using (2.27) along with the requirement that 'r be cho­
sen so that the kernel ofEq. (2.27) becomes a connected oper­
ator after a finite number of iterations. 5 

In dealing with relations such as resolvent or scattering 
integral equations we must deal with products of operators. 
If we are given cluster decompositions of two operators, we 
would like to be able to construct the cluster decomposition 
of their product. Property (iv) of the definition ofa connecti-
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vity structure implies that 

[ABL = I [A lb[BL· 
{lb.cleP x P :l1vc ~ a} 

(2.28) 

III. LATTICE PROPERTIES 

The structure of the partition lattice is expressed 
through the properties of the containment matrix..:l and its 
complement J which provide an algebraic representation of 
the lattice order relations a;d b and a "12 b, respectively. These 
matrices enter into the treatment of connectivity structures 
through the interior and exterior maps (2.7) and (2.8). Upper 
and lower indexed operators are often the natural quantities 
to use in performing calculations while the parts of an opera­
tor having well-defined connectivities are the natural quanti­
ties for determining the compactness properties of the scat­
tering equations. As a result, the properties of the matrices 
relating these sets of objects, ..:l and.:1, play an important role 
in constructing scattering equations. 

In this section we investigate the properties of matrices 
..:l and J including the existence of inverses, sum rules, and 
product laws. These relations provide a concise representa­
tion of the lattice properties. The cases of the three- and four­
particle partition lattices are explicated in the appendix as 
examples. The results contained in this section only depend 
on the structure of the partition lattice and do not rely on any 
of the properties of connectivity. 

We begin by considering the matrix..:l. Most of its prop­
erties discussed below follow from the important fact that 
there exist unique elements 1 and 0 such that for every aESt', 
1 ;da;d O. In order to express our results in matrix as well as 
indexed-notation, we introduce the projectors 

(PO)ob = Da0 8ab' - -

(P! jab = Da! 8ab 

and their complements 

Qg =! -Pg, 

Q! =! - Pl' 

(3.1a) 

(3.Ib) 

(3.Ic) 

(3.1d) 

The fundamental properties therefore have the following 
representations: 

Proposition 3.1: 

(A) ..:lPo = Y Po, ..:lao = 1 
- -

(all partitions contain Q), (3.2a) 

(B) Po..:l = Po, - -

(only Q is contained in or equal to Q), (3.2b) 

(C) ..:lPI = PI , ..:lO! = 8o! 

(only 1 contains or is equal to n, (3.2c) 

(D) P,Ll = PlY' ..:l'a = 1 
- - -

(all partitions are contained in 1). (3.2d) 

In the above and in what follows we represent our results in 
three ways: in matrix form, in indexed form, and in words. 
Proofs are generally simpler to carry out in matrix form, but 
the structure of the result is occasionally obscured by the 
large number of operators required to specify the allowed 
index set.4'1 
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We now construct..:l -'. This allows us to invert expres­
sions of the form (2.7) and corresponds to the representation 
of the cumulants in terms of moments of a distribution. 
Choose SOme definite ordering of the partitions, > satisfying 
an > bm whenever n > m. We refer to this as the standard 
ordering. With this ordering, ..:l is upper triangular and has 
ones runnning down the diagonal, so deW = 1, and there­
fore,..:l - I exists on it'. 

The inverse of the matrix..:l can be expressed in two 
convenient forms: 

Theorem 3.1: The inverse of..:l on it' is given by the 
forms 

..:l -I = Nfl (- l)k {Nfl_l_! -}..:l k, 

k~O k! l~k(l-k)! 
(3.3a) 

_, {(-ItoIT(-I(bl(nbl-I)!, a;db, 
..:lab = '~I 

0, a"12b. 

(3.3b) 

In (3.3b), nb is the number of clusters of b contained in the ith 
I 

cluster of a . 
The matrix elements of..:l - I are referred to in scattering 

theory 50 as anticluster coefficients because of their role in 
inverting the cluster expansion. In lattice theory ..:l - I is re­
ferred t051 as the Mobius/unction for the partial ordering ;d. 

Pro%/Theorem 3.1: The form (3.3a) can be obtained 
by writing 

..:l=1+& (3.4) 

From the definition of..:l it follows that 8"b = 0 if a a 1) b or 
a = b, so (8 P )ob = 0 unless a :::> b for p ;;>1, where :::> indicates 
proper containment. Successive iterations of the identity 

..:l -, = 1 -..:l -18, (3.5) 

and the stated properties of 8 yield (3.3a). 
Equation (3.3a) gives an algorithm for computing the 

anticluster coefficients in terms of powers of..:l. They may be 
obtained explicitly as follows. We first note that (3.3a) im­
plies..:l ~~ = 0 for a ~b. To compute a specific form of..:l ~~ 
for a;d b, we fix a and observe that the set of partitions 
it' a = {b la;db } with the induced lattice structure is lattice 
isomorphic to the direct product of the no lattices associated 
with the cluster of a. Since..:l ~~ and ..:lbc are non vanishing 
only for b,cEit' a' it suffices to compute..:l ~~ on it' a' In the 
direct product representation, ..:lbc is mapped into 

® 7: l..:lbi,ci whereb, andc, are the partitions of the ith cluster 
of a induced by the refinements band c, respectively. In the 

product representation this has the inverse ® 7: ,..:l d~bli 

which induces an inverse on the set of matrices indexed by 
it' a' Since a is a product of I-cluster partitions in the prod­
uct lattice, 

(3.6) 

The elements..:l '-:b I are shown below [Eqs. (3.I4a) and 
(3.25a)] to have the form ( - 1 t" + I(nb - I)! and the result 
(3.3b) follows .• 

We note some properties of..:l -I. Equation (3.3a) im­
plies directly that..:l - 1 only has nonvanishing matrix ele­
ments in the same places where..:l has them. From (3.3b) we 
see that all the matrix elements of..:l -, are integral and that 
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all its diagonal elements are 1. The reader is invited to note 
these properties for the examples in the Appendix. 

We next consider the construction of "sum rules" for 
..1 - '. By this, we mean expressions arising from summing a 
row or column of the matrix. These results have been used 
with considerable elegance in the construction of connected­
kernel scattering equations. How these enter can be seen by 
considering two types of objects. 

A matrix W which satisfies one of the conditions 

(3.7a) 

or 

(3.7b) 

is referred to as52 (right or left)Y -invariant. Matrices A and 
B which satisfy 

AY = BY (3.Sa) 

or 

(3.Sb) 

are said to be (right or left) Y -equivalent. Through the ap­
pearance of the term YVin the Eqs. (2.24) and (2.26), any 
Y -invariant quantity may be inserted before or after the Y, 
or V may be replaced by an Y -equivalent matrix. Either of 
these procedures lead to different forms for the coupling 
structure of the equations and therefore to a rich variety of 
equations for the scattering operators. 1.2.5 Both ,Y -invariant 
and Y -equivalent quantities appear throughout our subse­
quent development. 

We note that the multiplication of a matrix by Y on the 
right (left) has the effect of summing the matrix's columns 
(rows), viz., 

(M Y)ab = I Mae (independent of b ), (3.9a) 
c 

(Y M)ab = 2:Meb (independent of a). (3.9b) 

Y equivalence leads to the formulations of useful sum rules 
if one of the equivalent quantities is very simple. 

Other aspects of out subsequent development are inti­
mately related to Y invariance and equivalence. Given any 
nonsingular matrix M one can define unique diagonal matri­
ces §R,L by the stipulations that §RM and M§ L be right 
and left Y -invariant, respectively: 

y§RM= Y, (3. lOa) 

(3. lOb) 

§ R is the diagonal matrix with the sum of the rows of M - 1 

as its entries while § L has the sum of the columns of M - 1 as 
its entries. Equations (3.10) correlate diagonal matrices with 
sum rules (which may be confined to a subset of x). Let 
{(} a be a set of partition-labelled elements of an operator 
algebra, and let 

(3.l1a) 

FR (a) = IMa•b {(}b' (3.l1b) 
b 
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FL(a) = 2:{(hMb.a' (3.llc) 
b 

Then it follows that 

(3.12) 
a 

Specific realizations of these algebraic structures appear 
throughout Sec. III and IV. 

Sum rules corresponding to the choice M = ..1 may be 
constructed from (3.2a) and (3.2d). It follows immediately 
that 

Lemma 3.1: 

(A) ..1 -IYPQ = P2, or I..1 ab 1 = Da2 , 
b 

a 

We now define the quantities 
C - .. -1 

a= - LIla t 

D - .. ·-1 
a=-,uaQ· 

The sum rules (3.10) then imply the 
Corollary: 

I'·..1 ab 1 = Cb + D.lb - DSlb • 
a 

I'·..::1 a'l, 1 = Da + DaQ - Dal • 
a 

(3.13a) 

(3.13b) 

(3.14a) 

(3.14b) 

(3.15a) 

(3.15b) 

(3.15c) 

where the prime and the star on the sums indicate sums over 
the subsets of Y: 

Y' = Y -{!}. 

!f'* = x - {O}, 

respectively, and 

!f '. = Y - {O} - {I}, - -
with the corresponding sum L'·. 

(3.16) 

(3.17) 

(3.IS) 

The sum rules will be employed in terms of the results: 

Theorem 3.2: 

(3.19a) 

(3.19b) 

Proof Result (A) follows from the identity 

(3.20) 

upon setting a = I and using the properties ..::1 1e = I and 

C
1 

= - 1. (3.21) 

Result (B) is obtained starting from 

(3.22) 

only now we set a = Q and use the properties ..1a2 = 1 and 
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(3.23) 

The equations of the theorem for b = Q and a = !, re­
spectively, give the particularly useful results: 

Corollary: 

(3.24a) 

(3.24b) 

I"Ca = 1 - CQ. = I'·Db. 
a b 

(3.24c) 

In obtaining (3.24c) we used the fact that DI = Co. (This 
important number is referred toS 1 as the Euler characteristic 
of the lattice in the mathematics literature.) 

The result (A) of Theorem 2 is well known in the scatter­
ing theory literature,2.4.9 and possesses considerable power 
in simplifying results otherwise obtained at great effort. The 
result (B) is presented here for the first time (to our knowl­
edge) and is only one aspect of a powerful duality which is a 
standard lattice property. 21 A number of the new results pre­
sented below are duals of previously known results. In this 
duality, completely connected (!) is replaced by completely 
disconnected (O),joins and meets interchange, and partitions 
interchange with the sublattices corresponding to the clus­
ters of the partition. 

The coefficients Caand Da are sufficiently important 
that we would like to have explicit expressions for them. 
They are given by the following 

Proposition 3.2: If a is a partition into the na clusters 
a l,a 2, ... ,an• having, respectively, na, ,na, ... particles, then 

(A) Ca = ( - I(a(na - I)!, (3.25a) 

(B) Da = (- 1("+ 1 it Ca, = (- It +n,,+ 1 it (na, - I)!. 
i= 1 i= I 

(3.25b) 

Proof The expression for Ca can be demonstrated by an 
indirect argument. We introduce S ,;, the number of distinct 
m-cluster partitions which can be made from n distinguish­
able objects. so In the combinatoric literature, this is referred 
to as the Stirling number o/the second kind.s3 It is easy to 
show using standard properties of S '; that 

N I ( - Inm - I)!S;;' = I, k>2. (3.26) 
m= 2 

Using the definition of S ';, 

IDmn..1ab =S';, • h 
(3.27) 

a 
we can write (3.23) as 

I'( - I("(na - I)!..1ab = 1, any b =I=!. (3.28) 

Equations (3.I9a) are B N - I equations for the B N - 1 un­
knowns Ca , where B N is the total number of possible parti­
tions (Bell number). Since det..1 = 1 on Y it is clear that 
they determine the Ca uniquely. Since (3.28) shows that the 
form (A) satisfies all these equations, the result follows. Part 
(B) of the proposition follows directly from the explicit form 
for..1 - I, Eq. (3.3b) .• 
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We now consider the analogous properties for the com­
plementary matrix X defined by (2.10), which in matrix form 

is 
(2.10) 

The fundamental properties of..1 given by Proposition 1 im­
ply corresponding results for X simply by using (2.10), viz., 

Proposition 3.3: 

(A) XPQ = 0, .1aQ = 0, 

(B) P~ =PQ(Y -I), XQa =~.a' 

(3.29a) 

(3.29b) 

(C) Xp! = (Y -I)P!, Xa! = ~a.l' (3.29c) 

(D) P! X = 0, X!a = O. (3.29d) 

Results (3.29a) and (3.29d) preclude the existence of an in­
verse for X on the whole lattice since it has a row and column 
of zeroes. (See the examples in the Appendix.) We can con­
struct an inverse, however, if we remove this row and col­
umn. We define the restriction of X to a map of Y' ---+Y' by 

S =Q1XQQ. (3.30a) 

The restriction 

3 =QQiQQ~' (3.30b) 

considered as a map from 2"'to y" is also useful. The 
inverses of these matrices exist as we see below by explicit 
construction. As a consequence we have the equations 

33- 1 =3- 13 

= QOI' I"Xac3 cb 1 = Dab~al (a=l=Q), 

(3.3Ia) 

(3.3Ib) 

(3.3Ic) 

(3.3Id) 

Note that the left-hand sum in Eq. (3.3Ic) does not vanish 
when a = 0, nor that of(3.3Id) whena = 1. This is discussed 
in conjuct~n with Theorem 2 of Sec. IV -

Theorem 3.3: 
(A) The inverseS -I mapping Y'---+Y' is given by the 

restriction of the matrix 

X=..1 -1(yPO - Ql) = - Qo..1 -IQI (3.32a) 
- --

to the appropriate domain and range. This implies the ma-
trix elements 

(S-I)ab= -..1ab l, a=l=Q, b =1=1. (3.32b) 

(B) The inverse 3 - 1 mapping Y " ---+Y " is given by the 
restriction of the matrix 

Y = Q9 !..1 -IQQ!(YC - I) (3.33a) 

to the space 2"', where the matrix C is given by 
Cab = Dab ( - CaICQ). The matrix elements of 3 -I are given 
by 

(3 -I)ab = -..1 ab 1 - Da CblCo, a,b =1= 1.Q. (3.33b) 
Proof We begin by proving part (A). Let X be the im­

bedding of S - 1 in 2' , i.e., the matrix elements of X are the 
A 

same as those of..1 - 1 when the indices coincide and Xhas its 
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last row and first column equal to zero. We require 

XQJ. =X, 

Q~=x. 

Since 

Q1J =J, 

JQQ. = J, 

the matrix X satisfies 

xJ = QQ' 

JX=Ql' 

(3.34a) 

(3.34b) 

(3.35a) 

(3.35b) 

(3.36a) 

(3.36b) 

Ifwe multiply (3.36a) on the right by.:1 -IQI we then obtain, 
using (2.10), -

XQj(Y.:1 -I - l)Ql = Qifl -IQj' (3.37) 

Since Y P1..Y = Y we see that (3. lOb) implies the sum rule 

Y.:1 - I = Y Pi' (3.38) 

which when combined with (3.37) yields (3.32). The same 
result follows from (3.36b) and the sum rule 

.:1- l y=po Y (3.39) 

which is a consequence of (3. lOa) and the identity 
YPoY = Y. We note from (3.38) and [3.39] that.:1 -lisleft 
(right) Y -equivalent to PI (Po). 

We now prove the result (B). Equation (3.24a) implies 
that 

YCQ.J.Y =Y, 

and therefore, using (3.16a) and (2. lOa) that 

YCQ1..JQj =0, 

where we have introduced the diagonal matrix C by 

(3.40) 

(3.41) 

Cab = Dab Ca· If we put I = Po + Qo on either side of the 
matrix J in (3.41), Proposition 3.3 yields the result 

YCJ" = - YCQ1PQJY - I)Q..!. = - CoYQ.Q~' 
We therefore have 

,YEA~ = (J +.:1 )Q.!2L 

and 

QQl('Y C - I)£ = QQ1.:1QQl· (3.42) 

Since.:1 -I exists on Y"', we conclude that 

QQ!.:1QQ!.:1 -IQQL = Q.Q!.:1 -IQQ~.:1QQl = QQl' (3.43) 

After multiplying (3.40) by .:1 -I we obtain 

yJ = QQL' 

Similar manipulations that begin with 

YDQQY=Y (3.44) 

and 

(3.45) 

yield (B). (D is the diagonal matrix wjth elements Da .). 
Sum rules may be obtained for.:1 - I in a manner analo­

gous to the ones obtained for.:1 - I, i.e., by beginning with the 
analogous parts of Proposition 3.3 and carrying out similar 
manipulations. They may also be obtained directly by ob­
serving from (3.32b) that the matrices are, in fact, nearly 
identical. We easily find 
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Lemma 3.2: 

or I'(S-I)ab = Da!, (3.46a) 
b 

(B)PoQ..!.yS- 1 =p.!2' or I"(S-I)ab=DQb . (3.46b) 
a 

Proof To obtain (A) we multiply (3.29c) on the left by 
Q\> on the right by Qo' and observe that Po and QI commute. 
This transforms the J into a S giving 

Sp! = Q!YP1. 

Ifwe now multiply by S -Ion the left and use (3.3Ib) we 
obtain (3.46a). Part (B) is proved in an analogous manner 
beginning with (3.29b). Note that the results (3.46) are dual to 
(interchange 0 and I) the sum rule for.:1 - I, Eqs. (3.13) al­
though the sU'mmai"ions in (3.46) ~e restricted .• 

Observe that the relation of.:1 - I to.:1 - I implies the 
following important results: 

(S-I)ao =Da , a#Q, 

(S-Ihb = Cb , b #1, 
and therefore 

I'"S ab I = - Da + Do! 
b 

and 

o 

(3.47a) 

(3.47b) 

(3.48a) 

(3.48b) 

follow immediately from the sum rules of Lemma 3.2. We 
also obtain 

Theorem 3.4: 

(3.49a) 

I'JabDb = DQa' a#l. (3.49b) 
b 

Proof These results follow in a straightforward manner 
from Eqs. (3.40) and (3.41) and Eqs. (3.44) and (3.45), 
respectively .• 

Sum rules for J" - I may also be obtained, though in a 
somewhat indirect fashion. Proposition 3.3 affords us little 
aid since in all of the results theJhas either aPu or aPI next 
to it. If we attempted to multiply these equatiOns by Q-;;I on 
the left and right to change J into J" we could only obtain 
0= O. The explicit form given in (3.30b) may be used to ob­
tain the sum rules, or the sum rules for.:1 - 1 may be trans­
formed using (2.10). The results are 

Lemma 3.3: 

I'"(J"-I)ab = -Do/eg" a#Q,!, (3.50a) 
b 

(3.50b) 

Proof These are easily obtained from the explicit form 
of J" -I given by Eq. (3.33), the sum rules on.:1 -I, Eqs. (3.35), 
and the sum rules for C and D, Eqs. (3.19). An important 
intermediate step is the observation that if a,bE:?'", then 

,,",,"A -I C 
L ""-I ah = b' 
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I'·..1 ab 1 = Da, a#Q,I. (3.51b) 
b 

These follow directly from (3.15) .• 
We conclude this section with a discussion of the prod­

uct relations for ..1 and.J. These relations control the connec­
tivity structure in products of operators of the form (2.11) 
and therefore are among the most important and powerful 
results in the lattice theory arsenal. 

The basic results are that a :2 b and a:2 c iff a :2 bue; and 
that a:2 c and b:2 c iff al'h:2 c. Expressed in terms of..1 and.:1 
these take the form 

Proposition 3.4: 

(A) ..1ab..1ae = ..1 a.hue ' (3.52a) 

(B) ..1ae..1be = ..1 anb.e , (3.52b) 

(C) ..1ab.:1ae = ..1abL1a.hu.e, (3.52c) 

(0) ..1ae.:1be = ..1ae.:1anb.e. (3.52d) 

These may be generalized to an arbitrary number of pro­
ducts as follows. 

Corollary: If a, b, ajand b,., i = 1···n, are arbitrary parti­
tions, then 

n 

II ..1 ab, =..1 " , 
i= 1 a. u hi 

, I 

Proof is by induction using Proposition 3.4. 

(3.53a) 

(3.53b) 

Proposition 3.4 may be used to obtain sum rules similar 
to(3.19): 

Theorem 3.5: 

(A) I'Ce..1ane.b = ..1 ab8!b , (3.54a) 

(B) I·..1 a.hue De = 8ag,..1 ab , (3.54b) 

(C) ..1ab I'Ce.:1anc.b = Dal Db!' (3.54c) 

(0) ..1ab I·.:1a.huc Dc = Da2 Db2 · (3.54d) 

Proof We obtain (A) by multiplying (3.52b) by ..1 d--;' 1 
summing over all aE5I", and settingd = I. Equation (3.14a) 
then allows us to express the result as 

(3.55a) 

The form given in the statement of the theorem is obtained 
by explicating the term c = 1. The result (B) is obtained simi­
larly but with the use of (3. 14b). The unrestricted form for 
this case is 

(3.55b) 

The last two results are proved in a similar fashion, mutatis 
mutandis .• 

Results for arbitrary numbers of unions or intersections 
may be obtained by repeated applications of parts (A) and (B) 
of the theorem. 
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Corollary: 

(A) I 'Ca, Ca, ... Ca • ..1 a,na, ... a".b = 8!b' (3.56a) 
a,···a" 

(B) I 'Ca2",Can..1a,na, ... na".b = ..1a,.b8lb' (3.56b) 
a 2 ···a" 

(C) I '..1 a.b,Ub, ... Ub"Db, Db, ... Db• = 8a!,!, (3.56c) 
b,···b" 

(0) I '..1 a.b ,Ub, ... Ub"Db, ... Db• = 8ag,..1 ab ,. (3.56d) 
b, ... b" 

Among the lattice theory results useful in scattering 
theory are the combinations of..1 and.:1 traced with a Cor D 
matrix. These permit simple analysis of connectivity struc­
tures by means of the following (see Theorem 4.4) 

Theorem 3.6: 

(A) I'Ce.:1ca..1cb = D!.aub8!b or.:1 'CQl..1 = U..lQl' 

(3.57a) 

(B) I·..1ac.:1bcDc = 8aQDanb.Q or ..1DQ~' = Q.QU.Q! 

(3.57b) 

where we have defined the matrices 
(U1 lab = D1.auband (UO)ab = Do.anb · The superscript "t" 
means matrix transpose. Note also the transposed forms of 
the equations, viz, 

(AT) I'Cc..1ca.:1cb = 8!aD!.aub or..1 'Q1C.:1 = Q.! U.l! 

(3.58a) 

(BT) I·.:1ac..1beDc = Danb.Q8bQ or .:1Q~..1 ' = UQQ2,' 

(3.58b) 

Proof To prove (A) consider the expression on the left­
hand side. Equation (2.10) allows us to transform it into 

I'Ce.:1ca..1cb = I'Cc (1 - ..1 ca )..1 cb · 
e c 

Equations (3.52b) and (3.19a) then reduce the right-hand side 
of the preceding equations to 

8!b - 8!.aub = D!.aub - D!b' 

If b = 1 this vanishes. Otherwise, we get 151 aub' Part (B) is 
proved-analogously.. -' 

The restriction of the above theorems to the sets of par­
titions with na = 2 or N - 1 is useful for applications to scat­
tering theory. We observe that these subsets of the lattice are 
distinguished. We define the sets54 

5I"n = {aE5I" Ina =n} (3.59) 

and the associated matrix projectors 

(Pn lab = Dab Dnn. , 

Qn =[ -Pn· (3.60) 

The sets 51" N _ 1 and 51" 2 are distinguished since 51" satisfies 
the condition that every element of 51" can be generated as 
finite unions of elements of 51" N _ 1 or as finite intersections 
of elements of 51" 2' We use the notation am to indicate 
aE5I" m' The useful results are 
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Corollary: 

(A) (Ll'Q.cI)PN_ , = PZ.1PN _ I 

-0 .1 
1 - 2,nu abrv l' 

(3.61a) 

(3.61b) 

(3.61c) 

(D) Pz(.1QrjJLl ') = PZ.1PN_ I 

or L*.1a,c Ll bc Dc = .1a,bON-1.nb· (3.61d) 

These results follow immediately from the theorem and the 
following: 

Lemma: 

(A) Q.UlPN- I =PZ.1P,y,_I' 

(If nb = N - I and a# !,then aub = ! iff nu = 2 and a~b.) 
(3.62a) 

(B) PzUJ.. = P2.1. 

(If nu = 2, then aub = ! iff a ~b.) (3.62b) 

(C) P2Ur.:.Q2 = P2.1PN - I' 

(Ifnu = 2 and b #Q,then ai1b = Q iff nb = N - 1 and a~b.) 
(3.62c) 

(D) U!!!N_I =.1PI\f_t· 

(Ifnb =N-1,thenai1b=Qiffa~b.) (3.62d) 

IV. OPERATOR RELATIONS 

In this section we consider the application of the lattice 
theoretic results of the previous section to the case of opera­
tors with cluster expansions. Some of the relevant terms have 
already beeen introduced in Sec. II. The duality structure 
discussed in the previous chapter suggests the introduction 
of some additional quantities. 

We define five labelling maps of Y X cc: ~cc:. The con­
nectivity map C: (a,A )~ [A 1 u' the interior map M[: 

(a,A )~Au,andtheexteriormapME:(a,A )~A uhavealready 
been defined. We here introduce the containment and exclu­
sionmaps,Nc:(a,A )~uA andNE:(a,A )~uA.Thea-contain­
ing part of A, aA, is defined by 

(4.1) 

It is the sum of those parts of A with connectivities contain­
ing the partition a. The a-excluding part of A is the sum of 
those parts of A with connectivities which do not contain the 
partition a, viz., 

(4.2) 

From the definitions (4.1), (4.2), (2.7), and (2.8) it is clear that 
for any operator which possesses a cluster expansion 

(4.3) 

Containment and exclusion labelled operators are not un-
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known in the scattering literature. For example, in a thre­
body problem modelled after deuteron-nucleus scatterin~ 
Dodd and Greider introduced the operators55 (we use th< 
three-body partition labels given in the Appendix) 

aH=Ho + Vb + Vc ' uH = Vu' 

Ifparticle 1 is taken to be the heavy nucleus, then uH repe­
sents the Hamiltonian which describes the interaction ofne 
two particles of the deuteron with the nuclear field, if we 
ignore the interaction between them. 

Additional useful definitions concern the extractiomf 
parts of operators having particular classes of connectiviy. 
We define the disconnected part of an operator as the opea­
tor less its completely connected part: 

[A 1 D = A - [A II . (44) 

The partly-connected part of an operator is the operator Iss 
its completely disconnected part: 

[Ale A-[Ala . (45) 

The part of an operator of connectivity m, where m is an 
integer, is the sum of all the parts of an operator having tie 
connectivity of an m-cluster partition: 

(46) 

We say that an operator has homogeneous connectivity n ilit 
consists only of parts with connectivity n. In this case we 
have 

A = [A lrn)' (47) 

One of the most interesting sets of results which came 
obtained from the lattice properties of Sec. III are the cll>­
ter/cumulant expansions and their generalizations. To ea:h 
operator AE't' we have associated five vectors of operatos 
labelled by ,Y': [A la, Au, A a, aA, and UA. As we shall sec 
below, knowledge of any of these sets suffices to give the W 
operator. We refer to these as decomposition sets. If we coud 
always calculate all the matrix elements of all our operat<rs 
these decompositions would not be of interest. In many 
cases, however, the full operator is of such complexity tM 
there is no hope of performing an exact calculation. The 
decompositions then become exceedingly useful for the plr­
pose of bringing various properties to the fore to facilitat 
various approximation strategies. 

Relations between the decomposition sets can easily)e 
obtained using the inverses constructed in the previous sc­
tion. The classical c1uster/cumulant expansions are c10sey 
related to Eq. (2.7) and its inversion given in (4.8a) below. Ve 
describe the relations in the next theorem as generalized cbs­
ter!cumulant inversions. These results follow directly fron 
the properties of the inverses of Ll and.1, Theorems 3.1 aId 
3.3. 

Theorem 4.1: 

(A) [A L = L'Ll at, tAb' a#!, (4.ia) 
b 

(B) [Al = -L'Ll-'A b 
a ah' a#Q, (4.a,) 

h 

(C) [A lb = L·uALl at, I, b #Q, (4.t) 
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(4.8d) 

Proof If we apply .1 - I to (2.7) we get 

I..1 a~ lAc = [A lao 
c 

The segregation of the term c = lJrom the sum yields 

Result (A) follows if we restrict a to be different from !. To 
get (B) we must be ~bit more careful because o!:.the restric­
tion of the range of .1 -I. Ifwe multiply (2.8) by .1 -I, we find 
using Eq. (3.31 b) that 

I. '.1 a~ IA c = I.'I..1 a~ IXcdA 1 b = c5a2 [A la· 
c c b 

By restrictin~ a .to be different from Q and applying the spe­
cific form of .1 - I given in (3.32b) we obtain the result (B). The 
final two results follow from similar manipulations if we be­
gin with (4.1) and (4.2) and operate on the right with the 
appropriate inverse matrices .• 

These results, together with the cluster expansion (2.1 '), 
allow us to obtain expressions for the full operator in terms 
of the decomposition sets. These require the sum rules of 
Theorems 3.2 and 3.4 and the associated lemmas and corol­
laries. In order to avoid trivialities, we exclude the terms 

A!=O, 

AQ=A - [A 10' Ao = [A 10' 
~ ~ 

oA =A, 

!A =A - [A L, (4.10) 

from the sums. The completely connected and completely 
diconnected terms are distinguished in some of the relations 
as a consequence. 

Theorem 4.2: 

A = I.'CbA h + [A l.!., (4.11a) 
h 

(4.11b) 

A = I.'aADa + [A lQ' (4.11c) 

A = - _l-I.,aADa + _l_[A 10 + [A 11' 
CQ a C!). - -

(4.11d) 

Proof To prove the first equation we sum (4.8a) on all 
a # ~ Equation (3.12a) leads immediately to (4.11a). Equa­
tion (4.11c) is obtained in an analogous way. Equations 
(4.11 b) and (4.11d) may be obtained using Theorem 4.1 and 
(3.15) or by the following 

Lemma: 

(4.12a) 

(4.12b) 

These provide the extensions of(3.28c) and (3.28d) men­
tioned in the previous section. They are easily proved using 
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Xci = c5c1 and Xoc = c50c together with the sum rules (3.50). 
If we mUltiply (2:8) by -X -I and sum on :£"*, the result [us­
ing (3.31d) and (4. 12a)] is 

,- I - Da I.' .1 a~ A c = [A LOaD - -[A 11 . 
c - Co ~ 

We now sum a over ,:£'* and use (3.12c), (2.1 '), and (3.21c) to 
obtain the desired result. Equation (4.11d) is obtained by the 
dual argument .• 

For some applications involving connectivity it is the 
completely connected part of the operator which is of inter­
est. The results of Theorem 4.2 may then be more useful in 
the following form: 

Corollary: 

[A 1D = I.'CbA b, (4.13a) 
b 

[A l! = I.'CbA b, (4.13b) 
b 

[A 1c = I.'aADa, (4.13c) 

[A 19 = I.'aADa. (4.13d) 

The proof is omitted. 
We now turn to the class of results which follow from 

the product rules of Proposition 3.4 and Theorem 3.5. We 
refer to these as union and intersection properties. Proposi­
tion 3.4 immediately implies the operator properties 

Aab = A anb , (4.14a) 

A ~ = A ~nb, (4.14b) 

ahA = aub A , (4. 14c) 

~A = ~bA. (4.14d) 

A double index (left or right) means that both conditions are 
applied [using the obvious generalization ofEq. (2.11)]. With 
these, we may immediately deduce a number of useful 
relations 

Theorem 4.3: 

(A) I.'ChA anb =Aa, a#!, (4.15a) 
b 

(B) I.'C A anb = 0 b a , a#!, (4.15b) 
b 

(C) I.'aubADa = b A , b 1"Q, (4.15c) 

(D) I.'aubAD = 0 b a , b 1"Q. (4.15d) 
a 

Proof These proofs may be obtained either by using 
Theorem 3.5 or directly from Theorem 4.2 and its corollary. 
To see how this works, we consider case (A). Apply Eq. 
(4.13a) to the operator Au with a # 1. Since Aa has no com­
pletely connected part the result is -

Aa = I.'CbA ab . 
b 

Equation (4.14a) immediately leads to the desired result. 
Similar manipulations yield (B)-(D). Note that the corre-
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sponding results for a = ! and b = Q are simply the results of 
the corollary, Eqs. (4.13), since !nb = b and Qub = b .• 

The extension of these results to an arbitrary number of 
intersections and unions is easily obtained by repeated appli­
cations of the theorem or by using Eqs. (3.56), e.g., 

(4.16a) 

I 'Ca""CanAara, ... ntJn =Aa, a#l, (4.16b) 
a2 ···a" 

(4.16c) 

I °bvb,,,,vbnADb, ... Dbn = bA , b #Q. (4.16d) 
bl. .. ·b". 

An extremely valuable set of operator theorems follow 
from Theorem 3.6. These are the connectivity theorems 
which have been used to construct connected-kernel scatter­
ing theories. 

Theorem 4.4: 

(4.17a) 

(4.17b) 

This theorem allows one to combine operators describing 
the subsystem in order to obtain completely connected oper­
ators. These theorems are useful in scattering theory because 
of the upper-lower index structure that arises in the second 
resolvent relations. 1 The reason for the presence of the [ 1 D 

associated with the lower indexed quantity is due to the re­
striction of the sum to Y'. The term [A II never appears in a 
sum or Ac over CEY'. -

The dual results arising from Eq. (3.50) are of the form 

IeA eBDe = I[A L [B lb8aQDanb,Q' (4.18) 
ab 

Since the operator product satisfies (2.2) rather than the cor­
responding statement with aub-+anb this relation has no ob­
vious utility. 

A class of practical results is associated with Eq, (3.27), 
the sum .1ab over all a having a fixed number of clusters. 
Upon multiplying (3.27) by [A 1 b and summing over all b we 
get 

Theorem 4.5: 

(4.19) 

This result is most useful if A is an operator ofhomogen­
eous connectivity we then have: 

Corollary: If A is an operator of homogeneous connecti­
vity n then 

(4.20) 

This is useful in scattering theory since one frequently 
considers the case where the particles only interact via pair 
potentials. The potential V is then an operator of homogen­
eous connectivity N - I. Applying the corollary to the oper­
ators Vand Vb (any b ) we get the well-known results 1.2 
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One may easily obtain the generalizations 

IDn•m Vanb = S,!: __ 1 Vb' 
a 

and so on, by applying the corollary to the operators 
Vband V~ and using (4.14a). 

(4.21a) 

(4.2Ib) 

(4.2Ic) 

(4.2Id) 

The dual form of the theorem is not useful since sum­
ming the right index of .1 over the set of partitions having a 
fixed number of clusters depends on the specific left partition 
index, not just on its number of clusters. Similar results can, 
however, be easily found for .d. These rely on the 

Lemma: 

(4.22) 
a 

This follows directly from (3.24) by writing.d = I - .1. 
The associated theorem is 

Theorem 4.6: 

(4.23) 

Corollary: If A is an operator of homogeneous connecti­
vity n, then 

(4.24) 
a 

In the particular case of scattering theory with only pair 
potentials so V is of homogeneous connectivity N - 1, one 
obtains 

(4.25a) 

(4.25b) 

(4.25c) 

by applying the corollary to V, Vb' and Vb, respectively. 
Two set of interesting results can be obtained from the 

corollary to Theorem 3.6. The first set is generalization of a 
lemma given in Ref. I. 

Theorem 4.7: 

(4.26a) 

(4.26b) 

Proof The first result follows immediately if we multi­
ply(3.61a)on the right by [A lb and sum OverbEY N-I' The 
second follows after multiplication of (3.6Id) by [A la and 
summation over aEY 2'. 

For the case of an operator of homogeneous connecti­
vity N-I, the first part of the theorem yields the result of 
Ref. I. 
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(4.27) 

Ifwe had an operator K of homogeneous connectivity 2 (see, 
for example, the kernel operators discussed in -Ref. 56), the 
second part of the theorem would yield 

(4.28) 
a 

Similar operations applied to the other free index in 
(3.61a) and (3.61d) lead to relations between the left and right 
labelled quantities. By performing manipulations analogous 
to those in the previous theorem we obtain 

Theorem 4.8: 

(4.29a) 

(4.29b) 

Equations (3.61b) and (3.61c) can be used in a similar 
manner but do not lead to interesting results. 

V. SUMMARY AND CONCLUSIONS 

In this paper we have considered the combinatoric op­
erator relations which have recently been developed for N­
particle scattering theory from an abstract point of view. The 
concept of connectivity is defined abstractly by the introduc­
tion of a connectivity structure as a labelling operation map­
ping each operator in an allowed set into a partition-labelled 
set of operators. This allows us to see that a number of dis­
tinct connectivity structures are possible, some of which are 
exhibited in Sec. II. 

The properties of the partition lattice are then studied in 
terms of this abstract structure using the algebra of real­
valued partition-labelled matrices (the incidence algebra). 
This is done, in particular, through the properties of the in­
clusion and exclusion matrices..::l and.1. The inverse of..::l is 
the matrix of anticluster coefficients (the Mobius function of 
the lattice). Explicit expressions are given for..::l - '. The ex­
clusion matrix.1 is singular, but inverses of restrictions may 
be found in two ways. Explicit expressions are found for both 
these inverses, .1- , and 3 - '. The sums of the rows and col­
umns of each of the three inverse matrices have specific val­
ues which we obtain for each case. The values in the bound­
ary row and column of the anticluster matrix, Caand D a , are 
important numbers characterizing the partitions. Explicit 
forms are given for these numbers. They also satisfy summa­
tion conditions. Finally, we study product rules-the rela­
tions which specify the union and intersection rules in the 
lattice. These lead to a number of theorems which eventually 
lead to connectivity conditions. 

These abstract lattice theory results are then applied to 
the construction of rules for partition-labelled operators. In 
addition to the standard partition-labelled interior and exte­
rior operators, it appears natural to define sets of including 
and excluding operators. These operators have received only 
tentative use in scattering theory up till now. A wide variety 
of theorems are obtained including generalizations of the 
traditional cluster/cumulant expansions and rules for ex­
tracting the connected and disconnected parts of an operator 
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1 

c 

FIG. 2. The lattice for the partitions of three distinguishable objects. 

from the various sets of partition-labelled operators. Sharp 
generalizations of previously known connectivity and distri­
bution theorems are stated. 

The structure of the partition lattice plays a deep and 
fundamental role in constraining the treatment of clustering 
in theN-body problem. Until recently the implications of the 
underlying presence of this structure have been almost total­
ly ignored by mathematical physicists studying clustering. 
In this paper we have tried to demonstrate how this structure 
is manifested in the treatment of operators and the power of 
the lattice theory techiques. 
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APPENDIX 
In this appendix we display the partition lattices and the 

associated matrices for the case of three and four distinguish­
able objects. 

For the case of three objects labelled 1,2,3, the possible 
partitions are 

a = 1(23) 

! = (123), b = 2(13), Q = (1)(2)(3). 
c = 3(12), 

c 

FIG. 3. The lattice for the partitions of four distinguishable objects. 
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The containment structure of the lattice is shown in Fig. 2. 
We take as the standard order I > a > b > c > O. 

For the case offour objectS-labelled 1,2,3;4, the possible 
partitions are 

l = (123), a = 1(234), 

b = 2(134), 

c = 3(124), 

d = 4(123), 

A = (12)(34), 

B = (13)(24), 

C = (14)(23), 

We take as standard order 

a = (12)(3)(4), 

(J = (13)(2)(4), 

r = (14)(2)(3), 

8 = (23)(1)(4), 

€ = (24)(1)(3), 

; = (34)(1)(2), 

Q = (1)(2)(3)(4) 

l >a> b>c>d>A >B> C>a>(J> r>8> €> t>.Q. 
The containment structure is shown in Fig. 3. 

The interesting matrices for the case N = 3 are (labels in 
standard order) 

I 

0 I 0 0 I 

L1= 0 0 I 0 I , 

0 0 0 I 

0 0 0 0 

-I 

0 
L1 - J = 0 0 

0 0 

0 0 

0 0 0 

0 

L1= 0 

A (-: L1 - J = 
0 

0 

3 ~(: 0 D 
C £-1=1 1 

2 

1 

- I -1 2 

0 0 -I 

1 0 -I 

0 -1 

0 0 1 

0 0 

(' 
0 1 

~). 
0 

A I 0 
1 0 ,L1 = ~ 
0 

0 0 - ~) 
-1 0 1 ' 

0 -1 1 

1 J -1 

For the case N = 4, we block off the matrices by heavy lines between partitions with different numbers of clusters, and by 
dotted lines beween partitions with the same number of clusters but with clusters of different sizes. The relevant matrices are 

] 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 

1 0 0 0'0 0 0 0 0 0 1 1 1 1 , 
1 0 0, 0 0 0 0 1 1 0 0 1 1 

1 01 0 0 0 1 0 1 0 1 0 1 

110 0 0 1 1 0 1 0 0 1 
- f-------t---.--- -------- -

I 1 0 0 1 0 0 0 0 1 1 

, 1 0 0 1 0 0 1 0 1 

I 1 0 0 1 1 0 0 1 
I 
I L1= 

, 1 0 0 0 0 0 1 

, 1 0 0 0 0 1 
, 

1 0 0 0 1 

I 
, 1 0 0 1 

I 1 0 1 

I 1 1 
I 

I 1 
(all elements below the dIagonal vamsh), 
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1 -1 -1 -1 -11 -1 -1 -1 2 2 2 2 2 2 -6 
-

1 0 0 0 I 0 0 0 0 0 0 -1 -1 -1 2 

1 0 0 I 0 0 0 0 -1 -1 0 0 -1 2 

1 0 I 0 0 0 -1 0 -1 0 -1 0 2 

1 I 0 0 0 -1 -1 0 -1 0 0 2 
- f--------------- 1------------ 1--

I 1 0 0 -1 0 0 0 0 -1 1 

I 1 0 0 -1 0 0 -1 0 1 

I 1 0 0 -1 -1 0 0 1 

I 1 0 0 0 0 0 -1 

I 1 0 0 0 0 -1 

I 1 0 0 0 -1 

I 1 0 0 -1 

I 1 0 -1 

I 1 -1 

I 1 

(all elements below the diagonal vanish), 

0 0 0 0 01 0 0 0 0 0 0 0 0 0 [) 

1 0 1 1 11 1 1 1 1 1 1 0 0 0 0 

I 
1 1 0 1 111 1 1 1 0 0 1 1 0 0 

1 1 1 0 111 1 1 0 1 0 1 0 1 0 

1 1 1 1 011 1 1 0 0 1 0 1 1 0 
- I------r------ --------- --

I 1 1 1 1
1

0 1 1 o 1 1 1 1 0 () 

1 1 1 1 1 I 1 0 1 1 0 1 1 0 1 0 

1 1 1 1 111 1 0 1 1 0 0 1 1 0 

1 1 1 1 11 1 
I 

1 1 0 1 1 1 1 1 0 

1 1 1 1 1 11 1 1 1 0 1 1 1 1 0 

1 1 1 1 1 11 1 1 1 1 0 1 1 1 0 

1 1 1 1 
I 

111 1 1 1 1 1 0 1 1 0 

1 1 1 1 III 1 1 1 1 1 1 0 1 U 

1 1 1 1 1 11 1 1 1 1 1 1 1 0 0 
I --

I 1 1 1 111 1 1 1 1 1 1 1 1 0 
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11 0 1 1 1 11 1 1 11 1 1 0 0 0 

1 1 0 1 1 11 1 1 1 0 0 1 1 0 

I 
1 1 1 0 1 ) 1 1 1 0 1 0 1 0 1 

1 1 1 1 o 11 1 1 0 0 1 0 1 1 
- f- - - - - .- - - - - -I - - - - - - - - -

1 1 1 1 1 10 1 1 10 1 1 1 1 0 

I 
1 1 1 1 1 I 1 0 1 1 0 1 1 0 1 

.. 1 1 1 1 1 )1 1 0 1 1 0 0 1 1 
tJ. = 

11 1 1 1 1 1 1 1 0 1 1 1 1 1 

I 
1 1 1 1 1 I 1 1 1 1 0 1 1 1 1 

1 1 1 1 1 I 1 1 1 1 1 0 1 1 1 

1 1 1 1 1 11 1 1 1 1 1 0 1 1 

I 
1 1 1 1 1 11 1 1 1 1 1 1 0 1 

1 1 1 1 1 11 1 1 1 1 1 1 1 0 

1 1 1 1 1 11 1 1 11 1 1 1 1 1 

0 1 1 1 11 1 1 1 1 1 0 0 0 

1 0 1 1 I 1 1 1 1 0 0 1 1 0 

I 
1 1 0 1 I 1 1 1 0 1 a 1 a 1 

1 1 1 a 11 1 1 a 0 1 a 1 1 

-----l---- --------

1 111 011 0 1 1 1 1 0 

I 
1 1 1 1 )1 0 1 1 0 1 1 a 1 

1 
"-

1 1 1 11 1 0 1 1 a a 1 1 
6 == 

1 1 1 1 1 1 1 a 1 1 1 1 1 

I 
1 1 1 1 11 1 1 1 0 1 1 1 1 

1 1 1 1 11 1 1 1 1 a 1 1 1 

1 1 1 1 I 1 1 1 1 1 1 a 1 1 

I 
1 1 1 1 I 1 1 1 1 1 1 1 a 1 

1 1 1 1 I 1 1 1 1 1 1 1 1 a 
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~-1 
(:, == 

1 1 1 I! 1 1 1 -2 -2 -2 -2 -2 -2 6 

-1 0 0 0 I 0 0 0 0 0 0 1 1 1 -2 

I 
-1 0 0 I 0 0 0 0 1 1 0 0 1 -2 

-1 0 I 0 0 0 1 0 1 0 1 0 -2 

-1 I 0 0 0 1 1 0 1 0 0 -2 

-------t----- r -------------
I -1 0 0 1 0 0 0 0 1 -1 

I 
! 
I 
I 

I 
I 
I 
I 
I 
I 
I 

-1 o 

-1 

o 1 o 

o o 1 

-1 0 0 

-1 0 

-1 

o 1 o -1 

1 o o -1 

0 0 0 1 

0 0 0 1 

0 0 0 1 

-1 0 0 1 

-1 0 1 

-1 1 
(all elements below the sub diagonal vanish) 

-2/3 1/3 1/3 1/3 1/3 113 113 -2/3 -2/3 -2/3 113 113 1/3 

1/3 -2/3 1/3 1/3 1/3 1/3 1/3 -2/3 1/3 1/3 -2/3 -2/3 1/3 

1/3 1/3 -2/3 1/3 1/3 1/3 1/3 1/3 -2/3 1/3 -2/3 1/3 -2/3 

1/3 1/3 1/3 -2/3 I 1/3 1/3 1/3 1/3 1/3 -2/3 1/3 -2/3 -2/3 
-----------l-------- ------------------
1/6 1/6 1/6 1/6 -5/6 1/6 1/6 2/3 -1/3 -1/3 -1/3 -1/3 2/3 

I 
1/6 1/6 1/6 1/6 I 1/6 -5/6 1/6 -1/3 2/3 -1/3 -1/3 2/3 -1/3 

1/6 1/6 1/6 1/6 I 1/6 1/6 -5/6 -1/3 -1/3 2/3 2/3 -1/3 -1/3 
.J I 

-1/6 -1/6 -1/6 -1/6 -1/6 -1/6 -1/6 -2/3 1/3 1/3 1/3 1/3 1/3 
I 

-1/6 -1/6 -1/6 -1/6 I -1/6 -1/6 -1/6 1/3 -2/3 1/3 1/3 1/3 1/3 

-1/6 -1/6 -1/6 -1/6 I -1/6 -1/6 -1/6 1/3 1/3 -2/3 1/3 1/3 1/3 

-1/6 -1/6 -1/6 -1/6 I -1/6 -1/6 -1/6 1/3 1/3 1/3 -2/3 1/3 1/3 
I 

-1/6 -1/6 -1/6 -1/6 I -1/6 -1/6 -1/6 1/3 1/3 1/3 1/3 -2/3 1/3 

-1/6 -1/6 -1/6 -1/6 ! -1/6 -1/6 -1/6 1/3 1/3 1/3 1/3 1/3 -2/3 
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The five-term WKBJ approximation is applied to calculate the eigenvalues for the potential 
V(x) = lkx2 + ax4, k > 0 and a > O. Numerical results are compared with those of Hioe and 
Montrol!. It is found that the accuracy of the calculated eigenvalues improves rapidly with 
increase in the quantum number n. At n = 4, a seven significant figure accuracy is achieved and at 
n = 6, a nine significant figure accuracy. 

PACS numbers: 03.65.Sq, 03.65.Ge 

I. INTRODUCTION 

The potential 

V(x)=~kx2+ax4, k>Oanda>O (1 ) 

is of considerable importance in physics. Field theorists are 
interested 1-3 in it because of the possibility of constructing a 
field theory based on it. Molecular physicists are interest­
ed4 •5 in it because there are certain ring compounds whose 
vibrations can be described by such a potential. Consequent­
ly, there has been a great deal ofinterest l

-
IK in the analytical 

as well as numerical study of potential (1). 
Eigenvalues of high accuracy for this potential have 

been obtained by Biswas et al., Ih and by Hioe and Montroll 17 
(HM) by different methods. Biswas et at. 16 postulated wave­
functions to be of the form 

./, (I 2) ~ 2n 
'I' = exp - 2:x L CnX . 

1'1=0 

(2) 

On substituting this expression in the Schrodinger equation 
for potential (1), they obtained a three-term difference equa­
tion for the {c n } and the energy E. In order to assure the 
existence of solutions, they had to set the infinite determi­
nant of the coefficients equal to zero. The energy levels were 
then found numerically from the resulting Hill determinant. 
The numerical method used by Biswas et al. Ih was to trun­
cate the determinants, calculate the eigenvalues at different 
levels of truncation, and search for the limits of successive 
estimates as the truncated determinants were increased in 
size. Determinants of orders as high as 100 X 100 were used 
when a was large as compared to k. Biswas et al. 16 give ener­
gy values to 15 significant figures for the ground state, and to 
8 significant figures for excited states up to and including 
n = 7. HM have developed rapidly converging algorithms, 
using the Bargmann representation, and they have calculat­
ed energy levels accurate to seven or more significant figures 
for n = 0 to n = 8. They have tabulated results to nine sig­
nificant figures. 

Wentzel's quantization condition for the WKBJ ap­
proximation of any order has been justified and put on an 
irrefutable basis by Froman and Froman. 19 Recently, using 
Dunham's20 method, we have derived21 an expression for the 

five-term WKBJ approximation. The higher-order terms in 
the WKBJ approximation have also been considered by 
Bender et al. 22 It was of interest to apply the five-term 
WKBJ approximation to the potential (1) to ascertain what 
sort of accuracy can be obtained from it for the excited states. 
(It is well known that the WKBJ method gives low accuracy 
at very small quantum numbers, except when the potential is 
close to a harmonic oscillator potential.) Also, these calcula­
tions will help to throw light on the accuracy of such pre­
vious results as have been obtained by other methods (e.g., 
Refs. 4, 16, and 17). We shall compare our results with those 
ofHM as these authors give the largest number ofs,ignificant 
figures in their results for excited states. 

The WKBJ method has been used previously to calcu­
late the eigenvalues for the potential (1). Lu and his collabo­
rators9.14 have calculated the eigenvalues using the modified 
WKBJ method given by Miller and Good. 23 It was pointed 
out by Froman et al. lx that the quantization conditions de­
rived by Lu et al. 14 in their investigation on the anharmonic 
oscillator is the same as the well-known WKBJ quantization 
condition, particularized to a three-term WKBJ approxima­
tion. Froman et al. IX have also pointed out a number of cor­
rections in the expressions derived by Lu et al. 14 and have 
corrected the numerical results obtained therefrom. The 
starting point of the approach of Handelsman and Lew 10 is 
the WKBJ approximation. The integrals are evaluated, and 
expanded in series. A technique is then developed for rever­
sion of the resulting series, by which the eigenvalues are giv­
en directly as an expansion in powers of two well-defined 
variables. A second-order approximation obtained from this 
double series is evaluated for the potential (1) (and three oth­
ers). The tabulated results \0 have the same sort of accuracy 
as a two-term WKBJ calculation; however, in some regions, 
the results given by Handelsman and Lew 10 are less accurate 
than those obtained from a two-term WKBJ calculation. In 
addition to the work referred to above, HM have also de­
rived simple formulas for the eigenvalues, using the one­
term WKBJ approximation. 

An anonymous referee has drawn our attention to a 
forthcoming paper by Hioe et al. 24 in which these authors 
have used a higher-order WKBJ method to obtain energy 
levels for the potential (1). 
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II. APPLICATION OF THE FIVE· TERM WKBJ 
APPROXIMATION 

The quantization for the five-term WKBJ approxima­
tion is 

n + t = II + 12 + 13 + 14 + Is, 

where21 

(3) 

and 

Is = [1i/(2m) I 1,2 f [d
7

7 
('(1143 V,,4 + 2065V,2V" V(4) _ 175V,3V<sl)(E _ VI- 1/2 dx _ ~ .. ~.Jr'(352V" V'II2 

481T 10. dE J. d€> Jr, 
+ 6511 V"2V(41)(E - VI- 1I2 dx - 20 .. ~ .. ~ . ...rr'(29V(4)1 + 173V'IIV(S))(E - VI- 1/2 dX]. 

d~J, 

Here r l and r2 are the real roots of E - V (x) = 0, and V(It) 
represents the nth derivative of V. To apply (31 to the poten­
tial (1), we set 

and 

/3 = {[(k 2 + t 6aE) 112 - k ]l4a}112. 

Then 

(2m)1/2/li fB 
II = ydx, 

1T - fJ 

and 

(4) 

(5) 

Is= [1i/(2m)
1I2

J1 [!£.ffJ [1143k 4 + 104424ak 3x 2 + 1978752a2k 2x4+ 13451136a3kx6 

481T 10! dE7 
- fJ 

+ 33216 768a4x 8 ]y-1 dx - 24a d :f/3 [6511e + 164 712akx2 + 1038 960a2x4]y-\dx 
dE -/3 

- 334 080a
2
:; f~/-I dX]. (6) 

Note that y2 is a quartic polynomial in x and the expressions 
for IJz,!3,!4, and Is all involve elliptic integrals. 25 It is there­
fore, possible to evaluate them explicitly in terms of K (lU) and 
E (lU), the complete elliptic integrals of the first and second 
kind. We shall find it convenient to express our results in 
terms of A, lU, and z, which are defined as follows: 

lU=[l-t(l + 16adk2)-I/Z]1!2, (8) 

A = ali/(mk 3) I /2, (7) 

and 

Z = lU2(l _lU2
) or 1 - 2lU2 = (1 - 4z1112. (9) 

Our A has the same significance as the A of HM. 
The final expressions for 1\,12,13,14' and Is are gien 

below. The essential steps in the evaluation of Is are glen in 
the Appendix. The evaluation of the other four is sinlar. 

II = [(l-4Z)-3/4/31TA ]{2zK(lU)-(1-4z)I/2[E(lU)-(l-lU2)K(lU)]}, 

12 = [A (1 - 4Z)3/4/61T]{ - 4(1 - 4Z)1/2K (w) - (liz + 8)[E (w) - (1 - lU2)K (w)]), 

13 = A 3(1 - 4Z)9
/
4{( _ E. + ~ _ 5664 + 28 672z)K (w) 

3601T Z2 Z 

+ (1- 4Z)1/2(~ - ~ + 144 _ 14 336) [E (lU) _ (1 _lU2) K(W)]}, 
Z3 Z2 Z 

14 = A 5(1 - 4Z)IS/4 {II _ 4Z)112( 124 _ 441 + 587 + 1108 _ 551 424 + 4063 232z)K (w) 
3151T Z4 4z3 4Z2 Z 
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_ (248 _ 1867 + 10 189 + 2135 _ 11 624 + 1 610 752 _ 8 126 464Z) [E (w) _ (1 _ ( 2) K (w)]}, 
r 2z4 16z3 2z2 Z 

I = A 7(1 - 4Z)21/4 {( _ 1524 + 5883 _ 55079 _ 7253 + 32591 + 83596 
5 3151T Z6 r 16z4 64z3 2z2 Z 

) (
3048 8337 15 169 316085 

- 149719040 + 2 128740 352z - 6 392 119 296z2 K (w) + (1 - 4Z)1/2 ~ - ~ + ~ + 128z4 

_ 87275 _ 158246 + 1696768 _ 465108992 + 3196059 648Z) [E(w) _ (1 - ( 2)K(W)]}. (10) 
4z3 Z2 Z 

III. RESULTS AND DISCUSSION 

The energy eigenvalues were calculated by solving (3). 
The elliptic integrals are expressed in terms ofhypergeome­
tric functions26: 

K (w) =!1T 2FI(!d; 1;(2), Iwl < 1, 

E(w) =!1T 2Fd - !d; l;(2), Iwl < 1, 

(11) 

and thus can be expanded as series in powers of w2
• The 

number of terms which need be retained depends on the ac­
curacy desired and on the eigenvalue. The root is determined 
by the Newton-Raphson method. In the same units as those 
used by HM, the eigenvalue for the state with quantum num­
ber n is given by 

En = [11(1 - 2liJ2)2 - 1 ]11M, (12) 

where w 2 is the root of (3). 

Eigenvalues were calculated for n = 0 to n = 8 for the 
same values of A for which results are tabulated by HM. Our 
calculated results to nine significant figures are compared 
with those of HM in Table I. One point may be noted here. 
The series expansion from which (3) is obtained is, in general, 
semiconvergent. 27.28 Consequently, if one finds a situation in 
which II; + II I j I is greater than one, it would be appropriate 
to take terms only up to and including I j on the right-hand 
side of(3). 

In actual practice, calculations were carried out in 
stages for one- , two- , three- , four- , and five-term WKBJ 
approximations. A few cases were encountered for n = 0 
and n = 1 for which 1/41131 was greater than one. Such cases 
are identified by a superscript a in Table I, and the results 
shown are the three-term WKBJ ones. All other eigenvalues 
are from the five-term WKBJ approximation. At each stage 

TABLE I. Calculated eigenvalues for the anharmonic oscillator for n = 0 to n = 8. For each value of A, the first line shows the values calculated in this paper, 
and the second, the values given by Hioe and Montroll. All eigenvalues except those indicated by a superscript a are from the five-term WKBJ approximation. 

Eo E1 E2 E3 E4 E5 E6 E7 E8 

0.002 0.501489&63 1.50741939 2.51920212 3.53674413 4.55995556 5.5H87:,005 (,. ()2304460 7.66275933 b.'{O'{bl'(JO 
0.5014H9660 1. 50741939 2.51920212 3_53674413 4.55995556 5.5Hb75005 6.62304460 7.66275933 H. 70'{8n 50 

0.006 0.:'04409708 1.52180565 2.55597230 3.60618633 4.67180037 5.75223087 6.H4694b47 7.9,,"47029 9.on3"366 
o. :'04409710 1. 521 H0565 2.55597230 3.60618633 4.67180037 5.752230b7 6.84694847 7.95547029 9.07135360 

0.010 0.,,07256204 1.53564828 2.59084580 3.67109494 4.77491312 5.90102667 7.048326b8 8.21:'83781 9.40269231 
0."07256200 1.53564828 2.59084580 3.67109494 4.77491312 5.90102667 7.04832688 8.215837bl 9.40269231 

0.050 0-"32634621 1. 65343643 2.87397965 4.17&33891 5.54929781 6.98496310 8.4773973 4 10.0219318 11.614'1'101 
0.532642750 1.65343601 2.87397963 4.17633H91 5.549297el 6.98496310 8.47739734 10.0219318 11. 614n61 

0.100 0."58760543 1. 76951479 3.13862403 4.62888281 6.22030090 7.89976723 9.('5783999 11. 4873156 13.3H24'{48 
0.5:'9146330 1.76950264 3.13~62431 4.62B882H1 6.22030090 7.89976723 9.657~3999 11.4873156 13.37b9b98 

0.300 0.631866408a 2.09510885a 3_84477025 5.79657396 7.91175270 10.1664889 12.5442587 15.0327712 17.6224482 
0.637991780 2.09464199 3.84478265 5.79657363 7.91175273 10.1664889 12.5442587 15·0327713 17.6224482 

0.500 0.682803225 a 2.32541709 a 4.32749159 6.57840305 9.02877 865 11.6487207 14.4176692 17.3204242 20.3451930 
0.696175820 2.32440635 4.32752498 6.57840195 9.02877872 11.6487207 14.4176692 17.3204242 20.3451931 

0.700 0.723724040 a 2.51044542 4.71027250 7.19326729 9·90261059 12.8039297 15.8736836 19.0945183 22.4529987 
0.743903500 2.50922810 4.71032810 7.19326528 9.90261070 12.H039297 15.8736836 19.0945183 22.4529996 

1.000 0.774649833 a 2.73974461 5.17920454 7.94240736 10.9635829 14.2031391 17.6340491 21.2364355 24.9949364 
0.803770650 2.73789227 5.17929169 7.94240399 10.9635831 14.2031394 17.6340492 21.2364362 24.9949457 

0.900418402 a 3.29637221 6.30370845 9.72733046 13.4812755 17.5141324 21.7909564 26.2861252 30 .9pb828 
0.951568470 3.29286782 6.30388057 9.72732319 13.4812759 17.5141324 21.7909564 26.2861250 30.9 98830 

50 2.26141836 a 8.93357114 17.4360160 27 . 1926924 37.9384997 49.5164187 61. 8203488 74.77282~7 88.3143280 
2.49970877 8.91509636 17.4369921 27.1926458 37.9385022 49.5164187 61. 8203488 74.7728290 ~8.3143280 

200 3.53933065 a 14.0899288 27.5498021 43.0053495 60.0339891 78.3856234 97.8913315 118.427830 139.900396 
3.93093134 14.0592268 27.5514347 43.0052709 60.0339933 78.3856232 97.8913315 118.427H30 139.900400 

lUUU 6.01457421 a 24.025'{5 44 47.014483'1 73.4192519 102.516150 133.876891 167.212258 202·311200 239.0115'{8 
6.6~422085 23. n22061 47.0173307 73.4191140 102.516157 133.876891 167.212258 202.311200 239.011580 

hOOO 11. 99n:,77a 
47. 9986931 93.9548434 146.745790 204.922696 26'{.628499 334.284478 404.46H346 477 . 855698 

13-36(,9076 47.8907687 93.960604(, 146.745512 204.922711 267.62H498 334.284478 404.468350 477.855700 

20000 16.2b0093:,a 65.1333236 127·501009 199.145503 278.100218 363.201844 453.664875 548.916141 648.515329 18.13'{2291 64.986('757 127. 508H39 199.145124 nH .10023H 363.201843 453.664875 54H.916140 648.515330 
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of calculation, such checks were employed as were possible .. 
For instance, our three-term WKBJ results tally exactly 
with those obtained by Froman et al. IM 

To compare our results with those of HM in a conve­
nient fashion, in Table II, we show the ratio R n , where 

(13) 

This type of representation has the advantage that the num­
ber of zeros that follow the decimal point in the value of Rn 
also give, in most cases, the number of significant figures to. 
which the two values tally. For example, Ro = 0.60X 10- 8 

indicates that our results agree with those of HM to eight 
significant figures. In some cases there is a difference of one 
in the number of zeros and the number of significant figures 
which agree. In addition, this representation offers the great 
convenience that one can readily see the broad pattern of the 
results. In column two of Table II, we also show a, which is 
sometimes used to represent the degree of anharmonicity 
and is related to A. by 

a = A. 2/3/( 1 + A. 2/3). (14) 

It will be noticed from Table II that the WKBJ results are 
the poorest for high A. and low n. As n increases there is a 
rapid improvement in results, in as much as at n = 4, the 
WKBJ results agree with the HM results to seven significant 
figures, which is the elaimed accuracy of HM results. The 
preponderance of zeroes in the right-hand top corner ofTa­
ble II may be noted. The fact that in many cases our results 
and HM results agree to nine significant figures implies that 
these values are correct to nine significant figures, as the two 
sets of values were calculated by different methods. There is 
excellent agreement between our values and those ofHM for 
n ;;;.4, except for one case, namely A. = 0.1, n = 8; we suspect 

that in this case the HM value is inaccurate. For n = 6, our 
results and those of HM agree to nine significant figures in 
all cases but one. However, for n = 7 and n = 8 there are a 
number of cases where the agreement between our results 
and those ofHM is to less than nine significant figures. Natu­
rally, the question arises, which set of results are more accu­
rate? We shall adduce evidence to indicate that our results 
for n = 7 and n = 8 are accurate to nine significant figures. 
We shall represent the eigenvalue obtained from ai-term 
WKBJ approximation by E VI. In Table III, for n = 8, we 
showin the first line against each A., the eigenvaluesE (I), E(2), 

E(3), E(4), and E(51. The second line shows the differences 
E (2) _ E (I), E (3) _ E (2), E (41 _ E (3), and E (5) _ E (4) in columns 

three to six respectively. While there is no known method of 
obtaining exact error bounds for energy eigenvalues ob­
tained by the WKBJ method, an examination of 
IEv+ I) - EVil is helpful for this purpose. It will be noticed 
(Table III) that IEv+ I) - EV)I decreases rapidly as} in­
creases. Column six shows that in most cases E (5) - E (4) is 
zero, only in three cases there is a difference of one in the 
ninth significant figure between the two eigenvalues. The 
trend of IE v + II - E VII values indicates that the effect of in­
eluding the sixth term in the WKBJ approximation will 
show up in the tenth significant figure or beyond. It would be 
reasonable to infer from this that the eigenvalues calculated 
from the five-term WKBJ approximation are accurate to 
nine significant figures for n = 8. The results for n = 7 are 
very similar. Beyond n = 8, as n becomes larger, the trend of 
Rn values in Table II indicates that one can expect an even 
better accuracy. 

We note that in the WKBJ method, the eigenvalue of 
each quantum state is calculated independently of others so 

TABLE II.. Values of the ratio R., defined by Eq. (13). The number in parenthesis is the power of 10 by which the preceding figure is to multiplied. Thus 

O.60( - 8) stands for O.60X 10-' 

Ro R] R2 R3 R4 R5 R6 R7 Rs 

0.002 0.01563 a.6o( -O~) 0 0 

0.000 o. 031~6 -0.40( -OH) 0 a 

0.010 0.04436 0.79(-OH) 0 0 

o.o~o 0.11950 -O.15( -04) 0.25(-06) 0.70(-OH) 0 

0.100 0.1'1726 -0.6Y(-03) 0.6<)(-05) -O.~/)(_()'() 0 0.26(-03) 

U.}OO 0.30946 -O.Yb(-02) 0. 2 2(-03) -0.32(-05) 0.57 HrrJ -O.W(-o(j) -0. ('7 (-U/') 

0.500 0.3Hb49 -0.19(-01) O. 43( -OJ) -O.TI(-Il'») O.J'1(-O(·) -O.7b(-('H) 0 _11. 1",(_\",) 

l. '("It! l,. 'l'IU(,j -G. 27 (-u1) U.119(-03) -().1~ (-I;") (1.21'.(-01) -0.11 (-O"() () -u. 4u( -u'() 

1.UOO u.')oouo -0.36(-01) 0.6h(-03) -ll.l7(-O/I) u.42(-Ob) -o.W(-07) -0.21(-07) -08/(-01)) -0.33(-07) -0.3'(-00) 

0.bU5l -0.54(-01) 0.11(-02) -0.27(-04) 0."15(-0(,) -o.30(-0"f) O. 7('(-0~) -0.65(-Ub) 

~u U·93Ub -U.95(-Ul) 0.21(-02) -0.56( -(4) 0.17(-05) -O.bf,(-O"() -O.40(-OH) 

2UU U.~7l5~ -0.10 0.22(-02) -u.5~(-0/1) O.IH(-OS) -0.70(-07) O.2(,(-OH) -0. 2~ (-O·() 

lOUD O.~~OI0 -O.IU 0.22(-02) -0.61(-04) 0.19(-05) -O.foH(-07) -0.b4(-OK) 

0000 U.9~7S1 -0.10 0.23(-02) -0. 61( _011) 0.19(-0') -[1. 7) (-o"{) 0.37(-OH) -O.9(J(-OH) -0.42(-u6) 

20000 0.99Hb4 -0.10 0.23(-02) -0 .f,1( -04 ) 0.19(-05) -0.72(-07) O.2H(-OH) 0 a.1H(-Oe) -0.1)( -OH) 
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APPENDIX that small errors in the ground state calculations do not 
propagate with amplification into excited state energy 
calculations. 

The methods used in Refs. 16 and 17 tend to become 
cumbersome and probably less accurate as n is increased. On 
the other hand, the accuracy of the results from the WKBJ 
method improves with n. In that sense the WKBJ method 
complements the methods of Refs. 16 and 17. 

In this appendix we show the details of evaluation of the 
term 15 , Based on the procedure given in Ref. 2S, we need 
only evaluate integrals of the form 

Un = f/3 xny-I dx, n = 0,2,4,6,8, (AI) 
-/3 
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U4 (x) = (1I3a) [Euo(x) - ku2(x)] - xyl3a, 

wherey and/3 are given by (4) and (S). 
Set 

Un (x) = f x"y- I dx, n = 0,2,4,6,8. 

It is easily seen that 

u6(x) = (1I1Sa2)[(9a£ + 2k 2) U2(X) - 2k£uo(X)] + (1I1Sa2)(2k - 3ax2)xy, 

(A2) 

us(x) = (1I1OSa 3
) [(2SaE + 6k2)£UJX) - (S2aE + 6k 2) k u2(x)] + (1I15a2)(25aE + 6k 2 - 9akx2 + ISa2x 4 )xy. (A3) 

Since Un are definite integrals over an interval ( - /3,/3 ), it follows that 

U4 = (1/3a)(£Uo - kU2), 

U6 = (1/1Sa2)((9a£ + 2k 2)U2 - 2k£Uo1. 
U8 = (1I1OSa3

) [(2Sa£ + 6k 2)£Uo - (S2a£ + 6k 2)kU2]. 

For our purpose, it remains to determine Uo and U2• 

Writing 

y2 = £ _ !kX2 _ ax4 = a(a2 + x 2 )1j3 2 _ x 2 ), 

(A4) 

TABLE III. Calculated eigenvalues for n = 8, from one-, two-, three-, four- and five-term WKBJ approximations. The second line against each A shows the 
differences be, ween the eigenvalue in that column and that in the preceding column. 

E( 1) -----~~~~-- E( 3) E( 4) £(5) 
----------- ----------- -----------

£(2) _ E(1) £(3) _ £(2) £(4) _ E(3) £(5) _ £(4) 

0.002 8.707184414 8.707817271 8.707817301 8.707817301 8.707817301 
0.000632857 0.000000030 o. O. 

0.006 9.075884279 9.077353401 9.077353657 9·077353657 9.077 3536)7 
0.001469122 0.000000256 O. O. 

0.01 9.400668581 9.402691829 9.402692306 9.402(,92306 9.402692306 
0.002023249 0.000000477 o. O. 

0.05 11.61052500 11. 61477(,17 11. 61477611 11.61477609 11. 614 77609 
0.00425117 -0.0000000) -0.00000002 O. 

0.10 13·37702345 13.38247636 13.38247485 13.38247481 13.38247481 
0.00545291 -0.00000151 -0.00000004 o. 

0.30 17.61455962 17.62245330 17.62244829 17.62244821 17.62244021 
0.00789368 -0.00000501 -0.00000009 o. 

0.50 20-33585334 20.34520017 20.34519314 20.34519304 20.34519304 
0.00934683 -0.00000703 -0.00000011 o. 

0.70 22.4425618~ 22.45300730 22.45299881 22.45299869 22.45299869 
0.010445 J12 -0.00000849 -0.00000012 O. 

1. 00 24·98319516 24.99494671 24.99 493654 24.99493641 24.99493641 
0.01175155 -0.00001017 -0.00000013 o. 

30.96511726 30.97989691 30.97988300 30.97988283 30. 9·{~bb<,04 
0.01477965 -0.00001390 -0.00000017 O. 

50 88.27130308 88.31437400 88.31 432845 88.31432797 88.31432"19d 
0.04 30'{09 3 -0.0000455'> -0.00000049 0.00000001 

200 139.8321193 139.9004693 139.9003964 139.9003956 139.9003956 
0.0683501 -0.0000729 -0.0000008 O. 

1000 238.8948426 239.0117040 239.0115788 239.0115775 239.0115775 
0.1168614 -0.0001252 -0.0000013 O. 

booo 477 .6222404 477.8559510 477.R557002 477.8556976 477.6556977 
0.2337106 -0.0002507 -0.0000026 0.0000001 

<'0000 648.19~4809 648.5156724 648.5153320 648.5153284 648.5153205 
0.3171915 -0.0003404 -0.0000036 0.0000001 
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where 

a2 __ (I6aE + k 2)1/2 + k 2 (I6aE + k 2)1/2 - k 
4a and f3 = 4a ' 

and 

U2 = f{3 x2y-1 dx = ;/2 r/3x2 [(a 2 + x1)(jP - x2)) -1/2 dx = [(2k )1/2/a](1 - 4Z)-1/4[E(w) _ (1 _ (2)K(w)]. 
-/3 a JD 

The expression Is in (6) now becomes 

Is = ([1i/(2m) 1/2 r/48 1T 100}[(d 7/dE7)(1143 k 4 Uo + 104424 ak 3 U2 + 1 978752 a2k 2U4 
+ 13 451 136 a3kU(i + 33 216768 a4 Us) 

- 24a(d 6/dE6)(6511k 2Uo + 164 712 ak U2 + 1038960 a2 U4) - 334080 a2(d 5 /dc)Uo]. 

On using the reduction formulas (A4), and the relations (AS) and (A6), we obtain 

(A5) 

(A6) 

1- [1i/(2m)1/2f{d
7

[(381k4 1671688 k 2 1153360 22)0. k(2886521 k2 6110072 )u1 
5 - 1T1O! dE7 16 + 105 aE + 7 a E 0 - a 210 + 35 aE 2 

-a :E:[(65
2
11 F+ 173160aE)Uo -90804ak U2] -6960a2:;Uo} 

= [!Ii(k /m)1/2]7 [ 2 d
7

7 
{(I _ 4Z)-7/4(40 005 + 6 366 712z _ 8 806 528z2) K (w) 

1T1O! 105 dE 
- (I - 4Z)-5/4 (11 546084 - 9523 904z) [E (w) - (1 - ( 2)K (w)]) 

_ (16a/k 2)(d 6/dE6 ){(1 - 4Z)-3/4 (6511 + 60 536z) K (w) - 90 804 (1 - 4Z)-1/4[E(w) - (1 - ( 2)K(w)]} 

- 222 720 (a 2/k4)(d 5 /dc)[ (1 - 4Z)1/4K (w)J). 

To carry out the differentiation repeatedly in the above expression, we apply chain rule keeping in mind that 

dz = ~(1 _ 4Z)2 
dE k 2 

' 

dw = ~(1 _ 4Z)3/2, 
dE wk 2 

and the formulas 

dK(w) E(w) - (1 -lU2)K(lU) 
~= w(l-w 2

) 

~[E(w)-(I-w2)K(w)] =wK(w). 
dw 

We obtain 

Is = [ak3/2(Ii/mI/2)7/321T 1O!] [(d 6/dE6){(1 - 4Z)-3/4 (- 9402 + 316 736z - 195 072z2) K(w)} 

+ (1 - 4Z)-1/4(381/z - 494 368 + 97 536z)[E(w) - (1 - ( 2)K(w)]} - 55 680 (a/k2)(d 5/dc)\ (1 - 4Z)I/4K(w)J] 

= [3a 2k - J/2(li/m '/2)7/41T101](d 5Idc){(1 - 4z)1/4(127/4z + 4444 + 55 l04z + 130 048z2)K (w) 

- (1 - 4z)3/4(127/2z2 + 4661z + 39 744 + 65 024z)[E(w) - (1 -lU2 )K(lU)]), 

which finally gives 

I = ~{ 1 _ 4z 21/4( _ 1524 + 5883 _ 55079 _ 7253 + 325;1 + 83596 
S 3151T ( ) Z6 r 16z4 64z3 2z z 

_ 149719040 + 2 128740 352z - 6 392 119 296z~)K (lU) 

23/4(3048 8337 15169 316085 _ 87275 
+ (1 - 4z) ~ - ~ + ~ + 128z4 4z3 

_ 158 246 + 1 696 768 _ 465 108 992 + 3 196 059 648Z) [E (w) - (1 - ( 2) K (w)] }. 
Z2 Z 
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A Zeeman topology is defined in the general framework of any set W of events which has been 
equipped with an acyclic signal relation - _. The assumption that the - _ structure of w is 
locally that of Minkowski space and that the "piecing together" maps are smooth in an 
appropriate sense, allows a tangent bundle p:E-W to be defined. This bundle has, as structure 
group, the group G of linear causal automorphisms of Minkowski space. 

PACS numbers: 04.20.Cv, 02.40. - k 

1. INTRODUCTION 

In general relativity, space-time is assumed to have the 
structure of a Lorentzian manifold, and therefore, locally, 
the Euclidean topology W4

• It has been argued 1,2 that this 
topology has little physical significance, 

Let ( , > :R4 X R4_R4 be the Minkowski inner product 
for R4 defined by ( x, y > = x t1]y, where 
1] = diag(l, - 1, - 1, - 1). Using a theorem of Zeeman I 
(proved earlier by Alexandrov and Ovchinnikova3

), the Lo­
rentz group of linear ( , > preserving maps of R4 onto itself 
can, up to translations and positive dilatations, be character­
ized as the group ofbijections!R4_R4 such thatf,! -I take 
light beams onto light beams. It is reasonable, therefore, that 
if space-time has a natural topology then this topology 
should be related to its light beam structure. 

Zeeman4 defined a number of topologies for Minkowski 
space (R4, ( , » by requiring that the induced topology on 
timelike lines and or spacelike planes be Euclidean, Gobef·5

, 

Hawking et al.o, and others have investigated similar topolo­
gies for Lorentzian manifolds. 

In the present paper a "Zeeman topology,,2,7 is defined 
in which two events are considered to be "close" only if they 
are interacting, This topology can be defined in the general 
context, independent of Lorentzian manifolds, of any non­
empty set Wwith a relation - -C W X W(specifying the 
interactions in W) for which - - satisfies a certain causal­
ityaxiom, 

Application of the equivalence principle that, locally, 
space-time has the structure of Minkowski space, leads to a 
manifold like model for space-time. An analog of the Ga­
teaux derivative is defined and it is shown that the derivative 
of any allowable coordinate transformation takes values in 
the group G, generated by the orthochronous Lorentz trans­
formations and positive dilatations of Minkowski space, G 
therefore forms the structure group of the tangent bundle for 
space-time. 

2. WEBS 

Given a set S and a relation p C S X S, consider the col­
lection of all relations p' C S X S which are transitive exten­
sions of p, When ordered by inclusion this collection has a 
least element p given by xpy if and only if there is a finite 
chain Ixo'''''x" l CS (where nEil, 2, .. , l) such that Xo = x, 

xn = y, and Xi _ IPXi for i = 1, ... ,n, 
For any pair of events x,y in physical space-time M, let 

x - -y mean that a light signal, or photon, can travel from 
event x to event y. Suppose that x, y, zEM are such that 
x- -y andy- -z, Since the velocity oflight is finite, x 
must be distinct from z, By the same argument, if x ::::::-=;'y, 
then x =/= y, This requirement that there are no "causal loops" 
expresses the directed ness of the flow of time and motivates 
the following definition: 

A web is a nonempty set W together with a relation 
- _C Wx Wsuch that x- _y=?x=/=y. 

Example 2.1. 

123 
~ 

Example 2.2. 
2 

'./~J 
Example 2,3. The Minkowski web L defined by L = R", 

x - _y<=>Q (y - x) = 0, X
O <yO, where Q (x) = (x,x>, is the 

characteristic quadratic form for Minkowski space, 
Example 2.4. Let W = (W, - -) be a web, Define 

- -rev C W X Wby x- -revY<=>y- -x, Then 
Wrev = (W, - -rev) is a web. 

Elements of W will be called events or points, - - is a 
partial ordering of Wand will be denoted by <. If S is a 
nonempty subset of a web W = (W, - -) then (S, 

- - n S X S) is a web. 
Define +--- - C W X Wby 

x+-- - _y<=>x- _y, x =y or y- -x. 

If x and yare distinct events such that x+-- - -y, then 
x and y will be said to be interacting. +-- ;:::; - is an equiv­
alence relation on Wand +-- ;:::; - equivalence classes will be 
called connected components of W. W will be said to be con­
nected if it has only one connected component. 

Let (WI' - -I)' (W2' - -2) be webs, A map! W I-W2 
will be said to be a web morphism (or ,- - morphism or 
simply morphism) if 
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(VX,YEW I ) x~ -,y=>f(x)~ -d(Y). 

/ will be said to be an isomorphism, writtenf WI z W2, if/is a 
bijection such thatJ,f- ' are morphisms. Let Aut(W,~ -) 
[or simply Aut(W)] denote the group of isomorphisms of W 
onto itself. Morphisms and isomorphisms for +- ~ - and 
< are defined similarly. 

Let e be the orthochronous Lorentz group, G as de­
fined before, and G ' the group generated by the orthochron­
ous Poincare transformations and positive dilatations of 
Minkowski space. By Zeeman's theorem, I Aut(L ) = G '. 

Any ~ _ preserving map preserves <. Therefore, ev­
ery - _ isomorphism is a < isomorphism, that is, an iso­
tony. However, not all isotonies are web isomorphisms. For 
example, let (WI' - -d be the web of Example 2.1, 
(W2' - -2) the web of Example 2.2, and definef WI- W2 by 
IIi) = i. Therefore, the web structure contains more informa­
tion than the causal structure. If x,yEL then x <y 
qQ (y - x) ~ 0, XO <yo. For any web W, Aut( W, - _) 
C Aut( W, <). The inclusion may be strict, as is shown, for 
example, by the web W = WIUW2 with WlJ W2 as defined 
above. However, NandaR proved a theorem which shows 
that Aut(L, <) = Aut(L, - -) = G'. 

3. THE Yr TOPOLOGY 

A subset of W will be said to be a light beam if it is a 
maximal set of interacting events. Thus pC W is a light beam 
if and only if 

(Vx,yE(J ) 

and 

(VxEW-P)(3yE(J) x+-- _yo 

By the axiom of choice, if Sc W is such that x+- - _y for 
all x,yES, Then there exists a light beam containing S. Taking 
S = [x I shows that every point is contained in some light 
beam. Light beams in L are the sets a + Re = [a + te:tER I, 
where aER4 and eE[xER4:0- --x I. InL a light beam is de­
termined by any two points in it; however, this is not true in 
general. Iff WI_WZ then/is a+-- __ morphism if and 
only if/takes light beams into light beams. Using a corollary 
to Zeeman's theorem9 and the fact that for any x,yEL, 
Q (y - x) ~ ° if and only if every light beam through y meets 
some light beam through x, one can show that, as stated in 
the introduction, the group of all bijectionsfL_L such that 
J,f - I take light beams onto light beams is the group generat­
ed by the Poincare transformations and the positive dilata­
tions. Therefore, Aut(L,+- - _) ~ G' X Z2' 

Let Y = Y w be the collection oflight beams in W. If 
PEY , then < n P xp is a total ordering of p. It is natural, 
therefore, to give P the interval topology 10 induced by its 
ordering. Light beams in L are isotonic to (R, <) and there­
fore homeomorphic to the Euclidean line '(i I. Let elY' 
= &'" w be the topological union 7 of Y ; that is, if 
UC W = uY then UEdY' if and only if pnU is open in P for 
all PEY . It is easy to show that Jr'" is a topology for W. If W 
is finite then Jr'" is discrete. Since Jr'" L is an exact topological 
union 7 it can be characterized as the finest topology for L 
which induces the Euclidean topology on light beams. Jr'" L 

is strictly finer than '(i4 and so Hausdorff. It induces the 
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discrete topology on timelike curves and spacelike hypersur­
faces. (L,Jr'" L) is a topologically connected space. 

IfCC Wis a connected component of W, then (VPEX') 
pnC =j; (/) =>P C C and so CEdY'. Therefore, if a web is topo­
logically connected it must be connected. However, not all 
connected webs are topologically connected, as is shown by 
the web W = ( - 1,0)u(0,1)CR, where x- _yqX <yo 

If XE W let X' x be the set of allligh t beams in W con­
taining x where two light beams are identified if they coin­
cide near x. That is 

X' x = [/l.:XE(JEX' I, where fi = [rEX' 
:(3UE£') XErnU, rnU=pnUI 

is the X' germ ofP atx. InL, elements of X' x are singletons, 
P = [P I, and there is a natural one-to-one projection of Y x 

onto S 2 C R3 given by ~ the unique wES 2 such that 
P = [x + t (l,w):tER I. 

Any continuous path r:[a,b ]_'(i4 can be uniformly ap­
proximated arbitrarily well by a polygonal path whose sides 
are light beams, and any such polygonal path is Jr'" continu­
ous. Therefore the set C ([a,b ],JY) is dense in the space 
C ([a,b], '(i4) where C([a,b], '(i4) has its usual supremum 
norm. 

4. LOCALLY MINKOWSKIAN WEBS 

If Wo, Ware webs, then W will be said to be locally Wo if 
every point in Whas an open neighborhood isomorphic to an 
open subweb of WOo The equivalence principle provides 
some justification for modelling space-time by locally L 
webs. If M is a Lorentzian manifold and - _ is interpreted 
in the usual way in terms of null geodesics, then in general, M 
need not be a locally L web. However, if M is causal and 
conform ally flat then it is a locally L web. Since L zLrev , a 
web W is locally L if and only if Wrev is locally L. If W is 
locally L, then light beams in Ware causally unbounded and 
locally isotonic to (R, <), and are therefore one manifolds. 

For Wa web and XE W denote rYE W:x - -y I by 
[X - -I. If X, Yare (real) vector spaces let Hom(X, Y) denote 
the space of linear maps T:X -+ Y. Suppose that X is a vector 
space which has been equipped with a Hausdorff topology. 
Let UCL be open andfU-X.fwill be said to be differentia­
ble at aE U if there exists a linear map TEHom (R4,x) such 
that 

(VeE[O - -j) h - Via + he) - /(a))-+Te as h-O. 

If the derivative exists it is unique and will be denoted 
by T = D/(a). If X has a norm H :X-[O, 00) such that the 
norm topology is coarse in X, then a necessary condition for/ 
to be differentiable at a with derivative TEHom(R4, X) is that 

(Ve[ ° - -J) Ih I-I[f(a + he) - f(a) - Thel-+O as 
h-+O. 

When X is normable this condition is sufficient. The 
condition is also sufficient when X is Land/is a+-- _ 
morphism. Iff U-+X is differentiable at aEU, define a a (x) (f) 
= (Df(x))ea where [ea J is the standard basis for R4. The 

derivative at xEL of a function depends only on the behavior 
of the function at events interacting with x. 

Let U, Vbe open subwebs of L,f U_ Va+- - _ mor-
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phism differentiable at aE U, g: V _L a _ - _ morphism 
differentiableatf(a), T = Df(a), andS = Dg(f(a)). Thengofis 
a - - - morphism and for any eE{O- -I. h #0, 
Ih 1-llgof(a + he) - gof(a) - SThel 

::::; Ih 1-llg(f(a + he) - g(f(a))) - S (f(a + he) - f(a)) I 
+ Ih 1-IIS(f(a + he) - f(a) - The)l-0 as h-0, 

becausef(a + he) - f(a)-0 along a fixed light beam ash-O. 
Therefore, gofis differentiable at a and the chain rule, 
(D (gof))(a) = (Dgf(a))Df(a),holds.lfUeLisEuclideanopen 
andfU-L = R4 is a _ - _ morphism differentiable at 
aEU in the usual Gateaux sense, thenfis differentiable and 
the two derivatives coincide. 

Suppose thatf U::::; Vandfis a diffeomorphism, that is, 
/,f- I are differentiable over their respective domains. Let 
aEU and T = Df(a). By the chain rule, Tis nonsingular. Let 
eE{O- -J. Choosee'E{f(a + he) - f(a):h >OJ.fis a -­
morphism and so e'E{ 0- - J. For all h > 0, h - VIa + he) 
- f(a))E[O, 00 )e'. Thus, since h - VIa + he) 
- f(a))- Te as h-O+, [0, 00 )e' is closed and Te # 0, we have 

that TeE{O- -J.HenceT {O- -J e (O- -J and so, bya 
well-known theorem, II TEG. Therefore Df(x)EG for all XEU. 

By Zeeman's theorem, iffL::::;L thenfEG' and so f is 
everywhere differentiable with derivativef - flO). There are, 
however, web isomorphismsf U::::; V; U, VESW'L' other than 
elements of G'. 

Example 4.1. (the conformal inversion) 
Let U= (xER4:Q(x) >0, xO>OJ, V= - U. Uand V 

are Euclidean open, and so open. DefinefU-Vby 

fIx) = - [Q(X)]-IX. 

Thenfis a web isomorphism and is differentiable over U 
with derivative 

Df(x) = [Q(x)]-2[2x(xl - Q(x)I], 

where (xIEHom(R4, R) is the map (xl(v) = (x,v). The stan­
dard matrix for Df(x) is 

[Df(x)]af3 = [Q(x)]-2[2xaxf3 _Q(x)oaf3 ], 
where xf3 = 1Jf3YxY. If XEU, T = Df(x) then (Tu, Tv) 
= [Q (X)]-2(U,V) for all u, vER4, so the "dilatation factor" at 

x is [Q (x)]-I.f-I:V::::; Uis given byf-I(s) = - [Q (s )]-IS 
and so f - I is differentiable over V. 

If Wis locally L let C(j = C(j W be the family of all coordi­
nate systems, or charts, for W, that is rpEC(j <;::x/J: U::::; U' for 
some UESW' , U' ESW' L . A subcovering fiJ e C(j will be called a 
differentiable structure for W if it is a maximal family of 
differentiably compatible charts, where two charts rpl' rp2 are 
differentiably compatible if and only if Domain(rp I )nDo­
main(rp2) = 0 or rp20rp 1- I is a diffeomorphism. 

A theorem of Hawking 5,6 states that if M,M' are (time 
oriented strongly causal) Coo Lorentzian manifolds and 
h:M-M' is a manifold homeomorphism which takes null 
geodesics to null geodesics, then h is a C 00 diffeomorphism. 
Let U, VeL be Euclidean open andfU::::; V. It is known l2 

thatfmust be a Euclidean homeomorphism. Hawking's 
theorem then implies thatfmust be Coo. Thus, Hawking's 
theorem implies that iffU::::; Vwhere U, VES4, then f is dif­
ferentiable. If this result is true for arbitrary U, VESW'L' then 
every locally L web W has a unique differentiable structure 
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fiJ = C(j consisting of all charts for W. 
If fiJ = {rp j J is a differentiable structure for W then the 

assignment (rpi>rp/,;--+gij = (Drpjorp j- I)orpj satisfies the alge­
braic condition (the chain rule) necessary to be a fiJ cocycle 
with values in G. 13 Therefore, there is a unique vector bundle 
p:E_ Wassociated with (W,fiJ) for which thegij are the tran­
sition functions. The topology of the space E = TW 
= uxEwTx W will depend on the topology given to G, subject 
to the continuity of the gij' Denote fiJ x = (rpEfiJ :XE do­
main(rp ) J. Then a tangent vector A x ETx W can be thought of 
as an assignment A x :fiJ x _R4 such that 

Ax (rpj) = gij(x)Ax(rpj), 'tJrpj, rpjEfiJ x 

[this corresponds to the usual formula, A a = (aX"/ax f3)A 13]. 
In the construction of TW, G has its usual linear representa­
tion on R4. In general, any representation 1T:G-Aut(X) ofG, 
induces a bundle over W with fibers isomorphic to X and 
structure group G /Ker(1T). 

LetF:G XS2_S2 be defined by 

F(T,OJ) = FT(OJ) = ([T(I,OJ)]O)-I([T(I,OJ)]t, [T(I,OJjf, 
[T (I,OJjp). 

F is a C W action of G on S 2. F is an extension to G of the usual 
action of 0 (3) on S 2, with the usual imbedding of 0 (3) in G 
and therefore, Fis transitive. Suppose that TEKer(F). Then, 
for all OJES 2,([T(I,OJW, [T(I,OJjf, [T(I,OJ)P) = [T(I,OJ)]oOJ; 
thus, T(I,OJ) = [T(I,OJ)]O(I,OJ). Therefore, OJ.......,.[T(I,OJ)]O is a 
continuous function from S 2 into the set 0'( T) of eigenvalues 
of T. Since 0'( T) is discrete and Tis orthochronous, [T ( I ,OJ)]O 
must equal a positive constant, so T = AI, A > O. Therefore, 
Ker(F) ~ R + is the dilatation subgroup of G and F is an effec­
tive action of eon S 2. 

Let rpE fiJ x , rp : U::::; U', and let f3E.Y x' Choose f3E/3. 
rp (f3n U) is an open subset of a light beam in L through ¢(x) 
and is therefore taken by the projection map defined pre­
viouslytosomeOJES 2

• Iff3I,f32~ thenrp (f3lnU) = rp (f32nU ). 
Therefore the map f3~ is a well-defined bijection of .Y x 

onto S 2. Every rpE@x provides an identification of.Y x with 
S 2, and so every chart pair rpj' rpj E fiJ x induces a permuta­
tion of S2. It is easy to show that this permutation is F T' 

where T = gij(x). Thus,.Y x has the topology and C'" differ­
entiable structure of S 2, and the bundle .Y W = UXEW ,!!" x 

has structure group e. 
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Two flat-space transverse-traceless tensor operators can be used to construct initial data for 
numerical solutions of the gravitational field equations. One of these operators is related to the 
conformal curvature 3-tensor and is shown to exist in a large class of nonflat 3-spaces. The second 
operator enjoys no such liberty. Important applications to gravitational wave scattering are 
suggested. It is argued that the number of operators available on a particular 3-space is related to 
the number of gravitational field modes that are excited in the space. 

PACS numbers: 04.20.Cv, 04.30. + x 

I. INTRODUCTION 

Symmetric transverse-traceless (TT) tensors play an im­
portant role in general relativity. In the initial-value prob­
lem 1 it is found that one part of the freely specifiable data is 
the TT field momentum density 1T"h. In the linearized the­
ory, so important for understanding weak gravitational 
waves, one may always choose the TT gauge, in which the 
tensor hij = gij - Dij is transverse-traceless. 

There is a method due to York2 for constructing TT 
tensors in curved spaces. Given an arbitrary symmetric 3-
tensor one can always decompose it into three mutually or­
thogonal terms, one of which is the TT part: 

hab = h ~~ + (LXLb + ~abh, 
(LX)ab=VaXb + VbXa - jgab(VcXC ). 

However,. an elliptic differential equation 

must be solved in carrying out this decomposition and in 
general it cannot be solved analytically. The solution of this 
equation by numerical methods is also troublesome because 
of the nature of elliptic equations. 3 Clearly it would be of 
great convenience if there were completely local prescrip­
tions for generating TT tensors on curved spaces. 

The purpose of this paper is to present a new technique 
for generating TT tensors by local methods in a large class of 
three-dimensional Riemannian spaces. As a first step I shall 
consider local TT operators in flat spaces. Reviewing this 
material will not only show how a more general TT operator 
can be constructed, it will also lead to some useful techniques 
for generating initial data for gravitational Cauchy prob­
lems. Then the subject of TT tensor operators on curved 
spaces will be considered. I will argue that the existence of 
one or more TT operators on a space depends upon how 
many gravitational field modes are already excited in the 
space. Applications of these operators will be suggested 
throughout this paper. 

"Supported in part by NSF Grant PHY 74-14191. 
h'Present address: Department of Physics and Astronomy, Appalachian 

State University, Boone, N.C. 28608. 

II. FLAT-SPACE TRANSVERSE-TRACELESS 
OPERATORS 

Flat-space TT operators have been known for some 
time. 4 They are usually presented as direct generalizations of 
the transverse vector operators so frequently used in electro­
magnetism for the construction of multi pole moments5 and 
the use of Debye potentials6 (see Appendix A). A straight 
forward method of deriving flat-space TT operators is to use 
Fourier analysis to reduce the differential condition 
J;hij(x) = 0 to the simpler algebraic one, k;hij(k) = O. Com­
bining this with the trace condition h;;(x) = 0 = hij(k), one 
can solve for the most general hulk) that has the form 
uij(k)<P (k). This particular form of hij (k)is chosen because it 
makes hij(x) a TT tensor operator premultiplying a scalar 
<P (x). The latter is called a Debye potential in analogy with 
the transverse-vector operator formalism. 

When the equations for uij(k) are solved, it is found that 
derivatives in k-space must be introduced, and that there are 
only two inequivalent solutions. Transforming back to x­
space, TT operators L;j and Mij are obtained. After some 
manipulation these take the simple forms (see Appendix B) 

Lij = L(iM;l + L(iJj)' Mij = Ukl ]JkL'j' 

L; = Ukl ]x,JK , M; = [ikljJkL,. 

An important property of Lij and Mij is that they are 
orthogonal; that is, for arbitrary <P and IJI 

fd3X(Lij<P)(MijlJl) O. 

This means that, given an arbitrary TT Cartesian tensor hIT, 
one can write 

hV =Lij<P +MijlJl 

and solve, without any physical ambiguity, for each of the 
Debye potentials <P and IJI. The solutions are unique up to 
arbitrary monopole and dipole terms (see Appendix B). 
However, Lij and M lj will annihilate these terms anyway, so 
they are of no significance. 

III. APPLICATIONS OF THE FLAT-SPACE OPERATORS 

An important use for the flat-space TT operators just 
discussed is in the construction of initial data to be evolved 
by numerical methods:' Solutions of the linearized field 
equations are valid in the wave zone. The computer program 
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can then advance the wave into stronger-field regions where 
the effects of self-interaction can be analyzed. This proce­
dure is now outlined and examples will follow. 

A wavelike effect can be described by the TT part of the 
tensor hI} = gij - Oij' which measures departure from flat­
ness. In the wavezone and in the absence of sources, this TT 
part satisfies the wave equation: 

DhV =0. 

In terms of Debye potentials these six equations become the 
two equations (see Appendix B) 

D<P = 0, Dtf/ = o. 
Of particular interest are situations in which <P and tf/ 

have simple mutipole structure. As has been mentioned al­
ready, monopole and dipole potentials are annihilated by the 
operators LI} and MI}. The first nontrivial result occurs when 
<P or tf/ has the form 

f(t,r) Y2m (e,¢Y ), 

where Y2m is a spherical harmonic. An h JT so obtained is a 
pure-quadrupole TT tensor. Similarly, potentials of the form 

f(t,r)YI ", (e,¢Y ) 

will generate pure-octupole TT tensors. 
In order to calculate the components of h JT in these 

two cases, it is far more convenient to work in spherical co­
ordinates than Cartesian. The spherical counterparts of Lij 
and Mu are easily calculated from the covariant definitions: 

Lai> =L1aMhl +L1u'il,,1' 
La = Euhc'ilhrc' 
ra-~'ilu(x2 + y2 + Z2), 

Mah =Eakl'ilkL~), 
Ma = E"bc'ilhLc ' 

Eabc = (\lg)[abc]. 

In the case of azimuthal symmetry, the operators have the 
nontrival components 7 

L r", = (s/2)Jo(L 2 + 2), L(J'" = - (r/2)(rJr + 2)S2Jo(l/S)J(J' 

Mrr = (l/2r)L 2(L 2 + 2), M ro = - (l/2r)JrrJo(L 2 + 2), 

~o = - !(C/s)J(J(L 2 + 2) + (r/2)Jr(rJr + 2)sJo(l/s)Jo, 

with the following definitions having been made: 

s=sine, c cose, 

L 2-L uL 1 J J 1 J2 1 J . eJ 
= u = - oS Ii + --:;- '" · . oSln o· 

s s- SIn e 
Thus h ~;; = Lab <P + Mab tf/ appears as 

It is immediately apparent that tf/ (r,e) generates those parts 
of h ~;; which are invariant under the reflection ¢Y-1T - ¢Y, 
while <P generates those parts of h ~;; which change only in 
sign under this reflection. Therefore tf/ produces even-parity 
solutions, while <P produces odd-parity ones. The reason for 
this can be traced back to the definitions of the operators Lab 
and M ab . The first is actually a pseudotensor operator, while 
the second is a tensor operator in the fullest sense. 

A pure-quadrupole even-parity azimuthally symmetric 
TT tensor can be explicitly displayed. Choosing the Debye 
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potential tf/ as 

tf/ = f(t,r)(cos 2e - i), 

it is found that 

Mrrtf/= (l2/r)tf/= (12f/r)(cos2e - i), 

Mrotf/= - 4[k + (l/r)f]sinecose, 

M(JO tf/ = - 4f + [kr + (3/r)k - (7/r)j]rsin2e, 

M",,,, tf/ = - 4(sin2e - [kr + (3/r)k - (8/r)j]rsin4e. 

The wavelike TT tensor h ~;; = Mab tf/ will be completely 
specified when one has chosen a solution of the following 
equation for the functionf(t,r): 

0= - /,,, + /'rr + (2/r)/'r - (6/r)f 

Teukolsky8 has produced just such a TT wavelike solu­
tion of the linearized Einstein equations by other methods. 
The solution is referred to as a linearized Brill9 wave. To 
demonstrate that Teukolsky's solution is actually of the type 
shown above, the process used will be inverted and the De­
bye potentials found for Teukolsky's wave. The line,element 
in question is 

ds2 = - dt 2 + [1 + 3Esin2e cos2e - A ]dp2 

+ 6sin e cos e [E cos2e + B - C ]dp dz 

+ [1 + 3E cos4e + 6(B - C )cos2e + 3C - A ]dz2 

+ p2[ 1 + 3(A - C)sin2e -A ]d¢Y 2, 

where the function A, B, C, and E are 

A = 6[~F"(r) - 3~F'(r) + 3~F(r)], 
,-3 r4 r' 

B = 2[ _~F"'(r) - 3~F"(r) + 6~F'(r) - 6~F(r)], 
r- r' r4 r' 

C = ![~F""(r) - ~F"'(r) + ~F"(r) 
r r r' 

21, 21 ] --F(r)+-F(r) , 
r4 r' 

E=A +C-2B. 

The tensor hab so defined can be verified to be transverse­
traceless. In spherical coordinates it takes the form 

hrr = 3A (cos2e - i), 

hro = - 3Brsine cose, 

hoo = - rA + 3rC sin2e, 
h",,,, = - rA sin2e + 3r(A - C) sin4e. 

The Debye potential <P can be found by solving the equation 
(see Appendix B) 

- ~L 2(L 2 + 2)<P = ,aL bhab = rJL 3hJJ = o. 
Consequently <P = 0 up to irrelevant monopole and dipole 
terms. The other Debye potential tf/ is found by solving the 
equation 

!L 2(L 2 + 2)tf/ = ,arbhab = 3Ar(cos2e _ i). 

The solution is easily found to be 

tf/ = irA (cos2e - i), 

again up to inconsequential monopole and dipole terms. 
Camparison of the Debye potentials for Teukolsky's solu-
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tion with those for the more general quadrupole solution 
shows that they are equivalent if and only if 

A = (4/r2)f(t,r). 

As a further illustration of these techniques, the pure­
octapole even-parity azimuthally symmetric solutions of 
o h ~;; = 0 will now be displayed. The Debye potentials are 

<P = 0, 1/1 = f(t,r) (cos3e - ~cose). 

In spherical coordinates h ~J has the components 

hrr = 60(/lr) (cos3e - !cose), 

hre = - 15(k + lIr)f) (cos2e - !)sine, 

hee = - 3r(/", + (3Ir)k + (5Ir)f)cos3e 

+ 3r(kr + (3Ir)k + (lIr)f)cose, 

hee = - 3r(/", + (3Ir)k - (l5Ir)f)cos5e 

+ 6r(kr + (3Ir)k - (13lr)f)cos3e 

- 3r(kr + (3Ir)k - (lllr)/)cos e. 
This TT tensor is completely specified when one chooses an 
f(r,t) which satisfies the equation 

0= -J,,, + J,rr + (2Ir)k - (12lr)f 

IV. TRANSVERSE-TRACELESS OPERATORS ON 
CURVED THREE-SPACES 

First, conformally flat spaces will be analyzed. As is 
known 10 conformal scaling enables one to construct a TT 
tensor in a given space if one is already known in a con for­
mally related space. For conformally flat spaces, described 
by gab = rp 'lab' this means that the flat-space TT operators 
Lab and Mab can be readily generalized to 

- -2 - -2 
Lab = rp Lab' Mab = rp M ab · 

The orthogonality of Lab and Mab translates into the modi­
fied orthogonality relation 

f d 3xg l 12rp '(i; ab<p )(Mab 1/1) = O. 

Finally, the inversion formulas become 

- ~L 2(L 2 + 2)<P = rL b I rp 2h!J L 
~L 2(L 2 + 2)1/1 = r~! rp 2h !JJ, 

with r a and L a borrowed from flat space. 
The existence of these TT operators in conform ally flat 

spaces is very fortunate since it means that wavelike pertur­
bations of the Schwarzschild metric, whose standard space­
like slices dt = 0 are conform ally flat, can be studied using 
Debye potentials. The perturbation equations can be written 
in terms of two scalars rather than a tensor and so it will be 
easier to determine how gravitational waves are scattered 
and absorbed by black holes. This particular problem has, of 
course, already been solved by others, notably Teukolsky, II 
but with a different formalism (Newman-Penrose). It would 
still be of great interest to compare the results of the two 
fundamentally different methods, and so the Debye poten­
tial approach to wavelike perturbations is being investigated 
by the author. An obvious advantage of the Debye-potential 
approach is that it better lends itself to physical interpreta­
tion, since the potentials are simply related to the 3-metric. 
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Now we pass on to the more general and more difficult 
case of 3-spaces which are neither flat nor conformally flat. 
It will be found that one of the operators, Lab' can be general­
ized to a quite large class of curved spaces. As for the second 
operator Mab , the situation is far more of a problem and it 
appears that this operator does not exist on any but confor­
mally flat (or flat) spaces. However, this is only a conjecture. 

The key to the problem of generalizing Lab is to recog­
nize its relationship to the conformal curvature 3-tensor l2 

defined as 

13 ab [amnjV'mSnb' Sab=Rab - $ab R , 

where Rab is the Ricci curvature 3-tensor. Because of its 
structure and the Bianchi identity, this tensor densi ty is sym­
metric and transverse-traceless. Furthermore, it vanishes if 
and only if the 3-metric from which it is constructed is con­
formally flat. To show the relationship between Lab and13 \, 
one need only write 

gab = bab + hab 

and examine that part of 13 a b which is of first order in hab . It 
is found that 

13 ab = HakljJklh'c.cb -h'b.c, l +S.T., 

where "S.T." stands for an identical expression with the free 
indices ("a" and "b") interchanged. If hab is chosen to have 
the form 

hab = 2XaXb <p 

with <p an arbitrary scalar, then 13 a b becomes 

(Jab = Hakl ]Jk I JbJcX,X, - JcJcX,Xb J<p + S.T. 

= H\JbJcXc - JcJcXb) + Jb ILa<P + S.T. 

= !1Mb + Jb JLa<p + S.T. 

= IM(aLb) + J(aLb) 1<P = Lab<P, 

It has been proven, then, that the flat-space operator La" can 
be extracted from the conformal curvature tensor. Specifi­
cally, Lab <P is the first-order part of (Ju" with a flat back­
ground metric and a perturbation of the special form 
hab = 2XaXb<P, 

The path to generalizing Lab is now clear. We must 
express the 3-metric in the form 

gah = gal> + hab , 

with gal> some given "base" metric, and calculate the first­
order part of (J a" in the perturbation hab . If we agree to let 
bars denote quantities of order 0 in hab and asterisks denote 
those of order I, then we find that 

r:'1> = F~I> + r ·'al> + 0 (11 2), 

F~b = W'd(Jaghd + Jbgud - Jdgah ), 

r:% = W'd(Vahbd + Vbhad - Vdh ab ), 

Ral> = Rub + R *"b + 0 (h 2), 

R- r-c r-' r-d F' F' Fd 
ah = ah.e - ac.h + cd ah - ad be' 

SuI> = s"" + S*uh + O(h 2), 

s"" = Rab - !$ah R , 

S * ah = R * al> - ~habR - ~uh(if'dR *cd - h ,dRed ), 
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(Po = 13\ + fJoao + O(h 2), 

lfao = [ak/]V' kS'b' 

fJoab = [akIHVkS;b -r:~S;el· 

The properties of fJ °0 
b could be discovered by inspect­

ing the expression just determined for it. However, it is far 
easier to infer them from the known properties of the full 
conformal curvature tensor fJ a b' From the fact that fJ a b is 
tracefree, it is found that 

O=fJaa =lfaa +fJooa +O(h2) 

and so 

lfaa=o, fJoaa=O. 

Thus fJ 0
0

0 is tracefree for arbitrary tensors hab · 

The symmetry of fJ ah = fJ a egeb implies that 

0= [cab lfJodg"b 

= [cab ],8ab + [cab 1 (f3 *odgtb - ,8adh db) + 0 (h 2), 
and so 

lfab = lfba , fJ °ab _ f3 °ba = lfa dh db _lfb dh da. 

This is the first instance in which the properties of fJ °a b have 
been linked to those of hab . In order thatfJ * ab be symmetric, 
it is necessary and sufficient that hab and lfa b commute: 

(1 ) 

Finally, from the transverse nature of fJ a b' it is found 
that 

0= V'afJab = Valf\ + VofJ"ab - r:~lfae + O(h 2), 

which in turn implies that 

V'afJab = 0, VafJ"Ob = JjJaeVbhae' 

Here is a second linkage between fJ "a hand h abo If fJ 'a b is to 
be transverse, then it is necessary and sufficient that 

fj'eVbhae = O. (2) 

In the flat-space case hab was chosen to be hab 
= 2.xaxb <1> in order to convert fJ"a b into Lab <1>. It is now 

clear that this freedom to choose hab at will existed because 
the background metric gab = Dab was flat and solfab = O. In 
the more general case, when gab is not flat, this freedom no 
longer exists because lfa b need not vanish. Instead, the ten­
sor If\ itself must govern the sturcture of hab . 

If fJ "u b is to be a local linear TT operator premultiplying 
a scalar function and is to have the same differential struc­
ture as the flat-space operator Lab' then we must choose 

hub = uao <1>· 

The function <1> is the Debye potential and so must be com­
pletely arbitrary. The tensor Uab , on the other hand, will be 
determined so as to make fia b symmetric and TT. It will be 
expressed in terms of the background conformal curvature 

lf
a
". 

The two conditions, Eqs. (1) and (2), become, when ex-
pressed in terms of uub and <1>, 

-d -
0= [cab lhadfJ b = [cab 1 uabfJ db <1>, (3) 

=[cab J,8ab + [cab l1f3 "adgtb - ,8adh db) + 0 (h 2), (4) 

IfEq. (3) is to be satisfied for arbitrary scalars <1>, then U ab 
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must commute withlfa b' This wiII generally occur when uab 
has the same eigenvectors with respect to gab as does lfa b' 
Hence 

_ 3_ 

fJab = L fJAgag b' gaL = DAB' 
A~I AA AB 

3 

Uab = L uAg og b' 
A ~ I A A 

(5) 

(6) 

with the three eigenvalues! U A 1 unspecified. Combining this 
last result with Eq. (4), it is found that 

3 __ 3 _ _ 

0=<1> IfJAV'eUA +2<1> 2:J3AuAg bV'egb 
A=I A=I A A 

_ 3_ 

+ (V'c<1» I fJAUA' (7) 
A~I 

Because the vectors! gal are of unit length, the second term 
A 

in Eq. (7) vanishes. Then, since <1> is wholly arbitrary, the first 
and third terms of Eq. (7) must vanish separately: 

3 __ 

0= I fJA V'eUA , (8) 
A~I 

3 _ 

0= IfJAUA' (9) 
A~I 

Each of these constraints upon the three scalars! UA 1 can be 
simplified by making use of the tracelessness of lfa b' Choos­
ing to eliminate the eigenvalue 7J;, we find that since 
7J; = - 7J. -~, then 

If.,aca l + ~aca2 = 0, 

7J.a I + lfp2 = 0, 

where a I and a 2 are defined by 

a k Uk - U 3 (k = 1,2). 

(10) 

(11 ) 

This system consist of four equations for two functions and is 
therefore overdetermined. No general solution exists and so 
fJ 'a b will not always lead to a generalization of the flat-space 
TT operator Lab' The problem now is to find those situations 
in which a solution, and so an operator, exists. 

Before doing this, it is worthwhile to identify a particu­
lar choice of hob which yields a trivial (vanishing) fJ"a b' Such 
an hab' or Uab ' must be discarded because it does not lead to a 
useful local TT operator. Furthermore, any nontrivial solu­
tion is unique only up to terms involving this or any other 
trivial hob' Suppose we calculate fJ "a b when 

that is, hab is proportional to the base metric. The quantities 
r 'cab' R * ab' and S * ab and fJ 'ad reduce to 

r"Cab = (VaH)D~ + (VbH)D~ -gab(VCH), 

R*ab= -VaVbH-gab~H, 
S*ab = - Va Vb H , 

fJ'ab = [akl HV,Vk VbH - S;b VkH + gkbS;c VCH I. 

To show that fJ 'a b vanishes, we first make use of the rule for 
interchanging covariant derivatives, 

[ak/lV,Vk Vb H = + Hakl ]j[sbK'VsH. 
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Next we use the fact that in 3-spaces Rabk/ reduces to 

s"db/ + 'S;,/gak - s,,/gbk - 'S;,da/, 
where s"b = 'iC - ! gabR. Therefore 

[akl fv/vk VbH = [akl]l~b VkH - gkb~c VCH l. 
Clearly, then (3 'a b vanishes, and hab = 2Hgab is a trivial 
choice. It should be remarked that this fact could have been 
inferred from the knowledge that under infinitesimal confor­
mal transformations ogab = A.gab , the mixed-index confor­
mal curvature tensor is invariant: 

o(3ab = O. 

Now the equations of constraint on uab will be solved in 
order to determine when (3 'a b is a TT operator. Because 
these equations relate the eigenvalues of Uab to those of pa b, 
the analysis will be broken down into the following three 
cases: 

(A) No eigenvalue ~) vanishes. 
(B) One eigenvalue (say lJ,,) vanishes. 
(C) Two (and so all) eigenvalues vanish. 

In case (A) there are only two solutions to Eqs. (10) and 
(11 ); 

a l =0, 

~ = c(3z (c = const). 

The first one, a I = 0, implies also that a z = 0, and so Uah is 
of the form 

-' 
Uah = u, I S as b = U..gah · 

A = IA A 

This solution must be rejected because it leads to (3 "a b = 0, 
as just shown. The second solution, ~ = ctJ;., yields 
a 2 = - ca I and so 

UI =al +u" U2 = -cal +u,. 

Thus Uah becomes 

Uah =al[LSh -cLL ] +U..gah' 
I I 2 2 

with a I arbitrary. The second term, being proportional to 
the base metric, can be deleted with no loss of generality. In 
conclusion, then, when none of the eigenvalues of pa h van­
ish, a nontrivial local TT operator exists if only if these eigen­
values are in constant ratio to one another. An appropriate 
choice for hah is 

hah = Wz5as" - ~5aS b)</>' 
I I 2 2 

and the generalization of the flat-space TT operator Lah is 

In case (B) one of the eigenvalues of the conformal cur­
vature tensor vanishes. We will take this one to be 11" and so 
~ + tJ;. = 0 because of the tracelessness of pah • The equa­
tions which constrain U ah , Eqs. (10) and (11), then become 

~ac(al - a 2) = 0, ~(al - a2) = O. 

The only solution to these equations is 
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and this implies that U I = Uz· Therefore, Uab is 

Uah =UI(SaSh +SaSh)+U,SaS h, 
I I 2 2 -' -' 

with U I and u-' arbitrary. Because terms proportional to gal> 

are irrelevant, U ab can also be written 

Therefore, when one of the eigenvalues of po", vanishes, say 
P" a generalized Lah exists: 

L a h </> = (1/vg)(3"\ [h .. ], 

with an appropriate choice for hah being 

Finally, in case (C), all of the eigenvalues of pab vanish 
and of course pa h itself vanishes. The constraints upon Uah 
are now automatically satisfied and so a generalized L al• al­
ways exists: 

L \ </> = (1/vg)(3"\ [h .. ]. 

Here hab = uab </> and Uah is totally arbitrary. A natural 
choice for the tensor Uab is 

Uah = F(ifJ )rar", 

where ra is the (covariant) position vector in the associated 
flat space whose metric is 

Jab = ifJ -4gah . 

A tedious calculation shows that whenF (ifJ ) = 2ifJ 4, the oper­
ator Lah extracted from (3 "a b is none other than the one that 
can be obtained by conformally scaling the corresponding 
flat-space operator Lab' 13 Of course in this case not one but 
two TT operators exist, as pointed out earlier in this section. 

If the results of cases (A), (B), and (C) are collected, a 
simple conclusion can be drawn. In the first two cases the 
operator Lah exists whenever pa h has not more than one 
independent eigenvalue. In the third case when there are no 
independent eigenvalues at all, not one but two operators 
exist. 

v. WHEN DOES THE SECOND OPERATOR Mab EXIST? 

A natural question to ask at this stage is whether a gen­
eralization of the flat-space operator Mob exists in spaces 
more general than flat or conformally flat ones. Though no 
definite answer is known, some facts about the problem are 
clear. First of all, the curl of (1/vg) (3 'obis not in general a 
TT operator as is the case in flat spaces. In fact, even in 
conformally flat spaces the curl of Lab = ifJ - 2 Lab is not TT 
and is not the same quantity as Mob = 4J -2Mob ' Further­
more, efforts to add compensating terms to the curl of 
(1/ V g)(3 'a b in order to make it TT only lead to non local 
conditions upon the terms added. This situation is clearly 
unacceptable if the program outlined in this paper is to suc­
ceed, and so it is conjectured that Mob is the only generaliza­
tion of the flat-space operator M ab · 

It is interesting that the conjectured nonexistence of 
Mal> in spaces not conform ally flat (or flat) closely parallels 
York 's conjecture 12 that the conformal curvature tensor sin-
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gles out the field excitations of the gravitational field. As has 
been illustrated in Ref. 7, there is a correlation between the 
number of field excitations exhibited by a 3-metric and the 
number of independent eigenvalues of the associated confor­
mal curvature tensor. When all three eigenvalues are zero 
(Le., no independent eigenvalues), there are no field modes 
excited. In this case the space is flat or conformally flat and 
so two orthogonal local TT operators exists for the construc­
tion of wavelike tensors. If either one eigenvalue is zero or all 
eigenvalues are nonzero but are in constant ratio to one an­
other, then there is but one independent eigenvalue. In these 
two cases the flat-space operator Lab can be generalized to 
Lab = (l/Vg) f3'a b [recall cases (A) and (B) in Sec. 4]. Final­
ly, when no eigenvalues are zero and any two of these are 
linearly independent, not even Lab can be generalized by the 
methods considered in this paper. Thus, as the number of 
excited field modes increases from ° to 1 to 2, it appears that 
the number oflocal TT operators available decreases from 2 
to 1 to 0, respectively. 

This conjectured relation between the number of ex­
cited field modes and the number of available TT operators 
can be illustrated with examples. In the case of the Schwarzs­
child solution natural slicing14 yields a conformally flat 3-
space. The conformal curvature vanishes identically and so 
all of its eigenvalues are zero. Consistent with this, the num­
ber of excited field modes is zero, there being only a nondyn­
amical Newtonian-like potential appearing as a conformal 
factor. Two orthogonal local TT operators are available for 
constructing wavelike perturbations of the metric, or for 
constructing candidates for the TT part of the field momen­
tum. 

As an example of the case of one field mode being ex­
cited, consider the exact plane-wave solution with one polar­
ization state. 15 The natural slicing dt = ° yields a 3-metric 
whose conformal curvature has one independent eigenvalue 
corresponding to the single wavelike mode. One local TT 
operator is available for constructing TT tensors. A second 
example of this case is the Kerr-Newman geometry in 
Boyer-Lindquist coordinates with slicing dt = 0. 16 Again 
the conformal curvature has one independent eigenvalue. 
There is a field mode excited in this situation, but it is not 
wavelike. As can easily be shown,7 the nonvanishing eigen­
values of f3 a h are not time-dependent and furthermore they 
fall off much too fast to describe a wave carrying off mass­
energy. This excited mode is analogous to the stationary 
magnetic field mode in the vicinity of a rotating charged 
sphere. At any rate, one local TT operator is available in the 
case of the Kerr-Newman geometry. 

Lastly, the case of two excited field modes is nicely illus­
trated by the exact plane-wave solution with two polariza­
tion states. 17 Here the conformal curvature has two indepen­
dent eigenvalues. None of the eigenvalues is zero and no two 
of them are linearly dependent. In this case not even f3 'a b 

will yield a local TT operator and apparently none is 
available. 

APPENDIX A: DEBYE POTENTIALS FOR VECTORS 

In flat spaces an arbitrary vector can be decomposed 
into three terms as follows'K: 
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Va = La(/> + Ma IJI + JaA. 

The operator La is essentially the angular momentum opera­
tor of quantum mechanics, 

La = - [abc ]xbJc, 

and Ma is its curl, 

Ma = [abc]JhLc. 

The three parts of Va are mutually orthogonal, provided that 
the three potentials fall off at least as fast as l/r. 

The scalar A is the usual "longitudinal" potential of Va' 
while (/> and IJI are the Debye potentials from which its trans­
verse part is constructed. Given Va one can quickly find the 
three potentials by solving elliptic differential equations: 

..1A = Ja Va' L 2(/> = La Va' 

L 21J1 = - Xa Va + XaJaA. 

As is well known, Debye potentials are of great practi­
cal use in electromagnetism, especially in the construction of 
multipole moments. This subject is adequately covered by 
Jackson.5 In constructing source-free solutions of Maxwell's 
equations it is easily shown that if the vector potential is 
written 

Aa = La (/> + Ma IJI + JaA, 

then the equations of motion and constraint become 

D(/> = 0, DIJI = 0, ..1 ("i + n) = 0, 

where n is the scalar potential of electromagnetism. 

APPENDIX B: THE FLAT-SPACE OPERATORS Lab and 

Mab 

Of the multitude of expressions for the TT operators 
Lab and M ab , the most convenient appear to be (in Cartesian 
coordinates )4 

4h = J(aLhl + M(aLhl = L(aJhl + L(aMbl' 

Mab = [akl ]JkL1h · 

These easily generalized to curvilinear coordinates. 
If a Cartesian TT tensor h ~;' is written in the form 

then the Debye potentials (/> and IJI can be recovered by solv­
ing the bielliptic differential equations 

~L 2(L 2 + 2)(/> = <i> = - xhLhh ~;, 

~L 2(L 2 + 2)1JI = .p = Xaxhh ~r 

The operaotr L 2 is the square of the operator L and is the 
"angular part" of the ordinary Laplacian, i.e., 

2 l~'J 12 L = --:---UeSIn e 0 + ~ ifJ. 
Sin e sln-e 

Because L 2 annihilates terms of the typeJ(r) Yoo(e,ifJ ) and 
(L 2 + 2) annihilates those likeJ(r) Y1m (e,ifJ ), the bielliptic op­
erator ~L 2(L 2 + 2) reduces both pure-monopole and pure­
dipole terms to zero. It can also be shown that Lab and Mah 
annihilate these same kinds ofterms.7 Another important 
property common to both of the TT operators Lab andMah is 
that the Laplacian commutes with each of them in flat space. 
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APPENDIX C: SIX-FOLD DECOMPOSITION OF 
CARTESIAN TENSORS 

The York decomposition,2 when applied to a Cartesian 
tensor hab , breaks this tensor into three mutually orthogonal 
terms: 

hab = h~;; + (LX)ab + ~abh, 
(LXlab = JaXb + JbXa -~abJcXc' 

The TT part can be written in terms of the two Debye poten­
tials <P and 1/1: 

h ~;; = Lab <P + Mab 1/1. 

The trace of hab represents of third potential. 
I will now show how it is possible to extract three more 

potentials and their corresponding operators from the longi­
tudinal term (LX )ab' First, write the vector Xa in terms of the 
vector operators discussed in Appendix A; 

Xa =Laa+Mal3+Jar· 
Then calculate (LX jab to obtain 

(LX)ab = 2J(aLb)a + 2(J(a Mb)/3 + 2(J(a Jb) -jDab.:1 Jr· 
We now have hab decomposed into six terms, each term an 
operator premultiplying a scalar potential7

: 

hab = Lab <P + Mab 1/1 + Nab a + Oab/3 + Pab r + Qab h, 

Nab = 2J(a L b)' Oab = 2J(a M b)' 

Pab =2(J(a Jb) - ¥5ab.:1), Qab=!Oab' 

A little investigation reveals that the six terms are mu­
tually orthogonal provided that the potentials fall off at least 
as fast as l/r. This condition can be met whenever the gravi­
tational field has a localized source and is asymptotically 
flat. (The l/r-fall-off condition can be loosened somewhat 
for at least some of the potentials. 7

) 
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Considering a second-rank Hermitian field tensor and a general Hermitian connection we 
construct the associated complex curvature tensor. The Weyl tensor that corresponds to this 
complex curvature is determined. The formalism is applied to the Weyl unitary field theory and to 
the Moffat gravitational theory. 
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I. INTRODUCTION 
The study of complex geometry in relativity is currently 

a subject of increasing interest. 1 In the definition of algebra­
ically special spaces the null tetrad formalism of Newman­
Penrose is generalized to a complex null tetrad. 2 The curva­
ture and Weyl tensors become complex objects and their 
algebraic properties have been studied. 3 Presently we con­
sider the problem of determination of the Weyl tensors asso­
ciated with a complex curvature derivable from a general 
Hermitian connection. Along with the complex affinity we 
consider a Hermitian field tensor g/LV which generalizes the 
usual symmetric metric tensor of general relativity. No rela­
tion is imposed, a priori, between the connection and the field 
tensor. Each particular relationship between these quantities 
is specific to each particular theory as for instance general 
relativity, the Weyl theory, or complex formalisms such as 
the Moffat gravitational theory. It is shown that the general 
curvature is a fourth-rank tensor skew symmetric in the last 
pair of indices, which contains several complex Ricci 
tensors. 

The method used for the determination of the complex 
Weyl tensor is a decomposition process which separates the 
curvature into components with a well determined symme­
try. This method has the advantage of providing a direct 
method for the determination of the spinors associated to the 
components of the complex curvature and of the complex 
Weyl tensors. 

It is the purpose of this paper to apply these results to 
some unitary field theories of interest, such as the Weyl the­
ory and the Moffat theory. However, the general geometric 
results may also be applied as an extension of the use of 
complex geometries in "complex relativity," since presently 
the vierbeins are completely general complex quantities that 
generate the Hermitian field tensor. The formula giving the 
field tensor in terms of the vierbeins is the same formula used 
in the Moffat theory. 

Although the complex vierbeins are implicitly con­
tained in the definition of the Hermitian metric field, they 
are not used in the present paper since all results apply di­
rectly to the connection and curvature as functions of the 
Hermitian field tensor. As is well known, the use of vier be ins 
is necessary for the determination of the spinors associated 
to the curvature and Weyl tensors, and as we have said be­
fore, the present formalism is easily translated in terms of 
complex vierbeins and two-component spinors. 

In Sec. II we define the affine curvature tensor con­
structed with a Hermitian connection, and decompose this 

complex tensor into components with determined symme­
try. The Ricci tensors and scalars of curvature are obtained 
by contractions with the Hermitian field tensor. In Sec; III 
we derive the complex Weyl tensors associated with each 
part of the previous decomposition. Finally, in Sec. IV we 
apply the formalism to some unitary field theories of 
interest. 

II. THE CONNECTION AND THE CURVATURE 

A general asymmetric connection may give rise to dif­
ferent forms of defining the parallel transport of vectors. For 
a contravariant vector field we may use the two possible 
definitions: 

oA /L = - r~f3A adxf3, oA /L = - r~aA adxP. (2.1) 

In order to distinguish these two forms of definition of 
the variation in the coordinates of the vector A under infini­
tesimal parallel transport, we use the notation suggested by 
Einstein4

: we denote the first of the Eqs. (2.1) by oA~ and 
the second one by oA 1'-. Accordingly, two possible defi­
nitions of covariant derivatives follow as 

/L /L /L /L 
dxvA ;~ = dA /L - oA +,dxvA;v = dA I' - oA ; 

explicitly one has 
/L 

A ;~ = A ~v + r~vA a, (2.2) 

I' 
A ;v = A ~v + r~aA a. (2.3) 

The expressions for oA , oA are directly derived 
/L I' 
+ -

from the definitions of Eq. (2.1) by imposing the condition 
that the length of the vector A is unchanged under parallel 
transport. Consequently, covariant derivatives of the classes 
+ and - may be written for an arbitrary tensor field. 

The asymmetric connection may be decomposed into 
symmetric and antisymmetric parts. In this paper we take 
the anti symmetric part of the connection as a purely imagi­
nary third-rank tensor. With this choice the connection r~f3 
becomes Hermitian with respect to the covariant indices 
r ~ff = r~a' Complex tensor fields were used by Einstein4 in 
his complex non symmetric unitary theory. Recently this 
theory has been reviewed and generalized by Moffat.5 In 
these theories the metric tensor is a second-order Hermitian 
tensor. This complex property of the metric allows for a sim­
ple expression of gl'v in terms of a field of complex vierbeins.6 

Thus, one of the advantages of the complex formulation is 
the direct possibility of translating the theory in terms of 
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two-component spinors; if we work with a real asymmetric 
metric the process of determination of the corresponding 
spinors is more complicated. 

The affine curvature tensor may be introduced by the 
commutator 

and has the value 

R ~/1v(r) = aVr~/1 - a/1r~v + r~/1r;" - r~Vr;/1' 
(2.4) 

This same curvature tensor may be derived by calculating 
the variation in the components of a vector field around an 
infinitesimal closed loop, and is also called, for this reason, 
the curvature of rotation. The general curvature tensor R ~/1V 
is presently a complex fourth-rank tensor antisymmetric in 
the indices f-L, v. Accordingly, we may write 

R ~/1v(F) = T~'IV + iS~/1l" 
T~/1l' = - T~l'/1' S~/1V = -S~"/1' 

The explicit expression of these two tensors is 

T~/1l' = G~/1l' + rfavlr [A/1 1- r[,ql Ir[Al' I 

+ 2r[l'/1lr fAa I' 

a a 

S ~'IV = r [' 1 - r [' l' 
~ ~ ;v ~ ~ ;/-L 

(2,5) 

(2.6) 

(2.7) 

where G ~/1V is an affine curvature tensor constructed with 
the symmetric part of the affinity r;v' We mention that here 
the quantity r ~vl is not necessarily equal to the Christoffel 
symbols. The formulas (2.6) and (2.7) show explicitly the co­
variance property of the decomposition (2.5). There is a 

priori no relationship between the connection r;v and the 
Hermitian tensor field g/1v' This relationship will be charac­
teristic of each particular theory considered, as for instance, 
general relativity, a semi-metric theory such as the unitary 
Weyl theory, or the asymmetric unitary theory suggested by 
Moffat. Thus, we keep the formalism in a general form, but 
we need the Hermitian tensor field for lowering the contra­
variant index of curvature, since a discussion of the symme­
try properties of the curvature will be necessary. 

The conventions for lowering and raising indices with a 
Hermitian metric are well known; 

Aa = ga(3A (3, A a = ga(3 A(3' 

..Aa aA "A 
~ ga(3 =g g(3a = U(3' 

Thus, 

(2.8) 

In Sec. III we will determine the Weyl tensor associated 
with the general curvature tensor R aA/1v' For the determina­
tion of this tensor we will use the method of decomposition 
of the curvature into a sum of factors with a determined 
symmetry. The following notation will be used: 

2002 

Sill' = SI'" + Sill" 
- "v/ 

S:v =Sv/1' Sq = -S~. 
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Sj1V being any arbitrary second rank complex tensor, and 
Sill:' SI;,5 denote its Hermitian and Anti-Hermitian parts, 
This decomposition may be extended for a fourth rank com­
plex tensor according to 

Rl'vpu = R/1l' pu + R/1l' pa + R/1vpu + R/1l'pa' (2,9) , -- -v v- Vv 
where, for mstance, 

R/1v pu = !(R/1l'pu + R :vap + R ~I'PO' + R l'/1O'p)' 

with similar expressions for the remaining components in 
Eq. (2,9), From Eq. (2.8) we have for the several terms in Eq, 
(2.9) (Ref. 7) 

Rill' pa = iH[l'vllpu I' 

R/1Y pa = iHiI'VI[pu I' v-
R/1vpa = FiI'vllpa I' 
-V 

Ry:/V = F[/1l'lIpul' 

It is of interest to introduce the quantities 

Bl'l'pu = !(F[IIl')[PU I + F[palll'l' I)' 

El'l'pu = ~(F[/1l'lIpa I - F[pu)[/1l' I)' 

J/1Vpu = !(F(I"'I[pal + Flpulll'l'l)' 

I,{vpO' = !(F(l'l'l[pa I - Flpul[I'" I)' 

L,ll'pa = (i/2)(H[lll'Jlpal + H[pu 11/1 v I)' 

M,lvpa = (i/2)(H[llv)[pa 1- H[pa)[I'" I)' 

K/1ypa = (i/2)(HiI'vllpal + Hlpall/1l' I)' 

U/1Vpu = (i/2)(Hv"'lIpa I - Hlpall/1v I)' 
Accordingly, one gets 

R I12, pa = L,lvpa + Ml'vpa' 

R'f/pa = K/1l'PCf + U/1VPU' 

R,ll'/'" = JI'VPU + I,{vpa, 
-\/ 

R-V'V = Bl'l'pu + E,IVPU' 

The tensors B, E, J, and I satisfy the symmetry 
properties 

B,lvpa = - BVllpa = - B/1vap = Bpallv, 

E,lvpa = - EVllpa = - E'lVUP = - E pa/1v' 

J,,,,pu = Jpu/1Y' I/1"pa = - I pall ,,' 

(2.10) 

(2.11 ) 

(2.12) 

(2.13) 

(2,14) 

(2, IS) 

(2.16) 

(2,17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2,22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

The tensors L, M, K, and U satisfy the same sequence of 
symmetries. The curvature R/1vpa has 192 independent com­
ponents. According to our decomposition this total number 
of components is separated into the tensor B with 21 compo­
nents, E with IS, J + I with 60 and the imaginary parts L, M, 
and K + U with the same number of independent elements. 
We write down the Ricci tensors that correspond to these 
eight elements which compose the curvature in sequence, 
All contractions are carried out using the complex metric 
g/1v' For the components B /1Vpu we have from Eq. (2.26) 

Bva = gP''B/1l'PlT = B ~v' (2.29) 

Thus, the Ricci tensor of the curvature B /1"per is a Hermi tian 
second-rank tensor, In what follows all contractions are tak­
en as in Eq. (2.29), For the remaining components we find 

Eva = - E:v' Jvu = J:v ' Iva = - I~v' 
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Lva = -L~,Mv<7 =M,!v, 
LKva = - K:v' Uvu = U:v' 

A further contraction generates the scalars of curvature. 
They satisfy the conditions 

B=B*,E= -E*,J=J*,1= -1*,L= -L*, 

M=M*,K= -K*, U= U*. 

With these results we can determine the several elements 
that .compose the Weyl tensor associated with the general 
complex curvature. 

III. THE WEYL TENSOR OF THE CURVATURE RI-'vpu 
In the determination of the Weyl tensor of the curva-

ture R it is of interest to introduce the four-index quanti-
/-lVpu 

ty gl-'vpa given by 

gl-'vpu = gl-'Pgvu - gl-'ugvP; 

since gl-'v = gl-'v we have 

g,LvPU = - gl-'vuP = - gvl-'pu = g;ul-'v' 

(3.1) 

(3.2) 

The Weyl tensor will be composed of four elements 
[iIW,Lvpa(i = 1···4); each of these elements corresponds to 
some combination of the several terms in Eqs. (2.22)-(2.25). 
First we select the components Band M and define the 
tensors 

AILvP" = B,LVPU + M,Lvpa = A ;Ul-"" 

P - I (g aA g aA 
) - P * "VP" - '2 ILl'Aa 'p - I-'vAp ." - pal-'V' 

where 

a~ = A ~ - (A I 4)0~, A = B + M = A *, 
The Weyl tensor "of the class (1)" is given by 

(IIW"vp" = AI-'vp" - PI-'VP" - (A 112)g"vp,, ' (3.3) 

and has the same symmetries as the tensor Al-'vP'" In addi­
tion, it satisfies 

(I)W =(I)W" =0 
va VIUT' 

Continuing with this process we select the components E 
and L and introduce the tensors 

with 

r/.;, =Q~ -(Q/4)0~,Q=E+L= -Q*. 

The Weyl tensor (2) W is given by the expression 

121w,Lvpa = Q"vpa - T"vpa - (Q 112)g"vp,,; (3.4) 

all symmetries presented by QI-'vpa are satisfied as well by 
121 W"vpa and we have the conditions 

121Wv" = O. 

By a similar choice we finally take the tensors (J,U) and 
(1,K) and form the quantities: 

2003 

n,,,'pa = JI-'vpa + UI-'VpU = n ;"I-'V' 

AILvpa = 1"vpa + K,LVP" = - A ;a"v, 
..::1 = l( A _ A ) _ A * ILVP" 2 g"vAaaJ.p gl-'vApaJ." - "-I P"ll-v' 
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n" _I(g A.A_g A.A)=_A.* 
'P).Lvpa - 2 IlvAa'f'·p J.lvAp"f/ -(7 'f' PUll-v' 

where 

aJ~ = n~ - (n 14)0~, </J~ =A ~ - (A 14)0~. 
These elements generate the Weyl tensors "of the classes (3) 
and (4)" according to 

131W,Lvpa = nll-vp" - ..::1Il-VP" - (n I 12)gll-vpa , (3.5) 

141WIl-Vp" = All-vpa - <I>ll-vpa - (A 112)gll-vp,,' (3.6) 

(3IWand 141Whave the same symmetry as the tensors n 
and A, and satisfy 

(31 Wv" = 141 Wv" = O. 

Thus, the Weyl tensor associated to the general, complex, 
curvature is given by the sum of the four elements lilW, 

4 
_ "Iii 

WIl-VP" - £.. W,LVP'" 
;= I 

and has the form 

W - R - I [ (R A - (R 14)0.1) ILVP" - Il-vpa '2 gil-vA" p p 

-gll-vAu{R"rr _(RI4)OA,,)] -nRg,,,pa' (3.7) 

where 
RA - ",AIL,.[3a R 'p -~ ~ all-(3p' 

The complex Weyl tensor WILVPU has the symmetry property 
w,"'p<7 = - Wl-'m{J' which is the only symmetry property 
presented by the curvature tensor RI-'vp" , A formula like Eq. 
(3.7) could have been written without the necessity of going 
through the process of decomposition used in Sec. II and 
Sec. III. However, we have used this process of decomposi­
tion of the curvature RIl-''Pu since it allows directly the deter­
mination of the two-component spinors that correspond to 
the several parts of the curvature tensor and of the W ey I 
tensors Iii W. Equation (3,7) along with the symmetry proper­
ty of the Weyl tensor W do not contain sufficient informa­
tion for the determination of these curvature spinors, 

IV. APPLICATIONS OF THE FORMALISM 
In the previous sections we have considered a general, 

complex, curvature associated with a general Hermitian 
connection r\~A' and have used a Hermitian field tensor gill" 

No relation between the connection and the field tensor was 
used. Now we particularize this general formalism for two 
cases of interest: the asymmetric, complex, field theory of 
Moffat and the semi-metric, real, unitary theory proposed by 
Weyl.H 

A. Moffat's theory 
In this theory the metric and the connection are Hermi­

tian objects which satisfy the field equations (in absence of 
fermion sources) 

$tv,A - gavr~A - gll-ar':;..v = 0, 

g ll"'1 = 0 
- .l' , 

(4.1) 

(4.2) 

(4.3) 

*R'I",)(T) = - ~W','.vJ' (4.4) 

The quantity wI' is a vector gauge field constructed as the 
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vector of torsion of an affine connection W':,A that is related 
to the r':,A by 

W'~A =r:A -~:WA' 
with 

WA = W[Aal = iwA· 

Consequently the vector of torsion of the Hermitian connec­
tion vansihes: r I" = r [Aa I = O. The remaining quantities in 
Eqs. (4.2)-(4.4) are given by 

~II'vl = ( _ g) 1/2gll"vl, g = Igl"v I, 

*R"v(F) = R,,,,(F) + (41TG Ik 2C4)Tl"v' 

T I"V = - i(g[l"v J + g[A{J Ig{Jvgl"A + ~[(JA]g{JAgI"V) = T~I" . 

We recall that the Hermitian field tensor may be written as 
gin' = gll""1 + ig[l"v I' G is the gravitational constant, and 
k = iK, where K has the dimension L 1/2 M - 1/2 T. The Ricci 
tensor RI",,(r) is Hermitian, and consequently has the same 
form as thegl"v written above. The same conclusion holds for 
the tensor *Rl"v(F)' Finally, the following identification is 
made: 

AI" = (Kc4/121TG )ww 

The vector A in the Einstein-Maxwell limit of the theory I" 
(which is obtained for K-0) generates the field strength Fl"v 
[this is obtained from Eq. (4.4)]; the Maxwell equations fol­
low from Eq. (4.2) in this limit. 

Going back to our general curvature tensor given by 
Eqs. (2.5)-(2.7), we can write 

R ~I"v(r) = Y~I"V + iV~l"v' 
with 

Y~I"V = G ~I"v - rp[AI" IrO'[pvl + rp[AV IrO'[pl" i' 

V~I"V = aVrO'[AV I - al"rO'[Avl + rp[AI" JrO'[pv I 

+ r a ipV)rp[AI" 1- rPIAV)rO'[pl" 1- rO'ipl")rp[AV]' 

Accordingly, the complex Ricci tensor may be written as 
RAV(F) = YAV(r) + iVAv(F); imposing the condition that 
the vector of torsion of the connection r vanishes, one 
obtains 

YAV(r) = GAV - rp[A.<71rO'[pv1 = YVA (r),9 

VAv(F) = - aO'r!Av1 + rp(AO')rO'[pv 1 

+ rO'ipVlrp[A.<71 - rO'ipO')rfAVI = - VVA(r). 

Thus, the conditions rl" = 0 imply that RVA (F) is Hermi­
tian. Accordingly, in the application of our formalism to the 
Moffat theory we have to impose the conditions 

EA" =IAv =LAV =KAV =0. 

In this case the components of the Weyl tensor assume the 
form 

11IW -A -P -(AI12)g !-lvpa - flVpu J..Lvpa /lvpa' 

121W -Q 
/-Lvpa - /-LVpu' 

131WI"VpO' = QI"VPO' - ..:1I"VPO' - (il 112)gl"vpO" 
(4)W -A 

J.Lvpa - {Lvpa' 

The explicit value for the Weyl tensor is obtained from the 
field Eqs. (4.3) and (4.4) and from the above equations; 
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J¥;,VPO' = Rl"vpO' - (41TG IKc4) [i(F"pgvO' - Fvpg,,,,, - F,,,,,gvP 

+ FvO'gI"P) + (1!2K)(Tl"pgvO' - Tvpg,,,,, - Tw,gvp + Tvag"p)] 

- h[(41TG IK 2c4 )gipO''aipO'I 

- g[pO'I(41TG IKc4)(2FO'P + ~f3[O'p ])]g"vpO', (4.5) 

where 

TI"V = all,v] + i/3[l"v], 

F"y = 2A[I"'v I' 

In the Einstein-Maxwell limit of the theory, we have 

(1!K){3[I"YI- - 2Fl"v' - (1!K2)all"vl-2Tl"v, 

where Tl"v is the Maxwell energy-momentum tensor. It is 
easy to verify that in this limit Wl"vpO'-Rl"vPO' in empty 
spacel to) (no charges and currents). For the full theory, which 
is unitary field theory, the expression for the complex Weyl 
tensor is given by Eq. (4.5), since in this situation the source 
terms cannot be distinguished from the other dynamical 
factors. 

B. Weyl's theory 
For the unitary field theory proposed by Weyl we have 

r~v = {,Pv} + !(~~v + OF:,~I" - gl""~P), 
(4.6) 

rP1I"V] = 0, 

where the metric giJ,Lvl and the gauge vector field ~I" are sub­
jected to the gauge transformations 

g;,V = Ag"v' ~ ~ = ~I" - a)nA. 

The affinity given by Eq. (4.6) is invariant under these trans­
formations. Accordingly, the curvature tensor associated to 
the Weyl connection is also gauge invariant. In this case we 
have 

Ll"vpO' = Ml"vpO' = Kl"vpa = Ul"vpO' = O. 

The only remaining components of the curvature are 
the quantities B, E, J, and T. Thus, the components of the 
Weyl tensor have the form 

I1IWl"vpO' = Bl"vpO' - Pl"vpa - (B I 12)gl"vpa , (4.7) 

I2IWl"vpO' = El"vpO' - T,lvpO' - (E 112)gl"vpO" (4.8) 

(3)Wl"vpO' = JI"VPO' - ..:1I"VPO' - (J 112)gl"vpO" (4.9) 

(
4 )WI"VPO' = Il"vpO' - <PI"VPO' - (II12)gl"vpO" (4.10) 

A long but straightforward calculation gives 

11I Wpl"vO' = CPl"vO' + !gp[l"~vl~1" + !g1"[v~O']~p 
+gO'[I"~pI~v +gv[p~I"]~a' 

I2IW =0 pJ.Lva , 

(3)Wpl"vO' = ~(gPI"~vO' + gvO'~pl")' 
(4)U;l"vO' = Mgp[l"~v]u + gO'[p~I"Jv + gv[O'~pJI")' 

where C is the Weyl tensor for the Riemann-Christoffel 
Pf-.LVc7 

curvature. ~I"V is the field tensor associated with the poten-
tials ~I" by the definition~l"v = 2~[I".v I' In any application of 
the theory only gauge-invariant quantities have physical sig-
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nificance. As was mentioned before, the Weyl curvature ten­
sor is a quantity of this type; R ~Jt vpu = R ': vpu' An inspection 
of Eqs. (4.7)-(4.10) shows that the several terms involved in 
these equations change under a gauge transformation by a 
mUltiplicative factor A. Thus, we have for all components of 
h W 1 (iIW' 1 (ilW Th" l' h h t e ey tensor, Jtvpu = /I. Jtvpu' IS Imp les t at t e 

physical components of the Weyl tensor are given by 

(iIW = lilW I( _g)I14. 
_ I.J.vpa IlVpu 

The gauge invariant WeyJ tensor associated with the curva­
ture tensor R ~pu IF) is of the form 

4 
- ~lilW ~JtvPu - L _ Jtvpu' 

i= 1 

The expression for WJtvpu has a general form, since in the 
previous calculations we have not used any set of possible 
field equations. For each choice of field equations we can 
particularize the expression of the Ricci-Christoffel tensor in 
Eq. (4.7). 

v. CONCLUSION 

We have seen how to determine the four complex com­
ponents of the Weyl tensor that correspond to a general com­
plex non-Riemannian curvature. The method used here for 
the calculation of the complex Weyl tensors may be applied 
directly for the determination ofthe four Weyl spinors that 
correspond to these tensors. In the determination of these 
spinors we have to work with a general complex set of vier­
beins. Thus, the process of projection of the two-dimensional 
complex spin space has to be properly redefined. After the 
determination of the components of the Weyl spinor we may 
obtain its Petrov classification, and determine the necessary 
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conditions for the existence of radiative fields for general 
complex geometries. The knowledge of such conditions is 
clearly important for any application of this formalism; in 
particular, it is of direct interest for the case of the two uni­
tary field theories considered in this paper. 
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It is proved that all stationary, vacuum solutions of Einstein's equations which satisfy certain 
weak differentiability conditions characterizing asymptotic flatness, possess an analytic structure 
near spatial infinity. This analyticity theorem implies the existence of a multipole expansion 
whose coefficients can be expressed in terms of the Geroch-Hansen multipole moments defined at 
the point at infinity on the conformal manifold. This proves a longstanding conjecture that these 
moments uniquely determine the local structure of a stationary, asymptotically fiat, vacuum 
metric. 

PACS numbers: 04.20.Jb 

I. INTRODUCTION 

In general relativity, the problem of obtaining exact 
physically realistic solutions has long been recognized as an 
extremely difficult one. Even for the few exact solutions 
available in closed form, the physical interpretation is often 
obscured by the particular coordinate system employed. A 
familiar example is provided by the class of static axisym­
metric vacuum solutions discovered by Weyl as early as 
1917. While all the Weyl metrics are "known" when ex­
pressed in the canonical cylindrical coordinates, there does 
not seem to be a simple way of singling out a particular mem­
ber (such as the Schwarzschild metric) tailored to fit a specif­
ic situation. 1 Within the framework of Newtonian gravita­
tion, a given source distribution determines the multipole 
moments which in turn completely determine the gravita­
tional potential through the familiar mUltipole expansion. 
Motivated by this elementary result, considerable attention 
has been directed in recent years toward the study of multi­
pole moments within the framework of general relativity as a 
means of extracting physical information from a given met­
ric. 2 Several (generally inequivalent) definitions are given in 
the literature from different points of view. In view of the 
large gauge (i.e., coordinate) freedom available (or, in other 
words, lack of a preferred coordinate system) in general rela­
tivity-a crucial feature that is absent in the Newtonian the­
ory-coordinate-free definitions seem to be preferrable over 
others. Utilizing conformal techniques, originally due to 
Penrose,' Geroch4 has formulated an elegant coordinate­
free definition of the multipole moments of a static vacuum 
metric. This definition has been extended by Hansen5 to the 
more general case of stationary vacuum fields. One starts by 
considering the quotient manifold 7/' = j( 1,Ci} obtained 
from a stationary spacetime (./1(, g) (signature 
+ - - - )by means of the canonical projection 

1T:X-+[X] = Ix'E. .t1lx~x'!, xc.lI, 

where ~ denotes the equivalence relation induced by the 
action of the one parameter timelike group of motions ,Ci) on 
( ... 1(, g). Thus 'P' represents the manifold of trajectories of the 
associated Killing vector field X = Sl"alaxll on (,~, g) satis­
fying the Killing equation VII,SVI = 0 with respect to the 

a)Work supported by a grant from the National Science Foundation. 

metricgltv ' Topologically 7/isassumed to be R' - .W where 
.w is a closed 3-ball containing the source. The norm 
A. = giL g I' and the twist OJ (satisfying V OJ = e f:' "V" f:' " on 

II I.lVP(I~ ~ 

account of the Einstein equations Rill' = 0) define a complex 
potential 

(/> = (/>M + i(/>j =!A. -trw - I)(W' + 1) 
and an induced positive definite metric 

h= -A.1T*g 

(1.1) 

( 1.2) 

on 'P', where f/ = A. + iOJ is the familiar Ernst potential. <> 

The next step is to introduce a notion of asymptotic flatness 
at spatial infinity. The main idea is to attach a point A to the 
manifold 'P' to represent the "spatial infinity" so that the 
spatial metric hij and the complex potential (/> give rise to a 
set of smooth (i.e., COO) fields 

(1.3) 

on the conformal completion 1/' = 1 'u A. The conformal 
fact~r n is a (non-negative) scalar field (which is at least C~) 
on 7' satisfying the conditions 

[n 1,1 = 0, [fl;i],1 = 0, [fl;ij - 2~j],1 = 0, (1.4) 

where the semicolon represents the action of the covariant 
derivative V on the conformal manifold (7', h). Thesecondi­
tions express in a covariant manner the requirement that fl 
has to fall off "as r- 1 at spatial infinity" (i.e., as r- ex; ), The 
multipole moments Qi""i, are then defined as a sequence of 
traceless symmetric tensors at A by the recurrence relations 

Qi''''i, = [Pi''''i,],1' 

P = $, P" = (j);i" 

if I]' 1 1,1,.1 
(1.5) 

where '(/ [ ... J represents the trace-free part of a tensor and 
(square) round brackets denote (anti-)symmetrization of the 
indices. (The real and imaginary parts ofQ", .. " are respective­
ly the 2'-mass and angular momentum multi pole moments.) 
It has been conjectured that the geometry of a stationary 
vacuum metric is uniquely specified by its multipole mo­
ments. Given a stationary vacuum metric, one has to find a 
suitable conformal factor n in order to calculate its mo­
ments. For the simplest examples such as the Schwarzschild, 
Weyl, and Kerr solutions, a suitable fl can be found by in-
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spection. The converse problem of obtaining asymptotic so­
lution of the vacuum field equations by expressing the res­
caled field variables in terms of the Geroch-Hansen 
moments has been addressed in a recent paper.7 The proce­
dure was to select a = u, the square of the geodesic distance 
from A on ('i>, h), as the conformal factor and expand all the 
rescaled field variables <P and hij in normal coordinates de­
fined around A. However, the difficulty was that the rescaled 
field equations and the standard asymptotic flatness condi­
tions themselves did not as such guarantee the analyticity 
property of <P and hij in a neighborhood of A, although they 
were certainly consistent with it. One had to impose the ex­
tra condition that (r', h) be an analytic manifold from which 
the analyticity of <P could then be established. This is unlike 
the Newtonian theory where the physical boundary condi­
tions on Laplace's equation automatically guarantee the 
analyticity of the rescaled scalar potential in a neighborhood 
ofA. 

The purpose of this paper is to establish rigorously an 
analyticity theorem (Theorem 1 of Sec. II) for all the field 
variables in the case of a stationary vacuum metric starting 
from weak differentiability requirements. Again a special 
conformal factor is selected intrinsically on (:Y, h) which is, 
however, different from the previous one. This time the stan­
dard existence theorems for elliptic systems come to rescue 
the situation. The main obstacle is to prove the ellipticity of 
the system of equations at hand in a neighborhood of A. 
Although the ellipticity and the consequent analyticity 
property in a finite region are well known,S the situation 
becomes much more delicate at spatial infinity, i.e., at the 
point A, due to the appearance of certain terms in the res­
caled field equations that are formally singular at A. In order 
to resolve this difficulty, the extra singular terms are treated 
as auxiliary field variables for which additional regular field 
equations are derived so that the entire extended set of field 
equations becomes a second order (nonlinear) elliptic system 
in a neighborhood of A with analytic coefficients. The analy­
ticity of the solutions then follows from some very powerful 
theorems due to Morrey.9.IO 

The above mentioned idea of proving analyticity of the 
rescaled field variables by considering an extended regular 
coupled elliptic system originates in the work of Hansen5 

where the smoothness of <PM and <PJ was established in this 
manner. Recently Beig and Simon II have independently uti­
lized this idea to derive an analyticity theorem for the static 
vacuum metrics for a specially chosen conformal factor and 
have also proved the multipole expansion theorem. In this 
special case fortunately the field equations can be written in a 
much simpler form which considerably simplifies the argu­
ments. Prior to these efforts, some partial results on the Ger­
och-Hansen asymptotic mUltipole theory have been ob­
tained by Xanthopoulos.1 2 He proved that if the angular 
momentum multi pole moments of a stationary asymptoti­
cally flat spacetime vanish (i.e., 1m Q;, ... ;. = 0), then the spa­
cetime is static; moreover, if Q;, ... ;, = 0, then the spacetime is 
flat. His proof made use of a "unique continuation"theorem 
of Aronszajn and did not require analyticity of the 
potentials. 
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II. THE ANALYTICITY THEOREM 

In this section we shall give a precise formulation of the 
analyticity theorem mentioned in Sec. I. Following Refs. 5 
and 13, it can be shown that the Einstein equations Rf.tv = 0 
for a general stationary vacuum metric imply the foIl owing 
set of equations on 'Y': 

(h ;f'V; 'V
j 

- 2R )et> = 0, (2.1) 

R;j = 2 ['V;et>v,/I>· - (1 + 41et> 12)-1'V, let> 12Vj let> 12
], (2.2) 

where R jj is the Ricci tensor of (~~', h 1 and R = h ijRI}' We 
choose the conformal factor a by requiring the scalar poten­
tial <P to satisfy 

I<P 12 = /1- 2 = const (2.3) 

everywhere on the conformal manifold (:X;.., h). fl is thus a 
positive definite function on r' which is equal to/1- -21et> 12 on 
r and which vanishes at A. The constant /1- in (2.3) is to be 
identified with (m2 + /2) 1/2, where m = [<PM],1 is the mass 
of the system and I = [<PJ],1 is the angular momentum mon­
opole moment (NUT parameter). However, considering the 
field equations in the presence of a stationary distribution of 
matter, Hansen5 has shown that for an asymptotically fiat 
stationary solution I must vanish in the case when the entire 
orbit manifold including the region occupied by the sources 
is topologically JR3. We therefore assume that the system has 
a nonzero mass so that /1-';;6 0 and introduce a new field a on 
(r', h) by the relation 

<P = /1-exp(ia). (2.4) 

Upon performing the conformal transformation (1.3) the res­
caled field equations on ('1', il) become (with.:f denoting the 
covariant Laplacian operator corresponding to the metric 
h,j ), 

(2.5) 
or, equivalently (separating the real and imaginary parts), 

(.:fa - ~w) = - [s(ama m + 2R)fl, (2.6a) 

Xa = 0 (2.6b) 

and 

Ru = - fl -I [aij + hu(.:ffl - 2w) - !/1-2fl;,flJ ] 

+2p2[fla,aj -/1-2(1 +4/1-2fl)-lfl;lfl
J

], (2.7) 

where we have set am: = a;m and 

w: = fl -Ifl;k fl ;k. (2.8) 

Ri} is the Ricci tensorof('j', h), R = h'jRij and the indi~es i, 
j, k,'" are raised and lowered by the conformal metric hij. 
The main result of this paper is given by the following 
theorem. 

Theorem 1: If 
(1) fl, a, and h,j satisfy the vacuum Einstein equations, 

namely, Eqs. (2.6a), (2.6b), and (2.7) on an open domain 
(:.1) oC 'j' containing A, 

(2) fl and a are of class C 2 and h,j is of class C 4 on .rjJ 0, 

(3)fl>00ncrjJo-!A I andfl=OatA,and 
(4)/1-#0, 

then there exists a chart (f/;, ifJ ) consisting of an open set P;; 

containing A with?)J C <'P 0 and a diffeomorphism ifJ: 
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g) _1R3 with respect to which the basic fields fl, a, and hij as 
well as the two auxiliary fields wand Kij defined respectively 
by Eq. (2.8) and the relation 

Kij: = fl -II - fl;ij + 1f-llfl;ifl;j + !hijw), (2.9) 

are analytic functions (i.e., of class CW) on g). 

The basic tools for our proof are the following two theo­
rems on elliptic systems of equations due to Morrey special­
ized to second order systems. A system 

FA (X,UB,UB,;.UB,ij) = 0 (A, B = 1,2, ... ,N) (2.10) 

of N coupled second order nonlinear differential equations 
for N functions uB (x) is said to be elliptic on an open neigh­
borhood g) 0 if, at every point XEg) 0 

(2,11) 

for each nonzero S = (Si )EY~(g) 0), the cotangent space atx, 
where 

[ 
JFA ] 

L AB(X,S): = SkSI JU B•

k1 

(x) (2.12) 

and the comma denotes the ordinary derivative at x. 
Theorem 2 (Morrey9): If the functions uB (x) are of class 

C 2 and satisfy Eqs. (2.10) and (2.11) on a bounded domain 
g) 0 and FA are of class C I on the set ~, the closure of a set 
9(, which contains the compact set 
! x,u B (X),UB.k (X),UB,kl(X) IXE.@ II, with .@ I C g) 0' then uB (x) 
are of class C 2 + v, i.e., uB kl(X) are uniformly H61dercontinu­
ous with exponent v (0 ;.. v < 1) 14 on any domain g) 1 such 
that g; 2 C g) I' 

If, moreover, FA are of class C n + Y, i.e., the nth deriva­
tives of FA are uniformly Holder-continuous with exponent 
v on ~ (n = integer;> 1,0 < v < 1), then uB (x) are of class 
C /I + 2 + v on § I' 

Theorem 3 (MorreylO): If the solutions UB(X) of Eqs. 
(2.10), (2.11) are of class C 2 on g) 0 and FA are of class C '" (i.e., 
analytic) with respect to all its arguments on~, then UB(X) 
are also of class cw on g; 1 with .@ I C § 0.

15 

Proof of Theorem I: As has been already noted, the field 
equations (2.6a) and (2.7) themselves are formally singular at 
A. The main idea of the proof is to obtain a set of second 
order equations which can be shown to be elliptic in a neigh­
borhood of A . 

We begin by noting that since a satisfies a Laplace equa­
tion [Eq. (2.6b)] and hijEC 4 C C 3 + Y (0 < v < 1) on an open set 
,9; 0 containing A, Theorem 2 implies that aEC 4 + v and con­
sequently am EC 3 + v on an open set g; I containing A with 
,9 1 C,q)o' 

Next, contracting Eq. (2.7), we obtain 

Xfl -~w=!fl{-R+!,u2W+2f-l2fl 

X [amam - f-l2( 1 + 4,u2fl )-IW ]}. 

(2.13) 

Upon equating the right-hand sides of Eqs. (2.6a) and (2.13), 
we get, after cancelling a factor fl, the relation 

R + 8a
m

a m(l + \1L2fl) + 1f,ulw(1 + 4,u2fl )-1 = 0, (2.14) 

which must hold everywhere on g; 0 - (A I where fl > O. 
However, we observe that h.jEC4 on g; 0 and, consequently, 
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REC 2 on §J 0 including at A. Further, flEC 2 on g; () and 
a m EC3+ v on g)!. Therefore, by virtue ofEq. (2.14), the 
function W defined by Eq. (2.8) can be extended to a function 
of class C 2 on g) I' includingatthe point A where it is formal­
ly undefined. Introducing the tensor 

L;/ = ~j - !h.jR, (2.15) 

we can express Eq. (2.7) in the form 

Lij =Kij -f..t2e'j' (2.16) 

where Kij is defined by Eq. (2.9) and 

eij: = !hij [flam am + !w(1 + 4f..t2fl )-1] 

-2[fla;aj -,u2(1 +4f-l2fl)-la,flj). (2.17) 

Rewriting Eq. (2.9) in the form 

fl;ij = - flKij + !,ulfl;;flj + ~hijw 
= :Y~)(fl,fl;m ,w,hmn ,Kmn ), 

we obtain a second order equation for fl: 

Xfl = y(1)(fl,w,hmn ,Kmn), 

where, explicitly, 

(2.18) 

(2.19) 

.r(1): = hijy~) = ~w + fl (!,u 2w - Km m) (2.20a) 

= ~w + 2fl [ama m(1 + 4f..t2fl) 

+ f-l 2w( 1 + 4,u2fl ) - I ]. (2.20b) 

The second alternative form of y(I) results on eliminating R 
from Eq. (2.6a) with the help ofEq. (2.14). Since flEC 2, 
WEC 2 C CC 1 + v and am EC 3 + v on g) I' it follows from Eqs. 
(2.19) and (2.20b) by an application of Theorem 2, that 
flECC 3 + v on an open set § 2 containing A such that 
g; 2Cg; I' Hence, by virtue of Eqs. (2.16) and (2.17), Kij can 
be extended to functions of class C 2 on g; 2 including at A 
where it is formally singular. We can also rewrite Eq. (2.7) in 
the form 

where 

q(2). _ K + h- (K m I 2 ) 
c/ ij . - Ij ij m - '5.f..t w 

(2.21) 

+ 2f-l2[fla;aj - ,u2(1 + 4f-l2fl )-'flJ1J J. 
(2.22) 

Next we note that 

W;i = ,u2wfl;i - 2K; kil;k' (2.23) 

From Eqs. (2.18) and (2.23) it follows that W"j can be ex­
pressed as 

W:ij = Y\]i(fl,il;m,w,hmn,Kmn,Kmn;p)' 

Thus w satisfies an elliptic equation 

Xw = Y(3), 

where we have set 
q(3). = h-;j q{3) 
J. t./ l)' 

(2.24) 

(2.25) 

(2.26) 

Obtaining an equation for Kij requires somewhat lengthy but 
straightforward calculations. Taking the curl of flKij' one 
finds 
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where use has been made of the Ricci identity for fl;iukl and 
the formula Ri/Jk = 4hriluLk III I for the Riemann tensor in 
three dimensions. Next, using the expressions for fl;l} and W;i 

given by Eqs. (2.18) and (2.23), one obtains the equation 

nKiU;kl = f.i2 [~nKiUn;k I + !ii;Un;k IW 

- eiufl;kl - ii;Uek Iln;l]. 
(2.27) 

Inserting the expression (2.17) for eij into Eq. (2.27), one 
finally arrives at an equation of the form. 

n [KiU;kl - f.i2Wijdn,fl;m,w,hmn,am,Kmn)) = O. (2.28) 

The quantity within the square brackets itself therefore van­
ishes on .9/ 0 - ! A l, where n > O. At this point it is crucial to 
observe that this quantity is C I on the open set g 2, with 
?23 2 c g; 0' including at A and, consequently, must vanish 
also at A. Hence the relation 

KiU;k I = f.i2 Wijk (2.29) 

holds everywhere on go' Operating on Eq. (2.29) with Vk 

and commuting the derivatives with the help of the Ricci 
identity, we obtain 

- k - km 
ilKij = (Ki ;k)J - 4hriluL k 11m IK 

+ KimLjm + !KijR + f.i2Wij k;k' (2.30) 

The first term can be further reduced with the help ofEq. 
(2.16) and the contracted Bianchi identity 

L/;k = !R;i' (2.31) 

Finally, using Eqs. (2.14), (2.16)-(2.18), and (2.24), after some 
tedious but straightforward calculations, the desired second 
order equation for the auxiliary variables K ij can be brought 
to the form 

.JKij = .5'\;I(fl,n'm ,w,hmn ,am ,a(m;nl'a(m;n)p,Kmn ,Kmn;p)· 
, (2.32) 

It is important to notice that the right-hand side ofEq. (2.32) 
depends on derivatives of am to second orderl Hence, to 
complete the system, we need an equation for am' Commut­
ing the derivatives, it is easy to show that 

.Ja - (.Ja). = Lai + 41Ra .. 
I ;1 I} I 

Making use of Eqs. (2.6b). (2.14), (2.16), and (2.17), we get an 
equation of the form 

(2.33) 

We now introduce a harmonic coordinate system I x,il on an 
open neighborhood of ,// with the point A as the origin 
I X'i = 01 by the conditions 

(2.34) 

Since hmn EC 4 C C 3 + v on g; 0' the coefficients of the linear 
elliptic differential operator .J are of class C 2 + v on !iJ o' 
Hence, by the second part of Theorem 2, it follows that the 
solutions X,i(X) are of class C 4 + v on !iJ \. Moreover, there 
exists an open neighborhood ./Y'c!iJ \ of A such that the 
Jacobian detlax"/axil #0 onff. In this new coordinate sys­
tem Eqs. (2.19), (2.21), (2.25), (2.32), and (2.33) constitute the 
desired system of second order coupled equations of the 
form (2.10) for the 17 functions 
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UB(X') = {n,w,h;"n,a;",K;"n}, 

which are C 2 onff. Writing ~2 = ~i~ i, the 17-dimensional 
square matrix ilL A B(x',~)11 can be expressed in the form 

~2 

o ~2 0 
ilL A B(x',~)11 = 0 0 ~ 2[(61 

o 0 M ~2I(31 

o o M' M" 

where I (N 1 stands for the N X N unit matrix and M, M " M " 
are nonzero matrices of appropriate dimensions. Since obvi­
ously detlL AB \ = (~2)17 #0 V~ #0, we have established the 
fact that the extended system is indeed elliptic onJV. Hence 
from Theorem 3 it follows that the functions uB (x') are C <v 

on an open neighborhood g containing A such that 
9; cff. Of course, analyticity of a;" implies the analyticity 
of a on !iJ. This completes the proof. 

One can define a collection Y of C'v-related charts 
based on harmonic coordinate neighborhoods, in each of 
which the field variables are analytic. This collection Y de­
fines an analytic structure on (r, h), which then becomes an 
analytic Riemannian manifold. 

A similar procedure can be employed to prove an analy­
ticity theorem for static electrovac spacetimes using the po­
tentialsdefined by Hoenselaers. 16 The problem of finding an 
appropriate set of potentials suitable for describing a general 
stationary electrovac spacetime still remains' open. 

III. THE MUL TIPOLE EXPANSION 

The analyticity theorem proved in the last section en­
ables one to construct a multipole expansion for stationary 
vacuum fields by a method analogous to that of the previous 
paper.7 The procedure is to expand the field variables in a 
normal coordinate system centered around A . Since (r, h) is 
an analytic manifold, the exponential map eXPA which maps 
a star-shaped open neighborhoodA-"oCYA onto a normal 
neighborhood ffA C~;V of A, is an analytic diffeomor­
phism. The pair (ffA ,exPA) is therefore an analytic chart in 
r. Thus one can expand fl, a, and ii;j around A in normal 
coordinates which are in many respects the most natural 
generalization of the Cartesian coordinates in a general 
curved space. The coefficients of the Taylor expansion of any 
analytic tensor field T in normal coordinates 17 are actually 
covariant tensorial objects involving only the various covar­
iant derivatives ofT and the Riemann tensor evaluated at the 
origin and consequently have a coordinate-free significance. 
Moreover, the effect of curvature is shown explicitly 
through the terms involving the Riemann tensor and its de­
rivatives. The coefficients of the normal coordinate expan­
sion of fl, a, and hu can be expressed completely in terms of 
the multipole moments. In order to prove this, one needs 
only to show that the covariant derivatives of fl, a, andRij at 
A are uniquely determined by the moments themselves. This 
can be demonstrated by a simple inductive argument. Since 
the procedure is quite straightforward though rather te­
dious, we confine ourselves only to a brief outline of the 
proof. It is analogous to the static case treated by Beig and 
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Simon, but somewhat more complicated in its details. To the 
lowest few orders we have 

Q = m + il, Qi = i(m + il)[ai ]A=(m + il)[A; ],,1' 

Q;,;, =(m+il)'Iff[A,,;, -~R;,dA' (3.1) 

where we have set 

(3.2) 

and [alA =tan- I (11m). We also note the restriction 
Q * Q; = i,u 2 [a; ] A , which serves to fix the "origin" of the 
multipole expansion. When I = 0, ReQi = 0, showing that 
our choice of the conformal factor corresponds to an expan­
sion around the center of mass in the physical space. We 
further note that [a;]A = ImQJm. Also since 
[fl;;j - 2hij]A = O,itfollowsfromEq. (2.l3)that [w1A = 4. 
From Eq. (2.14) one then obtains the value of [R 1,,1 in terms 
of the moments while Eqs. (3.1) and (3.2) yield the values of 
Cf,' [a;;,i, ] = a;;,;, and 'Iff [R;,;, ] at the point A. One therefore 
also obtains the value ofthe full Ricci tensor R;", atA. Using 
Eq. (2.16), we can rewrite Eqs. (2.18) and (2.23) as 

fl;ij =flLlj + Mij(fl,fl;m'w) 
and 

(3.3) 

W., =,u2wfl. - 2(L.m _,u2@.m)fl (3.4) 
,/ ;l I I ;m' 

Equation (3.4) then immediately gives [W;;]A = 0. 
Now, in order to set up the induction, we start with the 

assumption that the muItipole moments uniquely determine 
the covariant derivatives of fl, a, w, and Rlj at A up to certain 
orders; let us suppose that the derivatives of fl and a are 
known up to rth order, that of W up to (r - 1 )th order, and 
that of Rlj up to (r - 2)th order. Then, taking (r - 1) deriva­
tives ofEq. (3.3), we get the (r + l)th derivatives of fl at A; 
the right-hand side involves derivatives of R;j only up to 
order (r - 3) since [fl 1,,1 = ° and [fl;;]A = 0. Similarly, 
taking (r - 1) derivatives of Eq. (3.4), we get the rth deriva­
tive ofw atA; again, the right-hand side involves derivatives 
of Rlj only up to order (r - 2). Next, taking (r - 1) deriva­
tives ofEq. (2.14), one can calculate [R,;, ... ;, . L. Finally, the 
2' + I moments combined with all the previous information 
determine 'Iff [a;(i, ... i".I] and CC [R(i,;,;o,,,,,, .• I] atA. From the 
latter the value of if; ii ... ; at A can be calculated reducing 

12_.\ ,.1 
its various trace and antisymmetric parts to lower order 
terms by commuting the derivatives and using the Ricci and 
Bianchi identities. The trace and the antisymmetric parts of 
a;i""i, .• are evaluated in the same way by noting that.1a = ° 
and a;ij - a Ji = 0. 

Thus with the knowledge of the covariant derivatives of 
the quantities fl, a, w, and Rlj at A up to a certain order in 
terms of the moments, we have succeeded in evaluating their 
next order derivatives at A in terms of the muItipole mo­
ments alone. This completes the proof by induction. 

IV. CONCLUDING REMARKS 

The main result of this paper is an analyticity theorem 
for stationary vacuum metrics satisfying the Einstein equa­
tions. We have shown that if the manifold of the Killing 
trajectories admits a conformal completion satisfying the 
conditions of Theorem 1 for a certain intrinsically selected 
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conformal factor fl, then the spacetime is analytic in a neigh­
borhood of spatial infinity. The requirements on the confor­
mal completion can also be expressed in terms of an arbitrary 
conformal factor ii which is assumed to be C 2 on an open 
neighborhood IiJ 0 of A with ii> ° on IiJ 0 - I A I and ii = 0 
atA. Setting cP = ii -1/2<1>, [lcP 12 1,,1 = ,ul( #O)and requiring 
the conformal metric ~j = ii2hij as well as X =,u -21cP1 2 to 
be C 4 on IiJ 0, one easily recovers the differentiability condi­
tions imposed on the preferred conformal factor fl = xii 
and the corresponding conformal metric hu = x2hu. IR (The 
condition on a = argcP is obviously independent of the 
choice of the conformal factor.) Moreover the asymptotic 
conditions 

[ii 1 A = 0, [Viii]A = 0, [Vi Vjii - 2hu]A = ° 
(Vi being the covariant derivative with respect to hu), imply 
the asymptotic conditions (1.4) for fl. The metric is therefore 
asymptotically flat at spatial infinity in the sense of Geroch. 
The arguments outlined in Sec. III then show that the struc­
ture of all such spacetimes are completely determined near 
spatial infinity by the Geroch-Hansen multipole moments. 
The asymptotic conditions (1.4) have, in fact, been explicitly 
used there to relate the multi pole moments to the basic field 
variables describing the stationary vacuum metric. These 
considerations strongly suggest that the conditions of Theo­
rem I (with I = 0) indeed encompass all the stationary vacu­
um metrics which one might want to regard as asymptotical­
ly flat at spatial infinity from a physical standpoint. The 
condition that the rescaled metric hoj be C 4 near A is admit­
tedly a little awkward which one might wish to replace by 
the minimal requirement that hi} be C 2 near A. The present 
method of proof of the analyticity theorem is then no longer 
valid. This, however, only seems to be a minor technical 
point since if ~j is C 2 near A but not, say C 3 (so that ({,' [Ri) L1 
is only CO there I9

), then the multipole moments themselves 
are not expected to be well defined for orders higher than the 
quadrupole. 

In conclusion it may be remarked that, although we 
have shown that the muItipole moments completely deter­
mine the local geometry of an asym ptotically flat, stationary, 
vacuum metric, the program of obtaining explicit formulae 
for the coefficients of the multipole expansions in terms of 
the moments appears to present a formidable task in view of 
the complexity of the rescaled field equations. However, one 
might expect considerable simplification in the special case 
of the static solutions (e.g., the Weyl metrics) where only the 
Ricci terms contribute to the multipole moments. 
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By Wick rotating the Levi-Civita metric in an appropriate coordinate range, a positive definite, 
~symptotically Euclidean metric is obtained on R 4. This metric has the following properties: (a) it 
IS smooth everywhere except on a 3-sphereI, where it suffers (finite) discontinuities; (b) it is Ricci­
flat everywhere except on I; and (c) it is periodic in "imaginary time" both inside and outside I 
but with two distinct periods (reflecting the fact that the corresponding Lorentzian section covers 
the region bounded by two distinct horizons). In the Euclidean approach to quantum gravity, 
each region with a fixed period may be regarded as being at a fixed temperature. Therefore, in the 
semiclassical approximation, the metric represents an interesting extension of the familiar states 
of thermal equilibrium of the gravitational field. 

PACS numbers: 04.60. + n 

1. INTRODUCTION 

In the quantum theory of interacting fields most ap­
proaches, presently available, are the perturbative ones. 
Over the past few years, however, the importance of the pos­
sible nonperturbative effects has gradually been appreciated. 
In the absence of an exact theory, one is forced to resort to 
semiclassical methods in order to describe these effects. Sev­
eral such methods have been proposed. In particular, math­
ematical aspects of Feynman path integrals have led to the 
idea of Euclideanization and a lot of effort has been devoted 
to the investigation of properties of solutions to the Yang­
Mills equations in the Euclidean space. The viewpoint here is 
that Euclidean solutions with certain properties signal the 
occurrence of physically interesting quantum processes, 
which escape the perturbative expansions. Particularly in­
teresting examples of such solutions are instantons and mer­
ons. There does not yet exist a comprehensive set of rules to 
decide which properties in the Euclidean domain are to play 
important roles in quantum physics; Euclidean physics is 
still very young. Any solution with mathematically interest­
ing properties is therefore a potential candidate for being 
useful; the only criterion is whether or not a natural physical 
interpretation can be associated with it in, e.g., the path inte­
gral scheme. 

In the case of quantum gravity, the issue is even less 
settled. Due to the absence of a preferred time, what is meant 
by Euclideanization is not a priori clear. For instance, one 
can decide to complexify Lorentzian solutions of Einstein's 
equation and investigate their Euclidean sections. The diffi­
culty is of course that relatively few solutions admit such 
Euclidean sections. Another viewpoint I is to look for Euclid­
ean solutions in their own right and then search for a suitable 
physical interpretation. This had led to the notion of gravita­
tional instantons. 2 However, the role played by gravitational 
instantons has turned out to be much more diverse than that 
of their Yang-Mills analogs. At least three types of gravita­
tional ins tan tons, with distinct physical meanings, have 
emerged so far: The black-hole instantons describe states in 

a) Permanent address. 

thermal equilibrium (for which, incidentally, the label in­
stanton is a misnomer, since they are time independent; the 
term instanton was originally coined for objects "localized in 
Euclidean time"!); the compact instantons contribute to the 
space-time foam picture'; while the locally asymptotically 
flat instantons, as in the Yang-Mills case, signal quantum 
tunnelling processes. Thus, in the gravitational case, the 
rules underlying Euclidean physics are, at the moment, even 
more flexible: any Euclidean object which is likely to have a 
simple physical interpretation should be considered. 

The purpose of this note is to present such an object. As 
we shall see, its existence seems to describe, in the full quan­
tum domain, a thermal fluctuation of the gravitational field 
involving the presence of two regions at different 
temperatures. 

2. THE MODEL 

Recall that a state of thermal equilibrium of the gravita­
tional field is described by a black-hole instanton, periodic in 
imaginary time. The frequency of this "time rotation" is 
identified with the temperature of the equilibrium state. We 
now wish to find an Euclidean solution of Einstein's equa­
tion, representing a state with two regions at different tem­
peratures. Although, a priori, such a solution need not arise 
from complexification of a Lorentzian space-time, for sim­
plicity let us restrict ourselves to the case when it does. Then, 
intuitively, one would expect this space-time to exhibit two 
horizons and a Killing vector field a/at, which remains time­
like in the region connecting these horizons. Such a situation 
is of course uncommon. Consider, for instance, the Kerr 
space-time. It does exhibit two horizons but the Killing field 
a fat fails to be timelike in the region in between. The Kerr 
instanton, based on the asymptotic region (where a fat is ti­
melike) describes in fact a state of thermal equilibrium (its 
temperature being determined by the area of the outer hori­
zon). Therefore, most of the Euclidean solutions describing 
thermal fluctuations are likely to exist in their own right, 
without any reference to a Lorentzian space-time. Never­
theless, as we shall show now, there is an appropriate setup 
in which such a Euclidean solution arises in connection with 
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a Lorentzian section. This setup is provided by the vacuum 
Lorentzian C-metric. That such a situation can occur may be 
traced back to the fact that the C-metric, in its maximal 
extension, appears to represent the gravitational field of a 
pair of black holes. (Recall that solutions describing an iso­
lated black hole give rise, in the Euclidean domain, only to 
equilibrium states.) 

A. Properties of the C-metric 

The (hyperbolic) vacuum C-metric4
-

6 is given by? 

ds1 = r{ - F(y)dt 2 + G(x)dz1 

+ F-1(y) dyl + G -I(X) dx2j, (1) 

with r=A -I(X + y)-I,G(X) = 1 - x 2 
- 2mAx3

, 

F (y) = - G ( - y). A priori, no restriction is made on the 
range of coordinates x, y,z,t, or the sign of the arbitrary pa­
rameters m and A. This metric is considered as the gravita­
tional analog of the Born solution in electrodynamics and is 
interpreted as the gravitational field of a pair of uniformly 
accelerated black holes.6 Since three coefficients of the met­
ric have the same sign, and since a/at ,a / az are Killing vector 
fields, Euclidean Einstein solutions will be obtained along 
the section 'T = it, provided F ( y) and G (x) have the same sign. 
Consequently, we must exclude the values ImA 1 ;;.27- 1

/
2 

(corresponding to double root or single root for the cubics F 
and G) since, in this case, regions where F and G have the 
appropriate sign are connected to the curvature singularity 
at, = o. Let us assume that ImA 1 < 27- 1

/
2 and denote by 

X3 < X2 < X 1 the three distinct roots of G (x). It is easy to find, 
in the manifold of orbits of the two Killing fields, the region 
which is located in between the Killing horizons and there­
fore hidden from the curvature singularity at , = O. In the 
chart x, y this region is defined by X3 < X < X 1 and 
- XI < Y < - x 3• A simple inspection of the graph of the 

cubicsFandG[relatedbyF(y) = - G( - y)]showstheexis­
tence of two and only two subregions in whichF( y).G (x) > O. 
These are region I: {x2 <x<xtlX{ -x2 <y< -x31 and 
region II: I X3 < X < x21 X ( - X I <y < - x 2 ). These regions 
are shown in Figs. I and 2 which correspond, respectively, to 
27 - 1/2 > mA > 0 and - 27 - 1/2 < mA < o. (Recall that the 
Minkowskian limit is obtained for m = 0.) The "boundary at 
infinity" gets projected, on the manifold of orbits, along the 
line y + x = 0, i.e., 1'1 = co. The pullbacks to space-time of 
regions I and II are therefore asymptotically flat, since the 
Riemann tensor goes to zer06 as ,-3. (They are connected to 
infinity at the point A where x = X 2 andy = - x 2.) Notice 
that the product F( y)·G (x) is not positive in regions III and 
IV; these two regions are asymptotically flat, the Killing 
field a/at being spacelike in both regions. 

It will be convenient to introduce new coordinates cov­
ering regions I and II. These are 

x*(x) = i~ IG(u)I- 1I2 du, (2a) 

taking values in [O,x*(x tI] for region I and [x*(x3 ),0] for re­
gion II; and 

y*( y) = f: x, IF(u)l- 112 du, (2b) 
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x 

taking values in [0, y*( - x 3)] for region I, and [y*( - x 1),0] 
for region II. In these coordinates, the metric on the mani­
fold of orbits takes the simple form 

± dcr = ± r(dx*2 + d y*2) 

in regions I and II, respectively. [The integrals converge 
sinceG (u)-(u - xz)andF(u)-(u + Xl) in the neighborhood 
of u = x 2 and u = - x 2, respectively.] It is also useful to 
notice the existence of a value of the parameter (mA f for 
which regions I and II appear as squares in the chart x, y. 
This comes about as follows. The graph of G (respectively, F) 
is symmetric with respect to the point x = X 2 (respectively, 
y = - x 2) if and only if (mA )2 = (2 X 27)- I: for this value, 
one has GrnA (x) = (l/6mA )X - 2mAX 3 = - G _ rnA (X) 
= - F rnA ( - X), where we have set X = x - X2 (with 

X2 = - l/6mA ). Consequently, there exists a discrete iso­
metry between region I (respectively, II) of Fig. 1 and region 
II (respectively, I) of Fig. 2: one has the equality 

da:,A(X,Y)=dcr_rnA(-X,- Y), (3) 

where we have set Y = y + x 2• 

From now onwards, we shall fix mA = (2 X 27)-1/2 and 

, , 

FIG. 2. - (27)-11 2 <rnA <0. 
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focus on region I; as we shall see, region II leads to an identi­
cal structure. 

B. The Euclidean section 

We now wish to study the Euclidean solution of Ein­
stein's equation, based on region I of Fig. 1. This solution is 
of course obtained by restricting oneself to the section, = it 
of the complexified space-time, and is represented by the 
metric 

dS 2 = r2(F(y) d,2 + G (x) dz2 

+ G -I(X) dx2 + F-I(y) dy2). (4) 

In order to study the topology and differential structure of 
the underlying manifold, one might consider, as in Ref. 6, 
the 2-dimensional sections obtained by keepingy and ,fixed 
(y #- - x 2)· These sections can be viewed as topological 2-
spheres with north pole at x = X2 and south pole at x = x I' 
The south pole, however, exhibits a nodal singularity.6 Simi­
larly, the sections obtained by keeping x and z fixed (x #- x 2 ), 

appear as 2-spheres with a nodal singularity at the south pole 
y = - x,. To reveal the presence of these nodal singulari­
ties, let us cover the "manifold" of orbits (i.e., region I) by the 
following two charts: (x, y) in [x 2,x I [X [ - x 2 , - x 3[, origi­
nating at (X2' - x 2 ) and (x, y) in ]x2,x I] X] - x 2 , - x 3] origi­
nating at (x I' - X3)' These charts are convenient to compute 
the periods of the Killing rotations. Let us consider a I aT. In 
'the first chart, its period is given by 
41T1F'( - x 2 ) = - 21T[mA (XI - X2 )(X3 - x 2 )]- I, whileinthe 
second chart [originating at (Xl> - x 3)], byR 
41T1F'( - x 3 ) = - 21T[mA (XI - X3 )(X2 - X3)]-I. The two 
periods are distinct. A possible interpretation is to consider 
that the two charts are incompatible. As a result one is faced 
with a 2-dimensional "sheet of nodal singularities". If we 
choose to work in the first chart, these singularities appear at 
the south poles of the y - , 2-spheres, i.e., the points not 
covered by the chart. 

We shall take an alternative viewpoint and show that 
these 2-dimensional "sheets" of nodal singularities can be 
avoided by choosing an appropriate differential structure. 
Let us define r = (x* + y*) andp = (x* - y*), for which the 
metric of Eq. (4) becomes 

dS 2 = r(F(y) d,2 + G(x) dz2 + !dr 2 +! dpl). (5) 

Recall that we have restricted ourselves to the case 
rnA = (2X 27)-112, for which region I is a "square". For this 
value of rnA, XI - x 2 = Xl - X3 and x*, y* define the same 
monotonic (increasing) function on [x2,x I] and [ - x 2, - x 3 ], 

respectively, with values in [O,x*(x d = M]. Hence rtakes its 
values in [O,2M] andpin [- M,M]. (Notethatx* andy* are 
not smoothly related to x and y at the zeros of F and G ). Let 
us further introduce, in the region r <M(respectively, r> M) 
the following coordinates: rP = zk a- I, t/J = ,k a- I (respec­
tively, rP = zk i- I,t/J = ,k i- I) both in [O,21T[. Here ka,ka (re­
spectively, k o() are the periods computed in Ref. 8. Our 
manifold structure will be defined by the chart (r, P,rP,t/J). We 
shall now show that the 3-surfaces 2 (r), defined by r = con­
stant, are diffeomorphic to 3-spheres, The 3-surface 
r = M-which corresponds in Fig. 3 to the diagonal rd-will 
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FIG, 3, rnA = (54)-112, 
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require further study, since it exhibits a metric discontinuity. 
As we shall see, this is due to the fact that 2 (rd) connects two 
roots of F( y) and G (x). In the two regions r < rd (called "as­
ymptotic region") and r> rd (called "inner region") the met­
ric will have no pathology whatsoever. 

Fix a 3-surface 2 (f;»),f;) #- rd, say, f;) < rd' Then we have 
Proposition: 2 (ro) is diffeomorphic to S:1, the induced 

metric on it being regular everywhere. 
Proof Consider a 2-plane R ~, with polar coordinates 

(palJa) = (x*,¢; ), x*;;;.O and O<rP < 21T, equipped with a met­
ric dS ~ = G (x)k~ drP 2 + (dX*)2 and a 2-plane R ~, with co­
ordinates (pdJb) = (y*,t/J),y*;;;'O, O<t/J < 21T, and metric 
dS~ = F(y)k ~dt/J2 + (dy*)2. Let V4 = R ~ XR~. It is easy to 
verify that the metric on V4 is well defined everywhere, in­
cluding points with x* = 0 or y* = 0. Consider the 3-dimen­
sional surface f(f;») of V4 , defined by x* + y* = f;). Y'(1o) is 
a smooth, compact, metric submanifold of V4 • Furthermore, 
it is easy to show, e.g., using the Cartesian coordinates on V4 , 

that every line through the origin of V4 intersects .Y(f;)) in 
exactly two points. Hence ,,/, (f;») is diffeomorphic to S :1. Fi­
nally, by inspection, f(ro) is conformally isometric to 2 (f;)), 
the conformal factor r being regular everywhere. Hence the 
result. 9 D 

Consider, now, the critical value r = rd' Since the mani­
fold structure is defined by the chart (¢;,t/J,r, Pl, it is clear that 
2 (rd ) is diffeomorphic to a 3-sphere. On this 3-sphere, how­
ever, the space-time metric (5) exhibits a discontinuity. This 
is due to the fact that, = ka t/J outside 2 (rd) while, = k i if; 
inside (respectively, z = karP outside and z = (rP inside). 
Such a discontinuity could be expected from the jump in the 
periods of the imaginary time rotation a la" or the fact that 
the two horizons of the Killing field a lat have distinct areas. 

The above results enable us to conclude that the Euclid­
ean "solution" based on region I appears as a family of nest­
ed 3-spheres originating at one point (x = x I' Y = - XI) 

(where the orbits of a la, and a laz degenerate to a single 
point) and expanding up to infinity (i.e., the point A of Fig. 3) 
after crossing the critical sphere at r = rd , where the metric 
is discontinuous. The underlying topology is R 4. The region 
connected to A (i.e., r < rd ) is asymptotically Euclidean. 10 
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3. DISCUSSION 

We have presented an Euclidean solution attached to a 
particular value of the parameter rnA: rnA = (54)-112. What 
is the situation for the other values satisfying 
0< IrnA I < (27)-1/2? It turns out that the above results are 
easy to extend. Let us focus, for instance, on the situation 
depicted in Fig. 1, region I. (The results are identical for any 
other permissible region.) Recall that region I can be covered 
by the chart (x*, y*) [as defined via Eqs. (2a) and (2b)). Here, 
x*E[O,M]andY*E[O,N].Setr=y* + (N IM)x*,r€[O,2N]and 
is = y* - (N 1M )x*, pEl - N,N). Consider, next, the 3-sur­
faces .I (ro) obtained for a fixed value ro of r. We claim that 
.I (;:;») is again diffeomorphic to S 3, the induced metric being 
regular on thisS3 ifro'fN; if;:;) = N, the metric has adiscon­
tinuity on the corresponding sphere.I (N). (The proofis com­
pletely analogous to that of the Proposition in Sec. 2. B.) 
Thus, the Euclidean "solution" appears again as a family of 
nested 3-spheres, the underlying topology being R 4. The 
metric is regular outside the critical 3-sphere, and is asymp­
totically Euclidean. Finally, there exists a 2-parameter fam­
ily of such Euclidean "solutions," parameters rn and A being 
restricted by the condition 0 < IrnA 1«27)-1/2. 

What is the physical interpretation associated with 
those solutions? Recall, to begin with, the situation in the 
case of the Schwarzschild instanton. In the Lorentzian sec­
tion, one considers the region r)2rno, in which the Killing 
field a lat is everywhere nonspaceIike. The instanton is ob­
tained by taking the Euclidean section of this region. The 
Killing field a laT now appears as a rotation with a period 
8Jrrn o,mo being the Schwarzschild mass. The instanton is 
interpreted as representing, in the semiclassical approxima­
tion, a state of thermal equilibrium (with temperature 
1!8Jrmo) of the quantized gravitational field. In the case of 
the C-metric, we have considered the space-time region 
bounded by two horizons, in which the Killing field a lat is 
everywhere nonspacelike. In the Euclidean section, a laT ap­
pears, as expected, as a rotation. However, it exhibits two 
distinct periods 11-2Jrm[(x I - x,)(x2 - x J)) -I for the inner 
region and - 2Jrm[(x l - x 2)(x, - X 2))-1 for the asymptotic 
one-reflecting the existence of two horizons in the Lorent­
zian section. Therefore, it appears natural to interpret the 
Euclidean C-metric as representing, again in the semiclassi­
cal approximation, a state of the quantized gravitational 
field involving two regions at different temperatures: T; 
= (XI - x,)X(x 2 - x ,)12Jrm (associated with the inner re­

gion) and temperature Ta = (X2 - X I )(x, - x 2)12Jrm (associ­
ated. ,:ith the asymptotic region). II As one might expect on 
mtUltlve grounds, Ti > Ta for all permissible values of the 
parameters, i.e., for all m and A subject to 
0< ImA I < (27)-1/2. Thus, in the semiclassical approxima­
tion, the model describes a thermal fluctuation of the quan­
tum gravitational field. 

Let us now examine the action of these Euclidean fields. 
Recall I that this action is given by 
SSSf"1R (v - g)d 4x + SSS,)MJr(vh) dJx, where aM is the 
boundary of the manifold; hah' the 3-metric induced on aM 
by dS 2, and Jr, the extrinsic curvature of aM. In practice, for 
a solution whose boundary is at infinity, aM is first chosen at 
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finite distance and a limit is then taken as "aM goes to infin­
ity", i.e., becomes the actual boundary of the solution. Un­
fortunately, this procedure leads to a divergent integral even 
in the case of flat space. Consequently, a renormalization 
procedure has to be introduced: one replaces the integrand 
JrV h by (Jr - Jro)V h, where Jro is so chosen that the integral 
vanishes in the limit to flat space. What is the situation for 
Euclidean C-metrics? Since gah exhibits a discontinuity on 
the 3-sphere.I (rd), it is convenient to view the solution as the 
union of two disconnected regions: the inner region with ,> ", and the asymptotic region with 0 <, < 'd' The inner 
region has one boundary, namely, the sphere.I (rd ), while 
the asymptotic region has two boundaries, .I (rd) and A, the 
point at infinity. The action of the inner region is obtained as 
the boundary term lim, .",SSS.l" ['I Jr(r,Pl(vh ) dJx, where 
r> rd' Similarly, the action of the asymptotic region is the 
sum 

li~ J J ( Jr(r, PJ(v h) d'x 
r .. r" JX(F) 

+ ~im f J ( [Jr(r,Pl-Jro(r,Pll(vh ) d 3X , 
r .() JII'I 

with r < rd' The extrinsic curvature Jr of any 3-sphere 
.I (r),r'f~, can be easily computed. In the chart (1J,t/J,x, y), 
we have Jr(x,y) = - 3A l(y2)(ykF+ vkG) 
+ [2(y2)r)-'[F'(yk IF) + G '(yk IG)), where k and k 

are, respectively, equal to kjZ, and ka'~ in the inner and 
asymptotic regions. Therefore, the integral 
S S S I I'IJr( V h ) d 3X has finite but distinct limits as r-rd with 
r < rd and r> 'd' Thus, the discontinuity on the critical 3-
sphere makes a finite contribution to the action. The bound­
ary term at infinity, however, is not easy to compute: since 
the cubics F and G degenerate into quadrics in the flat space 
limit, an obvious choice of imbedding of the boundary into 
flat space, and hence, that of Jro, is simply not available. 
However, one can argue that, since the Riemann tensor has 
the same asymptotic falloff as that of the Schwarzschild in­
stanton, the contribution of the boundary term at infinity 
will also be finite. 

By definition, gravitational instantons are positive defi­
nite, complete, regular metrics satisfying Einstein's equa­
tion. Therefore, the above solutions are not instantons; they 
possess metric discontinuities. In the path integral approach, 
however, there appears to be no a priori reason to exclude 
such solutions, provided the discontinuities make only finite 
contributions to the total action. Indeed, in evaluating path 
integrals for systems with a finite number of degrees of free­
dom, one cannot restrict oneself to paths which are C"; one 
must include paths with a finite number of discontinuities. 
Furthermore, our analysis indicates that such discontinui­
ties may well turn out to be an essential feature of all Euclid­
ean solutions representing fluctuations due to regions of dif­
ferent temperature. The discontinuities, it would appear, 
serve as sinks or sources of heat; their occurrence is the "mil­
dest" pathology required for the Killing field a I aT to change 
its period. If one were to allow matter fields, one could ar­
range the situation so that there is an exchange of heat be­
tween the gravitational field and the matter fields without 
the occurrence of pathologies. In the absence of matter, how-
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ever, external sinks of heat are essential and the discontinui­
ties are well suited to serve this purpose. Perhaps one might 
gain new insight into the thermodynamics of the gravitation­
al field by exploring this issue further. 

There exist, in the literature, two generalizations of the 
Lorentzian C-metric: one due to Plebanski and Demianski, 12 

which introduces a rotation parameter "a" by allowing the 
two Killing fields to possess twist, and the other, due to 
Ernst, 13 which introduces a new parameter "A " which, if 
suitably chosen, enables one to get rid of the nodal singulari­
ties. 14 We believe that our analysis can be generalized in a 
straightforward way to incorporate the rotating case. This 
generalization will be very analogous to the one which leads 
one from the Schwarzschild to the Kerr instanton. Ernst's 
extension, on the other hand, cannot be Euclideanized: a 
systematic examination shows that, if A =I- 0, every Euclidean 
section has a curvature singularity! 15 Th us, direct extensions 
of the present ideas will lead only to a 3-parameter family of 
solutions, labeled by m, A, and a, the parameters being re­
stricted to suitable ranges to obtain positive definite metrics 
free of curvature singularities. 
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We give an explicit verification of the Bethe-Yang hypothesis in the one-dimensional delta­
function interaction problem. 

PACS numbers: OS.30.Fk 

I. INTRODUCTION 

The one-dimensional fermion problem with repulsive 
delta function interaction, 

N a2 

H= - I-2 + 2cI8(xi -xi)' c>O, (1) 
I ax; ;<i 

has been solved by Yang. I He applied Bethe's hypothesis 
twice, the second time in a generalized form. The results of 
this second application were stated in his paper without the 
details of the steps. The purpose of this paper is to supply 
these details. In other words, we shall show that (YI8), 
which we shall call the Bethe-Yang hypothesis, solves the 
eigenvalue problem (YI4). 

Recently the Bethe-Yang hypothesis has been used to 
obtain exact solutions of a number of models, notably the 
Gross-Neveu model2 and the Kondo model. 3 Because of 
these developments there has been renewed interest in the 
Bethe-Yang hypothesis. Since some crucial steps were omit­
ted in Yang's paper, we supply them here. 

II. THE MATRIX EIGENVALUE PROBLEM 
M= 1 case 

We first consider the one down spin case. In this case 
the Bethe-Yang hypothesis states that 

</> = F(A,y), (2) 

Where Fis defined in (YI9). We shall write </> as a N X 1 
coulumn matrix whose explicit form is 

., j ~:~:~:). 
~(A'N) 

(3) 

Here A is defined by (Y20) which, in this case, reduces to 

Nip. - iA - c' 
II .) A ' = 1. (4) 

j = , lPi - I + c . 

There is one A in this case and Eq. (4) is the equation which 
determines it. It is easy to check that (4) guarantees the cyclic 
boundary condition 

F(A,N+ 1)=F(A,I) (withpN+1 =ptl. (5) 

We consider now (YI4) forj = 1. The eigenvalue prob­
lem (YI4) is 

(6) 

(7) 

In order to discuss how il, acts on </>, it is convenient to 
introduce the concept of a unit component vector 11) y which 
is a column matrix with entry 1 at the y th position and 0 
elsewhere. This unit component vector represents a down 
spin at positiony. Pij operates by interchanging the spins at 
the i th and ph positions. It is easy to see that il, operating on 
lOy gives 

il,IOy 
=ay,IOy +by,b(Y_'I,IOy_, +by,a(Y_'I,b(y_21,IOy_2 

+ .,. + by, a(y _ 'I' ... a3,b2,11)2 + by, a(y _ III ••• a3 ,a2 d I)" 

and 
for y# 1, (8) 

il,IO, 
=bN,ll)N +aN,b(N_'I,ll)N_' + ... +aN,a(N_'ll 

X ... a3 ,b2 ,ll)2 + aN' a(N _ 'I' ··.a3 ,a2 ,ll)" (9) 

where we have used the notation 

Xij=aij+bijPij (10) 

for Xi; defined in (YlS). Notice that there are at most two 
interchanges. With the aid of (8) and (9) we shall check (6) 
successively for y = N, N - 1, "', 1; i.e., we want to check 

and 

p,(NI</» = (Nlil,</», (11) 

p,(N - 11</» = (N - Ilil ,</», 

p, (yl</» = (Ylil,</», y#N or 1 

p,OI</» = Olil,</», 

(12) 

(13) 

(14) 

where p, is given, in this case, by (Y21) as 

_ ipl-iA -c' 
p, - . 'A , (15) 

IPI -In + c 

For y = N, the right-hand side of (6) is 

bN,F(A,I) + aNIF(A,N) = (i~l - ~A - C:) F(A,N), 
IPI - zA + c 

(16) 

where we have used the cyclic condition (5). Thus (11) is 
verified. 

For y = N - 1, the expression ill</> becomes 

aN,b(N_ III F(A,I) + bNlb(N_'I,F(A,N) 

(
iPN_ I - iA - C') 

+ a(N_IIIF(A,N - I) = . . , b(N-II' 
IP, -IA + c 

XF(A,N - 1) + a(N_II,F(A,N - 1). (17) 
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We have summed the first two terms. The sum here is a 
special consequence (y = N - 1) of the following general 
relation: 

aNla(N_I)I .. ·a(y+ IIIF(A,N + 1) + bNla(N_I)I,,·a(y+ 1)1 

XF(A,N) + b(N_llla(N_211 .. ·a(y+ IIIF(A,N - 2) + ... 

(
iPY - iA - C') + b(y+ IIIF(A,y + 1) =.. F(A,y). (18) 
IPI - iA + c' 

Relation (18) can be easily proved by induction, and we shall 
have many occasions to use it. Now 

(
iPN_ 1 - iA - C') 
.. b(N_IIIF(A,N - 1) + a(N_III 
IPI-lli +c' 

F(A,N _ 1) = (i~1 - ~A - C:) F(A,N _ 1). 
lPI-IA +c 

Hence (12) is satisfied. 
For generaly# lor N, again we have 

aNI "'a(y+ III byI F(A,I) + bNI .. ·a(y + III bylF(A,N) + ... 
+ b(y+ 1)1 byIF(A,y + 1) + ayIF(A,y) 

(
iPY - iA - C') 

=. . , bylF(A,y) + ay1F(A,y) 
lPI - iA + C 

= (iPI - iA - C')F(A ). 
. 'Ii ' ,y IPI -I + C 

We have thus verified (13). 

(19) 

(20) 

Finally, to establish Eq. (14), i.e., for y = 1, we need to 
verify 

aNI · .. a21F(A,1) + bNl .. ·a2IF(A,N) + ... + b2IF(A,2) 

= (i~1 - ~A - C')F(A,I), (21) 
lPI-IA +c' 

which follows from (18) 
Now we have proved that the Bethe-Yang hypothesis 

works for (6), where,ul given by (15) is the eigenvalue. How­
ever, there is no peculiarity about the role of {J 1 because of 
the cyclic boundary condition. We can thus draw the conclu-

sion that 

ipj - iA - c' 

,uj = ;Pj _ iA + c' 
(22) 

and the Bethe-Yang hypothesis works for every j. We have 
now finished proving that the Bethe-Yang hypothesis is val­
id for M = 1. 

M= 2 case 

For two down spins, (YI8) says that <P can be written as 

<P = aF(Aa,x)F(A{3'Y) + /3F(A{3,x)F(A a,y). (23) 

where a and/3 are constant coefficients. Again, we write <P as 
an N(N - 1)/2X 1 matrix 

aF(Aa.1)F(A{3,3) + f3F(A{3.1)F(A" ,3) 

( 

aF{Aa.l)F(A{3.2) +f3F {A{3.1)F(A a.2) ) 

<P~ aF(A.,N _ I)F(Ao,N) +f3F (A,.N _ l)F(A.,N) , 
(24) 

There are two A 's and the cyclic boundary condition 

aF(Aa, I)F(A{3'Y) + /3F(A{3' I)F(Aa'Y) 
= aF(A",y)F(A{3.N + 1) + f3F(A{3,y)F{A".N + 1)(25) 

defines the following equations for A" and A{3: 

a 
(26a) 

/3 

and 

N ipj - iA{3 - c' f3 IT. 'A ' = -. (26b) 
j = I lPj - I {3 + C a 

To solve (6), we follow the same procedure as before by intro­
ducing the concept of a unit component vector 11) xy' which 
is a column matrix with entry 1 at the (x,y) th position and 0 
elsewhere. The action of {J I on one of these component vec­
tors is 

{J111)2x = ayl [axl l1)xy + bXl b(x_ III 11)(X-llY + ... + bXI ... a21 11)ly] 

+ bylb(y_I)I [axl l1)x(y-11 + bxlb(x_ 1(l11)(x-II(Y-11 + ... + b xl • .. a 21 11)IIY-II] + ... 
+ byl .. ·b(x+ 1)1 [axl l1)x(x+ I) + bxl b(x_I(lI1)(x - Ij(x+ II + ... + bxl · .. a2111)I(x+ II] 

+ bYI .. ·a(x + 1)1 [b(x _ 1)1 11)(x - I)x + a(x - 1)1 b(x - 2)1 11)(x - 21x + ... 
+ a(x _ III ... b21 11)2X + a(x - 1)1 "'a2l 11) IX] 

for x# 1 

and 

{J111)IY = 
bNI [ayl I1)YN + bYI b(y_ III 11)(y- I)N + ... + bYI ... a21 1!) IN] + ... + aN I ••• b(y+ III [aYI 11)y(y+ II + bYI b(y_ III I1)IY - II(Y + II 

+ ... + bYI ... a 21 11)1(Y+ II] + aNI .. ·a(y+ 1)1 [b(Y_1II 11)(Y-I)y + ... + a(y_ III ... a21 11)IY]. 

(27) and (28) are the analogs of (8) and (9), except that now there are at most four interchanges of spins. 
To fix al/3. we check the following equation: 

,u1(N-l.NI<P) = (N-l,NI{JI<P). 

requiring,u I to be of the form 

(
iPI - iAa - C') (iPI - iA{3 - C') 

111 = iPI - iAc< + c' iPI - iA{3 + c' . 

Indeed, 
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(N - I,Nla,l/» = bN,aIN_,),aF(Aa,I)F(Ap,N - 1) + aNlaIN_I)laF(Aa,N - I)F(Ap,N) 

+ bIN_lIaF(Aa,I)F(Ap,N) + la~{3 j 

= (i~1 - ~Ap - C:)(i~1 -/~a - C:\~F(Aa,N _ I)F(Ap,N) 
IPI - zAp + C IPI - zAa + C r 

(
ipl - iAB - CI)b (iPN_ 1 - iAa - CI}F(A N _ I)F(A N) 

-. • I IN - II . . I a' p, 
IPI-IAB +C IPI-iAa +C 

+ bIN_')laF(Aa,N)F(Ap,N + 1) + la~{3 j, (31) 

where we have used cyclic condition (26). For iii to be given by (30), we obtain 

a (32) 
{3 iAa - iAp - C 

Equations (26a), (26b), and (32) give (Y20), as equations defining Aa and Ap. Now we check the equation 

fL I (x,YIl/» = (x,yla,l/», for x# 1 andy#N. (33) 

Using (27) and (28), we can obtain 

(
iP I - iAB - C

I
) 

(x,yla,l/» =. . I [axi aF(Aa,x)F(Ap,y) + b(x+ 1)1 bx1aF(Aa,x + I)F(Ap,y) + '" 
IPI - zAp + C 

+ bIY_III",bxlaF(Aa,y - I)F(Ap,Y)] + aNI",aIY + l)lalY_I)I",bxlaF(Aa,I)F(Ap,Y) 

+ bNI",aIY + ,),aIY_,)""bx,aF(Aa,y)F(Ap,N) + ", + b(y+ ,),aIY_,)""bx,aF(Aa,y)F(Ap,y + I) + {a~{3 J, 
(34) 

where each term inside the square bracket is originally a sum like (20). Using (18), we can perform the summation further, 
giving 

(x,yla,l/> ) 

= a(i~1 - ~AB - C:)[(i~1 - ~Aa - C:\V(Aa,x)F(Ap,Y) _ (iP~_ I ~ iAa -IC'tIY_I)1 ... bx,F(Aa,y _ I)F(Ap,y)] 
IPI -lAB + C IPI -IAa + C r IPI -IAa + C r 

(
iP - iAB - C'f +a . Y. I IY_,), ... bx,F(Aa,y)F(Ap,y) + {a~{3J. 
IPI - zAB + C 

Again the eigenvalue,u, is given by (30) if the second and 
third terms and their (a~{31 in (35) sum to zero leading to 
(32). So (29) is satisfied. 

Our remaining job is to check (6) for other values of x 
andy. The algebra is straightforward. We omit these steps. 
We reach the conclusion that the Bethe-Yang hypothesis is 
valid for (6). By arguments of cyclicity we observe that the 
Bethe-Yang hypothesis works for every j with 

. = (iPi - iAa - C
I
) (iPi - iAp - C

I
). 

,ul . '..1 I' '..1 I IPi - I a + C IPi - I P + C 
(36) 

We have thus finished the proof that the Bethe-Yang hy­
pothesis is valid for M = 2. 

For M> 2, similar algebraic manipulation can be used 
to verify the hypothesis. The algebra is messy but no new 
features of difficulty appear. The general formulae are given 
by (Y20) and (Y21). 
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We find that certain random fields obtained by perturbing Gaussian fields with a self-interaction 
potential have the same limit properties as do the random fields of statistical mechanics. 

PACS numbers: 05.50. + q 

INTRODUCTION 

The limit theorems of the theory of probability have 
been applied many times to Gibbs random fields of various 
kinds. 

The integral central limit theorem has been proved by 
many authors 1

,2 and also the local one,3-5 These theorems 
are very important because they describe the properties of 
Gibbs random fields outside the critical region, The critical 
behavior can be described by other kinds of limit theorems, 
that is by the existence of fixed points of the renormalization 
group.6-10 In this paper we find both types oflimit theorems. 
The first one (the integral theorem) is obtained in the case of 
a Gaussian random field with slowly decreasing correlations 
but integrable, perturbed with a small self-interaction poten­
tial; the second one is obtained in the case of a Gaussian 
random field with nonintegrable correlation perturbed by a 
potential of the same kind as before. In this case we obtain a 
Gaussian isotropical automodel random field with a correla­
tiori asymptotically equal to the correlation of the unper­
turbed Gaussian random field. As we know this is the first 
example of renormgroup convergence for non-Gaussian 
Gibbs translation invariant field to a nontrivial Gaussian 
field. We proceed now to exact statements. 

1. FORMULATION OF RESULTS 

Let U t be a translation invariant Gaussian random field 
on a lattice l v, with 

(ut)o = 0 , (ut U t' )0 = q:J (t - t ') . 

We denote /10 the corresponding probability measure on the 
space n = HZ' of configurations with Borel u-albegra~; (.) 0 
is the expectation w.r.t. /10' Let u(x) be a real function on H 
bounded from below and such that 

(u2(ut »0< 00. 

Let us consider a new measure /1 A on n with density 

d/1Ald/1o = Z A lexp( - I EU(Ut )) 

tEA 

/ - I<U(U,I) 
w.r.t. /10; A is a finite subset of lV, ZA = \e "A 0' (.) A is 
the expectation w.r.t. /1A' We denote ~A the minimal u­
sub algebra of ~ such that any U t , tEA, is measurable W.r.t. 
~ A . We shall write F = FA if F is ~ A -measurable and 
IA I < 00. We shall use the following: 

Theorem 1.1: If 

(1.1) 

then there exists Eo> 0 such that for any 0 < E < Eo and any 
bounded FA the following limits 

(FA )= lim (FA) A 
A~Z' 

exist and have convergent cluster expansion defined in Sec. 
2. The moments (FA) uniquely define a translation invariant 
measure /1 on n. 

This theorem was proved in Ref. 11. We give indepen­
dent prooffor the sake of completeness. We use the methods 
of this proof also in the proof of the following theorems. 

Theorem 1.2: Under the conditions of theorem 1.1 the 
central limit theorem holds for the random field U t with 
probability measure /1. We shall prove this theorem in Sec. 4. 
Let us put t = (t 1 , ... ,t V)El v and 

S (kl-
t - . _ I u,-. 

t rk<t r«t r + 1 )k,i = l •...• v 

ert
kl = S~kl/vDS~kl. (w.r.t. meaSUre/1); DS~kl = (S~kI2) 

This transformation is the renormalization group transfor­
mation.6--9 The easy generalization of Theorem 1.2 is the 
following. 

Theorem 1.3: The random field ert
k 

I converges weakly 
(i.e., finite dimensional distributions converge) to the trivial 
Gaussian field St with (St)o = 0, (StSt')o = 8", . We want 
now to find conditions when the convergence is to a nontri­
vial Gaussian field. 

Let us consider some Gaussian field with measure /10 
such that 

(u, )0' = 0, (ut ut')o = t/J(t - t ') . 

We shall not suppose (1.1), but assume that 

It Iv-2t/J(t)_C, It 1-00 . 
This field exists when v>3. Let us define new random 
variables 

(1.2) 

where e l , ... ,ev are the unit coordinate vectors and e i ,ej ,ek 

are three different elements of this basis. Let us consider the 
new measure 
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dPA = Z A-lexP( - IEU(;;;») 
dpo ,~ 

ZA = (exp( - ~EU(;,»))o. 
Assumption: We assume that Po is such that <p (t) 

= (f70,u,) satisfies (1.1). 

It is an easy matter to construct such examples. We can 
consider arbitrary Gaussian field u, satisfying (1.2) and 
make the transformation 

We note that for all m 

and for sufficiently large m (1.1) is valid with 

<p (t) = (fic{,fi;) . 

(1.3) 

(1.4) 

Theorem 1.4: For E> 0 sufficiently small P A tends 
weakly to some non-Gaussian measure p. There is conver­
gent cluster expansion in this case. The proof is quite similar 
to the proof of Theorem 1.1. Let u, be the non-Gaussian 
random field with measure p constructed in Theorem 1.4. 
Now let v = 3. 

Theorem 1.5: The sequence of random fields 

d,k) = S~k)/(DS~k))1/2 

(w.r.t. measure p) weakly converges when k-oo to a Gaus­
sian isotropic auto model vector field with correlation func­
tion K (t,s) given by 

K (t,s) = const { ( du dv 1, (1.5) 
JA.JA, Iu _vI V

-
2 

where 

At = [UEW:U = t + U(0),U
I01 = ( U\O), ... ,u~)),O<u~)< Il . (1.6) 

2. VACUUM CLUSTER EXPANSION 

Let us denote 

I(x) = exp[( - EU(X»] , IT = II/(u,). 
leT 

Then 

ZA = (II/(u,») = (/A)O . 
,~ 0 

and 

(2.1) 

The right-hand side of (2.1) is the moment of N + 1 random 
variables 

FA ,J(u" ), ... ,J(u,J, where A = [t l , ... ,tN l . 
So one can expand this moment in semi-invariants and after 
resummation we get 

(2.2) 
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where TI can be empty and where, e.g., (FA IT); is the semi­
invariant ofTI + 1 random variables FA ,J"tET1 , w.r~t. mea­
sure Po' This gives the desirable expansion in finite volume 
A: 

(2.3) 
It> = ZA - TIZA . 

In order to prove convergence we use the following systems 
of equations for g T' For any finite nonempty A C lV we fix 
some point tA EA and expand ZA _ (A _ 'A) in semi-invariants 

where the summation is through all partitions T1u ... uTk of 
A - (A - t A)' We can assume that t A ETI • After resumma­
tion over T2, ... ,Tk we get 

where the summation is over all T such that 
tAETCA - (A - tA)' 

Let us denote 

KT = (IT)~' 

(2,4) 

Then K1'A I =Ko does not depend on t A and from (2.4) we get 

g~A2I'AI =KrE~A)+ I'KTg~~~, 
T 

where in ~' the summation is over all Tsuch that 1 T 1 > 1, 
I A ETCA - ( - A - I A) . Alternatively we have a system of 
equations 

g(A)_K -lg(A) +K -I "\:"K ...(A) -0 A 0 A - " 0 ~ T~AuT - , IA I> 1, 
T 

(2,5) 

g(A) + K - I "\:' 'K g(A) - K - I IA 1 = 1 , A 0 ~ TAuT - 0 , 
T 

We shall consider also the limiting system of equations 

gA - K O-lgA -'A + K 0-
1 I'KTgAuT = 0, IA I> 1, 

T 

(2.6) 

gA + K 0- I I' K TgAuT = K 0- I, IA 1 = 1 , 
T 

where in~' the summation is over all Tsuch that 1 T 1 > 1 and 
tAETCZV 

- (A -ItA D. 
We shall prove that (2.5) and (2.6) have unique solu­

tions in the Banach space flJ A (respectively flJ) off unctions 
¢ = (¢ A) on the set of all nonempty finite subsets A CA (re­
spectively A C l") with the norm 

II¢II = sup [(KoI2)IA II¢A I], 
A 

Let us consider the linear operator L = E - R + Kin, 
e.g., flJ, whereEis the identity, R¢ = ¢', where ¢' = (¢A)' 
and 

{

K -1,1, 
I 0 'f/A - fA ' 

¢A = o 
IA 1>2 

IA 1= 1. 
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It is easy to see that IIR II < 112. The operator K transforms 
the vector (tfA) into (tf~), where 

tf~=KO-1 L KTtfAuT 
T" ,ETCZ" - (A -, ,). ITI> I 

Let us note that 

0< C 1 <Ko = (e - €U(u'»o<C2 < 00 , 

uniformly on O<f'<f'o' It follows that 

(2.7) 

IIKII<Ko-1 L IKT I12/KoII T I- 1
• (2.8) 

T,OETCZ"ITI> 1 

Lemma 2.1: Under the conditions of Theorem 1.1 for 
any D > 0 there exists f'o> 0 such that for 0 < f'<f'o one has 
11K II <D. This lemma will be proved below. 

It follows that L = E - R + K is invertible in !!lJ (and 
in !!lJ A)' Thus there exists a unique solution of (2.6) [and 
(2.5)]. The solution g~A) of (2.5) tends to the solution gA of 
(2.6) whenA--ZV. We shall not prove this fact here (see Ref. 
11), as the proof is standard (see Ref. 12). 

If 11K 11<114 then II(E - R + Ktlll<4 and so 

IgA I <2(KoI2) - IA I. 

We shall prove below also 
Lemma 2.2: 

TIT ~ 11. FC'!." 

(2.9) 

(2.10) 

where C does not depend on f' and FA,C (FA) depends only 
onFA • 

It follows that the cluster expansion 

(FA) = L (FA fT )ggr (2.11) 
TCA 

is absolutely convergent. Thus Theorem 1.1 is proved. 

3. BOUNDS ON SEMI-INVARIANTS OF FUNCTIONS OF 
A GAUSSIAN RANDOM FIELD 

Let us put 

lex) = f(x) - 1 = f [ -u(x)]e -- ,'u(x) df" (3.1) 

and note that 

(3.2) 

We shall estimate the semi-invariants (3.2) under the condi­
tions of Theorem 1.1. Let us put t 1 = ° and we shall always 
assume that tI'1 2, ... ,I" are pairwise different. Let Iinl be the 
sum over alllexicografically ordered sequences (t 2, ... ,t,,), the 
components of which are pairwise different and 0'* tiE 7',' , 

i.e., over all subsets T = ! t 2 , ... ,t" J C ZV - 10 J. Lemma 2.1 
evidently follows from Lemma 3.1. 

Lemma 3.1: 

(3.3) 

We shall prove this lemma now. Let hn(a,} be the normed 
Hermite polynomials w.r.t. j.lo, i.e., (h ~(at»o = 1; we can 
assume that rp (0) = (a;)o = 1 without loss of generality. 
Then d < 1. 

Let us denote 
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:a)n): = v'~h,,(aJ 
the corresponding Wick polynomials. 

We expand](a,) in Hermite polynomials in Lidllo}. 

~ 00 00 a 
f(a,)= I arnhrn(a,)= L m :a,m: 

rn~O rn~O ~m! 

Then 

m~o (a m )2 = II]12 
dllo«Cf')2, 

and so 

lam I<Cf'. 

Then 

(i(ao),j(a" ), ... ,j(a'n)g 

(3.4) 

00 00 am, ···am.. ( 
= I 00. I :o;,:, ... ,:a~":)~ , (3.5) 

m,~1 m,,=1 ~ml!oo.ml1! 

if the series in the right-hand side of (3.5) is absolutely con­
vergent. Let us fix the ordered sequence (m l,m2 , ••• ,mn ). 

Lemma 3.2: 

'" 1 (·a m"'a m,. 'a m ... )c I L . 0 0'' 12 ., •• '" I" • 0 

('",,,.' .. 1 
(3.6) 

«n - 1)!d N
!2 IT m;(m; - 2)(m; - 4)··., 

i= I 

where N = m 1 + .. , + m n and the sum I(t",,,,t,,1 is over all the 
ordered sequences (t2, ... ,tn) of points t;EZ" such that 
t; #O,t; #ti , if i#j. We shall prove this lemma below and 
now using (3.6) we shall prove Lemma 3.1, 

Proof of Lemma 3.1: We have 

I(nll (f(ao),J(a" ), ... ,J(a,..l)g 1 

< f ... f lam,I .. ·lam ..! (n _ 1)!d N12 

m,=1 m .. ~1 ~ml! ... mn!(n -I)! 
n 

X II m;(mi - 2)(m; - 4) 
i= I 

< ~ ... ~ la 1 ... la 12m1oo.2m dim, + '" t 111.,)/2 
~ L tn. In" fI 

m. -= I In" -'--.::: 1 

(3.7) 

where C1 depends on (1 - d )'1. Thus Lemma 3.1 is proved. 

Proof of Lemma 3.2: 
We shall use the diagrammatic representation 

" (. -"'" . -"". . m ... )c L . U a ., . U t2 • '"0' ·O't,. . 0 

(/1····· t ,,1 

(3.8) 

which we shall now define exactly. 
A diagram G consists of the following objects: (1) An 

ordered set of vertices [ l,oo.,n J and of one-to-one mapping 7 

of (1, ... ,n J in Z" such that 7(1) = 0,7(i) = t i • (2) Each vertex 
has an ordered set of m i legs (i, 1),(i,2),oo.,(i,m;), (3) There is a 
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partition of the set of all N = m I + ... + mn legs onto pairs 
such that each pair (line of the diagram G) has legs from 
different vertices and the resulting graph is connected. (4). 
The Gaussian random variable 0" ij = 0"" corresponds to the 
leg (i,j). The contribution of the diagram G is then 

where the product is taken over all pairs (ij,kl ) of contracted 
legs (i.e., over lines of G). Formula (3.8) is then Wick's theo­
rem for semi-invariants. 

Let ~r N be the set of all sequences a = (x I""'X N /2 ) with ° =/= Xi Ezv,N = m 1+ ... + m n • Let us fix a permutation 

and iiil = m l ,"!; = m llm ,t;;.2. For each aE2IN and each n 
we shall construct a set f§ 7T (a) of connected diagrams with 
fixed (ml, ... ,mn). A set f§ 7T(a) can be empty or otherwise it 
contains no more than rr7~ I mi(mi -2)(mi -4) ... dia­
grams and moreover a,1T uniquely define vertices tz,···,tn 

which are the same for all GEf§ 7T (a). Moreover the contribu­
tion of each GEf§ 7T (a) is equal to rr;Vl~ rp (x;). We describe 
now the algorithm of construction of f§ 7T (a). This algorithm 
constructs vertices and contracts legs step by step. 

First step: We begin with the vertex t \ = ° and contract 
leg (1,1) with arbitrary ofiiiziegs of vertex t~ = XI' Thus the 
first step is finished and we proceed by induction. 

Let T= (tJ2, ... ,~),l<k, be the vertices with iiil,.··,iii1 
legs which have been constructed after k steps. Suppose that 
rl, ... ,r{ legs of the correspondingly iiiw .. ,iii{ are yet uncon­
tracted. So on each step one line and 0 or 1 new vertex is 
constructed. 

(k + I)st step: Let us consider the vertex i;,<i<l, such 
that i; = x I + X 2 + ···x k • It exists by inductive construction. 
There can be two cases: ri > ° or ri = 0. 

(1) If r i > ° then consider the point t~ + x k + I is not 
equal to any tl""'~ then we construct new a vertex 
t~ + I = i; + X k + I and we contract thejirst of r, uncontract­
ed legs oft; with arbitrary ofm{ + I legs oft, + I' 1ft; + x k + I 

is equal to some,.. t:,j<l, then we contract thejirstofri un~on­
tracted legs of ti with any of the rj un contracted legs of tj . If 
rj = ° then we define ;g 7T (a) to be empty. Otherwise we pro­
ceed.to the next step. 

(2) If ri = ° then we take thejirst ~,I<J<I, such that 
rj =/=0 and we take thejirst of its uncontracted legs and we 
contract it with any of the uncontracted legs of the vertex 
t: = ~ + X k + I (as in case 1). If all rj ,I<J<i, are equal to 0, 
then we define f§ 7T(a) to be empty. 

We get a combinatorial factor 

iiii(m, -2) ... 

for each t~ since after each arbitrary choice of a leg we imme­
diately take thejirst leg of t~. Evidently each diagram G with 
given (m I, .•• ,m ll ) is in at least one HI

1T
(a). Lemma 3.2 is 

proved. 
Proof of Lemma 2.2: It is sufficient to consider the case 

when 
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k 

FA = II f(x;) , 
i~\ 

where If 1<1 and A = [xl, ... ,xk}· We use thefollowing 
formula 

(II(O"X, )fdO"x.l,f(O"" ), ... ,f(0",.); 
(3.9) 

= L IT (f(O"x),xiEIj,f(O",),tEIj);, 
j~ \ 

where the sum is over all the partitions (TI, ... ,Tp) of the set 
[x\"",xk ,tl, ... ,tn } such that each Ij has non empty intersec­
tion with [XI""'Xk }, Ifall the ti are different from allxj then 
as in the proof of Lemma 3.1 we expandf and fin Hermite 
polynomials and we use diagrams. The diagram G will give 
contribution to the rhs of (3.9) iff each of its vertices ti is 
connected by some path with some of the vertices x\, ... ,xk· 
The proof then repeats the proof of Lemma 3.1. 

Ifin 

(f(xi ),X,EIj,f(O", ),tEIj)g , (3.10) 

some XiEIj is equal to some tEIj then we use the formula 

(t/!(y\), ... ,t/!(Yq )g = (t/!(YI)t/!(YZ),t/!(y,),···,t/!(Yq )g 

L (t/!(y\),t/!(Yj),jET')g 
T'e Iy, ....• yql 

X (t/!(Yz),t/!(Yj),Yj E!3, ... ,qj - T')g 

to exclude these cases. 
We use (3.11) subsequently for each pair Xi = ti and for 

all semi-invariants (3.10). 
After this procedure we shall also have the sum of dia­

grams such that each of its points is connected with some of 
the points x 1""'Xk , We get also factors depending on k. Our 
construction is again applicable to this sum of "connected" 
diagrams. 
4. THE CENTRAL LIMIT THEOREM 

We shall prove Theorem 2 here. Let (SA "",SA )Cbethe 
nth semi-invariant of the random variable SA = l:'EA 0",. We 
want to show that 

lim (SA ,,,,,SA )C = 0, n;;.3. (4.1) 
IA I~oc (DSA t/2 

We have 

L (0"" "",O",,,)C . 
11 •...• lnEA 

We shall define new random variables 
n 

U, = L 0", (a)w
a 

, 

a=l 

where w = e27Tiln and 0", (a) = I, ... n, are new random fields 
which are independent copies of the random field 0" with , 
measure,u. Then we have (see Ref. 13) 

and 

(u" '''u,,) = 0, k < n , 

(0"" , ... ,O",)C = (lIn)(u" , ...• u,)C = (lIn)(u" ... u,). 
(4.2) 

Using the cluster expansion for our n independent copies of 
,u [it is similar to (2.11)] 
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(u" ... u,,,) 

I (u" "'U'" ,F(XI), ... ,F(Xk»~' 
Ix ...... x.} czv 

X(glx ...... x.}y, (4.3) 

where 
n 

F(xJ = II f(d,,~», 
a= 1 

we have 

(u,. ",u'. ,F(xtl, ... ,F(Xk))~' 

= (u,. , ... ,u'" , F(XI), ... ,F(Xk»~' (4.4) 

and 

(U, .... U'p'F(XI)' ... ,F(Xk»~=O' p<n. 

The proof of (4.4) is similar to that of (4.2) due to the symme­
try of F(x) w.r.t. permutations of {1, ... ,n J. Then 

I (u" , ... ,u,,,,F(xl), .. ·,F(xd)~1 

/ n I( (aD (a~)F() F( »CI ""n ~Up. 0',. , ... ,0',,,' XI"'" Xk 0 . 
a\ •...• a" 

(4.5) 

We expand eachf(d,a» in the series of Wick polynomials 
and get as in (3.5) 

« a;) (a;.) F( ) F( »c 0',. , ... ,0',,,' XI'"'' Xk 0 

a , .. ·a , I m l mIl 

m: •. m;>O y' m: ! ... m~! 
a , .. ·a , I fflj m" 

mt ... ·.m~>O y' m~! ... m~! 
X ( (a;) (a~) (-II))m: 

Uti , ••• ,Utn. ,:U~I : ... 
. (-In))m;. .(-11) mt . . (-In) m~ .)c . u:.. ., ... ,. CTx .) ..... u:..) . 0 • 

From (4.2), (4.3), (2.9) we get 

I (O't.,· .. ,O',)CI 

(4.6) 

< I 2nB nk I (U,. , ... ,u,.,F(xtl, ... ,F(xk )~I, (4.7) 
Ix ...... x.1 czv 

B = 2IKo. 

We want to represent the semi-invariants in the rhsof(4.6) as 
the sum of connected diagrams G with n + k vertices 
t., ... ,tn , ... ,Xk . We fix t. = 0 and we want to prove that 

I I(O'o""'O",,)C I <const. (4.8) 
!:I" .•.• IIlEZ' 

(4.8) follows from: 
Lemma 4.1: 

I 1(0',. , ... ,O',,)cl<constIA I. (4.9) 
11 •...• tIlEA 

Proof of(4.8): Let us denote by X the semi-invariants in 
the rhs of(4.6).1t depends on m{, a;, Xi' tj • Then using (4.6), 
(4.7) we can bound (4.8) by 

la I I I 2"Bnk I II nr.. Ixi 
" .... "" Ix ..... ,x,lcz' ",(>0 i,j y'rn-:! 

.;;; I 2" I (BCE)"k I II· 1. Ixl 
t" .. ,'" I x" ... ,x.l nr.>o i,j ~ rn-:! 
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< ~~ I (BCEyk I 0 1. Ixl· 
• '" ... ,'",x, •...• x, nr.>o '.) ~ 

We note that for all i 

ImJ>I. (4.10) 
j 

We fix, n,k,m{, and shall prove that 

I Ixl 
X,=F X

j 

<k!kn(1 +dYdl:nr.- n12 

X [0 m{(m{ -2)(m{ -4) .. ] 0 m{ . 
I.) I.) 

(4,11) 

From (4.10) and (4.11) we get (4.8), (4.9). 
In order to complete the proof we must prove (4.11). 

We show that this proof is quite similar to the proof of 
Lemma 3.2. In fact there are no lines between legs of the 
same vertex Xi sinced:,), d:,') are independent fora#a'. To 
construct the diagrams using our method we define &N.n to 
be the set of sequences 

(YI,· .. ,Yn ,z1, .. ·,zN - n/2)' 

i,j 

Let us note that if we delete vertices 0, t 2'" .,f n and delete lines 
connecting them to the other vertices then the remaining 
part of the diagram remains connected. Thus we begin with 
the vertex 0 and construct the second vertex. X17{I) = YI and 
the line between 0 and X17{I)' This gives a factor (1 + d). 

As earlier, we fix a permutation 1TOC{ 1, ... ,k J. This gives 
a factor k!. Then for each iE! 2, ... ,n J we choose one of the k 
vertices XI, ... ,Xk and choose one leg from the chosen vertex 
to be contracted with the vertex f i • This gives a factor 
k n -I "i.j rn-: . Each such a construction generates a factor 
(1 + d). The remaining connected part of the diagram is con­
structed in the closest similarity to the construction in the 
proof of Lemma 3.2. The proof of (4.8) and of Lemma 4.1 is 
thus completed. 

Lemma 4.2: 

(S~»QIAI, Q>O. 

The proof is quite similar to the preceding one. We have 

(S~) = I (UnO',' )c. 
t.t'EA, 

In order to bound (O'nO',,)5 we use cluster expansion. It 
contains the "main term" (0', ,0',. )5. The sum of the remain­
ing terms being of order O(E). 

We have for the "main terms" 

I A
l I I (0', ,u,')5 = I Al I (S~){) ~ Q •. 

",'EA IAI-oo 

Then Lemma 4.2follows with Q>Q. - E. It is not difficult to 
prove that 

~S~) ~ Q. IA I IA I~oo 
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5. RENORMGROUP CONVERGENCE TO NONTRIVIAL 
GAUSSIAN AUTOMODEL FIELD 

We have to show that (d,~), ... ,d,:)C -+ 0, 
k-~oo 

(5.1) 

and 

(5.2) 

The equivalence of these statements and of the statements of 
the theorem is due to the following general facts. Statement 
(5.1) is equivalent to the statement that the weak limit of a';k) 
is Gaussian if it exists. Moreover if the limit exists then it is 
automode1 and there exists only one isotropic automodel 
random field with asymptotics (1.5) (see Ref. 14). 

We use the following asymptotic properties 

I (u"lT" )~ I <const/ I t - t' I v + 1 , 

I (~,lT/')~ I <const/I t - t 'I v+ 1 , 

which are quite evident. 
We can write cluster expansion for 

(5.3) 

(u"u,,) = (u"u/')o + L (u/(}"/"F(Xl), .. ·,F(Xk)~ 
k;;,J,lx, •...• xkl CZ" 

(5.4) 

similar to the earlier cluster expansion. Convergence of this 
expansion follows from (5.3). From (5.3) it follows that 
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(u"u" 'f -+1 if It - t '1-+00 , 
(u/,u/, )g 

(5.5) 

because in the diagrammatic expansion of the second term in 
the rhs of(5.4) there is no line between vertices t and t '. State­
ment (5.1) can be proved quite similarly to the proof of the 
same statement in the preceding section. Theorem (5.1) is 
proved. 
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Diagonalizability of the longitudinal sector of the functional integral in 
massive SU (2) Yang-Mills theories via topological contributions 

c. N. Ktorides a) 

Harvard University-Science Center, Cambridge, Massachusetts 02138 

(Received 29 April 1980; accepted for publication 25 June 1980) 

The problem oflongitudinal sector diagonalizability of the functional integral in massive SU (2) 
Yang-Mills theories is revisited. A new decomposition law of a massive SU (2) vector field into 
transverse and longitudinal parts is proposed which takes into account the more recently 
discovered topological properties ofSU (2) gauge theories. After establishing the credibility of this 
decomposition law, it is shown how it leads to the diagonalizability of the longitudinal sector of 
the functional integral. This result is related to the problem of the existence of the zero-mass limit 
in massive SU (2) Yang-Mills theories. 

PACS numbers: l1.IO.Ef, 11.1O.Np, l1.30.Jw 

I. INTRODUCTION 

Consider a massive and a massless (mass inserted by 
hand) Yang-Mills field theories. They are described by the 
respective Langrangian densities 

(1.1) 

and 

if _ IG- °G-o,.v 1 2B- °B-a,. 
~ massive - -.4 J..lV - 2m I.l ' (1.2) 

where the symbol - serves to distinguish the massive from 
the massless vector fields. The expression for G,.v 0 is well 
known and need not be explicitly displayed. 

The question whether the quantum version of theory 
(1.2) yields theory (1.1) in the zero-mass limit has been ex­
amined 10 years ago by van Dam and Veltman I within the 
framework of perturbation theory. These authors had dis­
covered that there exists a discrete gap between the two the­
ories which cannot be bridged in any smooth way. In other 
words, it was determined that the zero-mass limit of theory 
(1.2) does not exist. 

The relevant argument by van Dam and Veltman has its 
origin in one of the most fundamental realizations which 
pervades the whole of relativistic quantum field theory and 
which is the cornerstone ofits particle interpretation. This is 
Wigner's characterization2 of an elementary particle as a 
unitary irreducible representation of the (identity contain­
ing, connected component) Poincare group. As well known, 
it follows from Wigner's prescription that an elementary 
particle with rest mass different from zero and spin s, has 
2s + 1 independent polarization directions (they are often 
referred to as degrees of freedom for the field). On the other 
hand, zero-mass particles have only two polarization direc­
tions, irregardless of spin. 

Theories (1.1) and (1.2) contain Yang-Mills vector 
fields the quanta of which describe spin-l particles. In the 
massless case one can choose as polarization vectors two unit 
vectors pointing in the x- and y-direction respectively. Ac­
cording to this convention, the momentum of the particle is 
aligned with the z-direction. What is often needed in calcula-

"'Permanent address: University of Athens, Physics Dept., Div. of Me chan­
ics, Athens, Greece. 

tions is the sum over polarizations. Within the adopted 
scheme one determines 

(

1 

2 .. ° I el1 'e/= 
i~1 0 

o 

o 

o 
o 

o 
o 
o 
o 

(1.3) 

The above sum can be expressed in terms of the 4-momen­
tum of the (massless) vector particle, PIL = (O,O,p,lp)-where 
the usual imaginary rotation to Euclidean 4-space has been 
performed- and the 4-vector A = (0,0, - p,ip). The latter 
is obtained from P,. via space reflection. Following van Dam 
and Veltman one sets 

~ i i _ ~ P,. p v + p I1P" 
L e,...,.e r -UILV - , 

i~ I (p,P! 
(1.4) 

where (p,P) denotes scalar product. 
In the massive case, the three polarization unit vectors 

can be chosen to point along the x- and y- and z-direction 
respectively. One now determines 

c 
0 0 

3. 0 0 I e~f-lle'Vi = 
0 i~ I 0 

0 0 0 

(1.5) 

The above sum can be conveniently expressed via the use of 
the 4-momentum vector in the rest frame of the particle,PI' 
= (O,O,O,im). One finds 

(1.6) 

As is well known, sums over polarizations enter promi­
nently into the unitarity diagrams of a field theory (sum over 
intermediate states). This fact was utilized by van Dam and 
Veltman in order to compare theories (1.1) and (1.2). In 
particular, they considered the vector field propagator at the 
one loop leveL They parametrized the ghost loop contribu­
tions by inserting a factor A in front: 

(1.7) 

(a) (b) 
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Unitarity requires that the imaginary part of the sum of the 
above two diagrams equals the contribution of the diagram 
identical to (a) wherein the virtual particles are replaced by 
real ones (sum over polarizations times fJ (q2 + m 2) in the 
massive, fJ (q2) in the massless, case per internal vector meson 
line). The computations are straightforward and are given in 
Ref. 1. One finds that unitarity is satisfied for A = -1 in the 
massive and A = -2 in the massless case respectively. This 
means that if one were to start with theory (1.2), one would 
have to insert the factor A = -2 in front of diagram (b) in 
order to ensure unitarity. But, then, in the limit m--D, the 
factor -2 would remain, resulting in a theory that does not 
satisfy unitarity. This is tantamount to saying that the limit 
theory is physically nonexistent. 

Now, the above conclusion has been drawn strictly on 
the basis of perturbation theory arguments. On the other 
hand, more recent realizations have brought to surface the 
fact that a nonabelian gauge theory, of the type described by 
(1.1), posseses nontrivial classical solutions, instantons,3 

whose implications go beyond those of perturbation the­
ory.4.5 These solutions constitute the basis of nonperturba­
tive effects, present in gauge theories. (Since instantons are 
best understood when the gauge group is SU (2), I shall as­
sume this group from now on). It, then, becomes of interest 
to reconsider the van Dam-Veltman conclusion in the pres­
ence of instantons. This constitutes the underlying problem 
of the present investigation. 

The direct study of such a problem would have been 
very straightforward to conduct, provided one knew the pre­
cise form of the full propagator of theory (Ll), i.e., the form 
of the propagator which incorporates instanton effects. 
[Note that theory (1.2) does not possess instanton solutions.] 
Then, one could go back and repeat the calculation by van 
Dam and Veltman. Unfortunately such a propagator is not 
exactly known at this time. This occurrence rules out the 
direct confrontation of the posed problem. At the same time, 
one should note that a first attempt to determine the modifi­
cations to the (massless) Yang-Mills propagator, brought 
about by the presence of ins tan tons, has been made by Polya­
kov.4 Even though he was unable to reach a final conclusion, 
Polyakov's viewpoint as well as the hints obtained by his 
work are especially relevant to the present problem. 

Simply, Polyakov's objective had been to determine 
whether the presence of ins tan tons in a Yang-Mills theory 
restores a seemingly broken symmetry. Any such lifting of 
vacuum degeneracy, Polyakov argues, implies that the the­
ory ceases to possess bonafide massless vector fields. What 
happens, instead, is that massive scalar fields enter into the 
picture, modifying the propagator, at the one-loop level, ac­
cording to 

k -2(fJ _ kfl kv ) 
flV k 2 

( 
k k 

~k-2 fJ - ~+ 
flV k 2 

(1.8) 

where M is the mass of the scalar particles. These scalar 
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particles become responsible for the restoration of the 
broken symmetry. 

The particular form of the result, namely Eq. (1.8), was 
actually established by Polyakov for the (2 +1)-dimension­
al model of Georgi and Glashow, under certain approxima­
tions of semiclassical character. For the nonabelian Yang­
Mills theory (1.1), with its instantons, only a hint was ob­
tained regarding the presence of massive scalar particles.4 

Let me, for a moment, take the above hint seriously and 
turn the argument around. Going back to theory (1.1), as 
well as expression (1.4), I ask what happens to the sum over 
polarizations if an additional massive scalar field (rest mass 
M) is actually present in the theory. Clearly, such an addi­
tional scalar field introduces an extra degree of freedom. De­
noting the 4-momentum vector in the rest system of the addi­
tional scalar particle by P~ = (O,O,O,iM) and imitating (1.6), 
one arrives at the following sum over polarizations 

<- Ai Ai _ £ PflPV + PflPV 
£., eflev - UflV -
i~ I (p,P) 

( ~ ~ ~ ~) 
- 0 0 0 0 . 

000 1 

(1.9) 

Notice the crucial difference between (1.9) and (1.5): The 
third polarization direction is timelike. It reminds one of the 
spin-zero daughter of a massive vector field before the impo­
sition of the Proca condition. 

Such a state of affairs serves notice to the fact that in­
stanton contributions correspond to effects brought about 
by pseudo particles in the theory. One suspects that pseudo­
particle contributions do not amount to the emergence of an 
equivalent, fully physical vector particle-which would 
have been the case had one obtained the matrix in (1.5). In 
summary, it seems, from this turnabout argument, that the 
pseudonature of instantons lurks in the background as mani­
fested by a timelike third polarization direction. 

So one is now disappointed. The hints emerging from 
Polyakov's work do not seem to imply that the factor A in 
(1.7) is -1 for the massless case as well. On the other hand, 
the possible presence of the additional scalar field at the one 
loop level, suggests that (1.7) be replaced, in the massless 
case, by 

--<::>-- + ~ ~.:~::- + -0- . 
(1.10) 

where the solid line stands for the additional massive scalar 
propagator. The question now obviously poses itself whether 
A can be set to -1 with the additional contribution to uni­
tarity coming from the third diagram. In such a case the 
whole van Dam-Veltman argument is upset since the third 
diagram appears only in the massless case. 

The above line of reasoning is clearly speculative. Nev­
ertheless, it strongly suggests that the zero-mass limit of 
massive Yang-Mills theories does, indeed, need reexamina­
tion. Obviously, the whole investigation has to start from 
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scratch, adopting a more general methodological approach 
than the one employed in this section. 

The approach to be adopted in this paper coincides with 
the one adopted by Boulware6 in his attempt to solve the 
renormalization problem of massive Yang-Mills field theor­
ies. It is based on the path integral quantization of these 
theories. One specific aspect of Boulware's analysis, that will 
become the focal point of this investigation, is the diagonali­
zation and decoupling of the longitudinal sector of the func­
tional integral. 

By reverting to Boulware's program the original objec­
tive will be somewhat lowered. Thus, the immediate prob­
lem to be dealt with in this paper will be the diagonalizability 
of the longitudinal sector of the Yang-Mills functional inte­
gral. The specification of this problem, as well as its implica­
tions on the zero-mass limit will be given in Sec. 2, where 
Boulware's work will be essentially reviewed. In Sec. 3 I 
perform my main task. I divide my work into three parts. 
First, I argue for a more general decomposition law of a 
vector field into transverse and longitudinal parts so as to 
take into account the nontrivial field topology. Second, I 
establish the credibility of the suggested decomposition law 
as well as make some interpretations from it. Lastly, I show 
how the new decomposition law can lead, in principle, to the 
diagonalizability of the longitudinal sector of the functional 
integral. In Sec. 4 I take a converse point of view. I show that 
if one a priori assumes the existence of the zero-mass limit in 

a nonabelian theory, then there must be presen t in the theory 
scalar fields whose vacuum expectation value does not van­
ish. Unless put in by hand, such scalar fields conceivably 
describe the effects of pseudoparticles. This is the closest I 
come, in this study, to addressing the zero-mass limit of 
Yang-Mills fields. A number of concluding remarks is made 
in the final section. 

Two notes of interest: a) All functional integrals will be 
formulated in Euclidean space where they make sense. b) 
Given any Lie group G its corresponding Lie algebra will be 
symbolized by g, i.e., the small Jetter(s) will be in bold face. 

2. ON THE LONGITUDINAL SECTOR OF MASSIVE 
YANG-MILLS THEORIES 

In this section I exhibit the diagonalizability problem of 
the longitudinal sector in massive SU (2) Yang-Mills theor­
ies by employing their functional integral formulation. No 
account is taken of the topological subtelties exhibited by 
SU (2) gauge theories. It will be shown that the diagonaliza­
bility (and, hence, longitudinal decoupling) problem be­
comes a question of a point transformation in the integration 
variables (field variables). It will be argued that the math­
ematical impass which arises and which implies the nondia­
gonalizability is inherent in the locality aspects of the gauge 
group and not in the particular method employed for the 
study of the longitudinal decoupling problem. 

Let B a (x), a = 1,2,3, be a triplet of massive SU (2) 
Yang-Mill~ fields. I denote the corresponding algebra ele­
ment by fg I-' (x). In other words, fg I-' (x) = B; (x)t a, where 
the [t a} form a generator basis for the algebra su (2). The 
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decomposition of fg I-' (x) into transverse and longitudinal 
parts, ignoring topological complications, has been specified 
by Boulware.6 It is given by the gauge transformation 

fg I-' (x) = S-'(x)d I-' (x)S (x) + S -'(x)al-'S (x) , (2.1) 

where S(x) is an element of the gauge group satisfying appro­
priate conditions, such that the vector fields 
d I-' (x) = A; (x)t a correspond to the transverse modes of the 
B ~ (x). These conditions have been spelled out by Boulware 
who has also shown the existence of the A ~ (x). The longitu­
dinal modes 5' (x) = 5' a(x)t a are contained in the gauge group 
element S(x) via the exponential mapping: S(x) = eS(x). 

I t should be emphasized from the outset that (2.1) will 
eventually become the focal point of the present effort. In 
particular, it will be asked whether (2.1) does take into ac­
count the full vacuum structure of SU (2) gauge theories 
and, if not, whether it should be replaced by a more appro­
priate decomposition law. 

Given, now, (2.1) the question of interest becomes: Do 
the longitudinal components decouple in some limit? To for­
mulate this problem let me consider the generating function­
al of the massive Yang-Mills system, given by 

Z[Yl=Z;' f [ii'fglexp[f(2"+YI-'~,,)d4X]' 
(2.2) 

where 2" is the massive Yang-Mills Lagrangian and 
Y = J a t a is an external source appropriate for the genera-

l-' I-' 

tion of the various Green functions. 
Inserting transformation (2.1) into the generating func­

tional (2.2) one accomplishes two things. First, the integra­
tion variables are split into transverse and longitudinal ones. 
Second, the very nature of (2.1) leads to the introduction of a 
Jacobian determinant identical to that of Faddeev and Po­
pov.7 This follows from the fact that decomposition (2.1) is 
nothing but a gauge transformation. For more details the 
reader can consult Boulware's paper.6 

Accordingly, the transverse sector of the theory looks 
just like the corresponding gauge invariant theory, modulo a 
mass term in the propagator, i.e. the latter is of the form 
Dab(gl-'\' - p"pjp2)(p2 - m2)"'. In short, the transverse in­
tegration becomes 

Z~l f [ii'd][ii't1ii't1*lexp[ f [2"(d) + C(d) 

+ 2" ghost (t1,t1 *,d) + Y fI d" ]d 4X I , (2.3) 

where2"(d)= _!G~vGa,,\' _m2.s;1'~ butwiththe.s;1'" a 
triplet of transverse fields. C (d) is a gauge fixing term, in­
serted here in anticipation of its necessity in the zero-mass 
limit. It can be viewed as part of the integration measure. 
One now observes that in the limit m~, (2.3) becomes iden­
tical to the generating functional of a proper, i.e., gauge in­
variant, Yang-Mills theory. 

The longitudinal sector receives all of its contribution 
from the mass term m2 fg~ in the original Langrangian. It 
has the form 
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Gs[Y'] = ZS-I f [!iJS] 

xexp{ - ;: f [!(S-laI'S)2 + S-I(aI'S)Y'I']d 4x} , (2.4) 

where 

Y~ = .x/ I' - (l/m2)Y I' • 

In terms of the actual scalar fields S a (2.4) takes the follow­
ing form 

Gg-[Y'] = Z ,-I f [!iJs ](detG)1/2 

X exp{ - ;: f uaI'SaGab(S)~Sb} 
+ aI'SaQab(S)J'~ ]d 4x, (2.5) 

where (detG)I/2 stands for the Jacobian determinant of the 

transformation and where the Gab (S ), Qab (S ) are non poly no­
mial expressions in the Sa's which will shortly take a consid­
erable amount of our attention. 

The problem in hand can now be stated clearly: If one 
were to succeed in showing that (2.5) takes the form 

G.I; [Y'] = ZI;-I f [!iJS] 

xexp{ - ~ f H<aI'Sa)2 + aI'SaJ'~ ]d
4
x} , (2.6) 

then the longitudinal sector would decouple. That is, the 
scalar modes will be integrated away. The resulting expo­
nential can be easily accommodated in (2.3) via a redefini­
tion of gauge. One now sees how the diagonalizability of the 
longitudinal sector is related to the existence of the zero­
mass limit. 

If follows that the next step should be to investigate the 
diagonalizability of matrices Qab (S ), Gab (S) through a point 
transformations~s '(S).AsG = QQ T one needs only to dis­
cuss the diagonalizability of, say, G. Now, G is by construc­
tion a symmetric 3 X 3 matrix built up, at each space-time 
point, from a single 3-vector S. It becomes instructive to ac­
tually generalize the argument, for a moment, to an arbitrary 
n-dimensional group. Assuming maximal rank (which holds 
true in this particular case) G contains, by virtue of its sym­
metry, !n(n + 1) independent elements constructed from the 
n-components of S. Consequently, its diagonalizability im­
plies that !n(n + 1) conditions must be imposed on the afor­
mentioned n-components. But !n(n + 1) > n for n > 1 and, 
hence, one has an overdetermined problem in hand, i.e. non­
solvable in general. And, indeed, a more exhaustive investi­
gation of this problem confirms its nonsolvability.6 Note, in 
passing, that for n = lone does get !n(n + 1) = n and thus 
recovers the well known result8

,9 for the U(I) case. 
It will now be shown that the above impass and, in par­

ticular, the presence of matrices G and Q is a direct conse­
quence of the local character of the gauge group. To this end, 
consider, a triplet of real numbers S a(ER), a = 1,2,3, which 
specify the components of an element in the linear, real vec­
tor space su(2). As is well known the exponential mapping, 
which takes one from the Lie algebra to that connected com­
ponent of the corresponding Lie group containing the identi-
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ty element, provides the group manifold with a natural (nor­
mal) coordinate set. Therefore, the S a provide a coordinate 
set for the (simply connected) group SU(2). Upon localizing 
the group with respect to space-time we are led to consider 
algebra elements of the form S (x) = Sa(x)t a. The elevation 
of the S a to function status, assigning group coordinates 

S a(x) at the space-time point x, naturally leads one to consid­
er the functions aI'Sa(x) as well. (I hold/l fixed so that I 
don't have to worry about Lorentzian aspects on top of ev­
erything else). Clearly, aI'S (x) = aI'S a(x)t a is an element of 
su(2). I shall now show that, unlike the Sa(x), the aI'S a(x) 
cannot be used to parametrize the group manifold at each 
space-time point x. 10 

Let me consider the differential of the exponential map­
ping at the point S, to be denoted by dexpl;' It maps su(2) 
onto itself since the differential of a given mapping among 
two manifolds acts between the respective tangent spaces 
and since su(2) is fiat, i.e., it coincides with its own tangent 
space. Now the following holds true for the mapping dexpx 
for any given Lie algebra pll: 

dexpx Y = [(1 - e - adX)/adX] Y, X,YEp, 

where 

adX 

so that 

00 (-adXY 

n~o (n + I)! 

dexpx Y = Y- ..!..[X,Y] + ..!..[X,[X,Yll 
2! 3! 

- ..!.. [X,[X,[X,Y]]] + .... 
4! 

In the above formulas X denotes the particular point of the 
Lie algebra p at which one considers the tangent space and Y 
is the point of p on which the differential of the exponential 
mapping acts. 

I now examine the su(2) element, to be called the expo­
nential derivative of S, defined as follows 

!iJ I'S ===.dexps a!, S . (2.7) 

This is a nonpolynomial expression in the Sa's. Explicitly, 

The above expression when written compactly identifies the 
matrix Qab appearing in (2.5): 

!iJ I'S a = aI'S bQba <S) . (2.8) 

Similarly, Gab(S) in (2.5) is recovered from the inner 
product 

(2.9) 

It follows that, independently from decomposition (2.1) and 
the ensuing analysis, matrices Q and G owe their existence to 
the local character of the symmetry group. 

It now becomes obvious that the nondiagonalizability 
of matrix Gab (S) through a point transformation S ~S '(S) is 
equivalent to saying that given the su(2) element aI'S there 
always exists another su(2) element, namely the exponential 
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derivative ~ 1.5, which cannot be put in the form al-'f '. This 
also proves the inefficiency of the a I-' f a,f.l fixed, to parame­
trize the gauge group manifold. In conclusion, Boulware's 
nondiagonalizability result can be seen as equivalent to the 
deficiency of the a I-' f a to parametrize the gauge group 
manifold. 

3. TOPOLOGICAL CONSIDERATIONS AND THE 
SOLUTION OF THE DIAGONALIZATION PROBLEM 

A. Preliminary discussion; a generalization of 
decomposition law (2.1) 

The analysis of the previous section has completely ig­
nored the topological aspects ofSU(2) gauge field theories.3 

It is the present intention to amend this situation. Let me 
start by giving a plausibility argument as to why it appears 
reasonable that the proper inclusion of SU(2) gauge field 
topological effects should be of importance for the problem 
in hand. Recall that the topological properties discovered in 
Ref. 3 arise in the Euclidean formulation oflocal SU(2) and 
stem from the homotopical classification ofSU(2) on the 3-
sphere in E4 • In juxtaposition, it was witnessed in Sec. 2 (cf. 
matrices Q and G owe their existence to the local character of 
the symmetry group) how all problems entering the diagona­
lization of the longitudinal sector can be traced to geometri­
cal aspects of the gauge group. It, therefore, seems reason­
able to expect that topological considerations, which lie at 
the root of the intimacy between the symmetry group and 
space-time, should play an important role in the final resolu­
tion of the diagonalization problem. 

In this connection, it is worth noting the subtle point 
that Boulware overlooked in his analysis of massive Yang­
Mills models and on which the present hope for a revision 
hinges. Boulware argued that the range of integration over 
the angular variables f a in (2.5) could be carried from - 00 

to + 00 instead of mod 21T. His thinking had been that, in 
this way, one covers the group a denumerably infinite num­
ber of times, the result being ffo times the integration over 
the compact region (ffo the usual infinite cardinal number). 
But, he argued, the same factor ffo also appears in the nor­
malization factor Z i 1 and, consequently, a cancellation re­
sults. However, he overlooked the fact that S3 is the one­
point compactification of E3• This one extra point matters 
greatly as it becomes responsible for the existence ofinequi­
valent homotopical mappings which, in tum, have an impact 
on the SU(2) gauge theory itself. 

Another way of putting the same thing is the following. 
The normal coordinates are, in effect, local (in the sense of 
differential geometry) coordinates for the group. As one 
moves away from the origin of the algebra, viewed as a vector 
space, one covers more and more of the group. However, the 
compactness ofSU(2) implies that it cannot be globally cov­
ered with the normal coordinates. A second coordinate 
patch is needed for the point on the manifold diametrically 
opposite the unit element. Now, the inclusion of this point is 
essential to establishing the topological properties of the 
gauge group. It, then, becomes obvious that the functional 
integral (2.5) will fail to include topological effects. 

It may now be objected that there is no a priori reason to 
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know that the massive Yang-Mills model under consider­
ation possesses pseudoparticle solutions and, consequently, 
it may make no sense to study topological effects in such a 
model. This, however, is not the point. The real issue con­
cerns decomposition law (2.1) and its longitudinal part 
S -tal-'S in particular. One does know that these pure gauge 
terms fall into topologically inequivalent classes character­
ized by a winding number. And, in fact, it is the longitudinal 
behavior of SU(2) Yang-Mills fields at infinity that sepa­
rates them into inequivalent classes. The present objective, 
then, is not to include pseudoparticle contributions to the 
originalloassive Yang-Mills theory, in fact instanton solu­
tions do not exist in this case, but to take into account the 
plethora oflongitudinal vacua which are known to be avail­
able to an SU(2) Yang-Mills theory. 

In different terms, one knows a priori that instanton 
effects are very real within a massless SU(2) gauge theory (cf. 
results of Refs. 4, and 5). It is disturbing, then, to operate 
with a decomposition law which does not keep track of these 
effects. It becomes obvious that what is needed is the formu­
lation of an appropriate decomposition law, to replace (2.1), 
which takes into account the availability of the various ine­
quivalent vacua to an SU(2) gauge theory. 

In the search for such a law one must take into account 
the fact that if Y I-'v = ° (Y I-'v = G~vta), then q; I-' must be 
uniquely of the form S -Ial-'S, S (x) an element of the gauge 
group, while its transverse component must be identically 
zero. As becomes apparent from Boulware's analysis of the 
nonabelian decomposition problem, this is tantamount to 
saying that the transverse component of q; I-' is unique. 12 It 
follows that any generalization of (2.1) should: a) Identify 
only one transverse field d I-' as representing the correspond­
ing modes of q; I-' and b) when d I-' vanishes, q; I-' should be 
of the form S-tal-'S, 

Given the above guidelines I propose to consider the 
following generalization of (2.1) 

-I --I 

q;1-'(x) = (IISj) dl-'(IIS)+(IIS) al-'(IIS) , 
j j j j 

(3.1) 

where the indexj denotes topological class of the gauge 
group element in the sense of Jackiw and Rebbi. t3 

Obviously, what has been done through suggesting 
(3.1) is to resolve an SU(2) gauge group element into its topo­
logically (better, II3-homotopically) inequivalent compo-

nents. Formally, of course, if one sets S = IISj one recovers 
j 

(2.1). However, a radically new ingredient now enters the 
analysis in view of the fact that Sj,j=/=O, cannot be built, 
within the gauge group,from elements of the type So· On the 
other hand, the particular construction of Jackiw and 
Rebbi t3 shows that 

(3.2) 

Therefore, it suffices to specialize (3.1) to j = 0,1. From now 
on I shall work with the decomposition law 

q; I-' (x) = (StSo) -I d I-' (x)(StSo) + (StSo) - 1 al-' (SISO) , (3.3) 

which constitutes a minimal nontrivial extension of (2.1). 
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The crucial thing to note from (3.3) is that six indepen­
dent scalar field variables enter the decomposition of !%i Jl . In 
particular, the original triplet {Sa J, which enters through 
So = eS, is supplemented by a second, independent, triplet 
{'TJa J that enters through SI = e"l. I stress the independence 
of the variables 'TJ a from the variables Sa' In fact, if this were 
not so, i.e. if SI = eJ(sl, it would have followed that a wind­
ing-number-one element can be continuously built from 
zero-winding-number gauge group elements (since ef(S) in­
volves continuous mUltiplications among gauge group ele­
ments of the type So). Finally, by invoking (3.2) one is con­
vinced that no additional independent scalar variables enter 
through decomposition (3.1), thereby justifying one's work­
ing with the simplified version (3.3). 

B. Interpretation and credibility of the new 
decomposition law 

Since (3.3) is, in form, the same as (2.1) one expects that 
it properly describes a decomposition of !%i Jl into transverse 
and longitudinal components. However, there are two 
points that call for clarification. To begin with, an interpre­
tation is needed for the six independent scalar fields instead 
of the usual three. Secondly, because ofthe unorthodox 
character of the decomposition law one is compelled to ex­
plicitly show that it does indeed yield a transverse compo­
nent d Jl for every massive field !%i Jl' 

To interpret the six scalar fields I go back to the discus­
sion in the Introduction. What emerged from that discussion 
is that the scalar modes which represent instanton effects in 
the massless Yang-Mills theory are of a different nature 
than the longitudinal-scalar modes of the massive Yang­
Mills fields. I argue that the S 's and 'TJ's of decomposition law 
(3.3) are certain superpositions of physical, i.e., longitudinal, 
scalar modes and of modes that correspond to the scalar 
fields that eventually make their appearance in the massless 
theory via instanton contributions. 

The above is a strictly intuitive interpretation. I shall 
elaborate more on the question of the six scalar field by em­
ploying formal arguments. To this end, consider the scalar 
(pure gauge) term of decomposition law (3.3). It reads 

(SISO) -laJl (SISO) = S o-laJlsO + S O-I(S 1-laJlsI)so. (3.4) 

Using the terminology of Sec. 2 I write S 1-laJlsl =!iJ Jl 'TJ 
(recall the denotations SI = e"l and So = eS ). Now, the sec­
ond term in (3.4) is of the form e - sAes, A an element of the 
(local) algebra su(2). I shall now show that 

(3.5) 

where ad(e - S) denotes the adjoint action of the Lie group 
element e - S on the corresponding Lie algebra element. 

By definition, it holds that 

ad(So)A = A', ~'= e - s~es . (3.6) 

Once the operator identity B~ B- 1 = eBAB 
I is recalled, 

(3.5) follows immediately. 
This result yields 

e-s!iJJl'TJes =A~, (3.7) 

where 
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(3.8) 

(3.9) 

Working in the neighborhood of the identity element, where 
(3.9) makes most sense, one finds, to a first approximation, 

A ~=!iJ Jl 'TJ = S 1-laJlsl , 

whence (3.4) becomes 

(SISO) --laJl(SISO)=S o-laJlsO + S 1-laJlsl . 

In the Appendix it is also shown that 

(3.10) 

(3.11 ) 

(SJ+ I Sj) -laJl(sj+ I Sj) = Sj-IaJlSj + Sj~\ aJlsJ+ I ,(3.12) 

forj::fO. It follows that the longitudinal term in decomposi­
tion law (3.1) is of the form ~jS j - I a Jl Sj' i.e. it is identical 
with the ,?-vacuum superposition in nonabelian gauge theor­
ies, with'? = 014. Accordingly, the longitudinal part of pro­
posed decomposition law (3.1) reflects, in a natural way, the 
possibility that the longitudinal modes of the original massive 
vector fields do not necessarily "settle" into the winding-num­
ber-zero sector but into all available and topologically inequi­
valent longitudinal vacua. 

I am now left to show that (3.3) does indeed yield a 
triplet of transverse vector fields A ~ (x) for every massive 
vector field triplet B ~ (x). For this all I have to do is follow 
the strategy employed by Boulware in Appendix A of his 
paper. The problem is to find a gauge group element S (x) 
such that the decomposition law yields a transverse field 
d Jl(x). Actually, since Sin (3.3) is of the formS = SoSl I am 
presently looking for two gauge group elements So and SI' 
For the moment, however, let me keep S and proceed a cer­
tain distance before having to introduce its two components. 
Boulware's strategy is the following: Assume a solution has 
been found. Also assume that an arbitrary but small vari­
ation over this solution yields a new one. In this way one 
obtains a differential equation for the sought for group 
element(s). 

Now, as shown by Boulware, the transversality condi­
tion leads to the equation 

(3.13) 

Assuming a solution (.01 Jl ,S) has been found, one considers 
the variation !%i I-' ---+!%i I-' + o!%i 1-" Owing to its exponential 
character, the corresponding variation in S is of the form 
oS = SoX. Upon substituting in (3.4) one obtains the follow­
ing elliptic equation for oX (I am constantly working in Eu­
clidean space): 

a2oX(x)+al-'[dl-',oxl =a,,(S-lo:d]I-'S). (3.14) 

The above equation represents, for the case of decom­
position (2.1) wherein S is of the form So = eS, a simple sys­
tem of elliptic equations of first degree solvable by standard 
Green function techniques. As shown by Boulware, the solv­
ability of(3.14) establishes the existence of d 1-" Let me tum 
to decomposition law (3.3). There are now six variations 
oX ~, oX ~. Explicitly, 

oS = OSISO + S)oSO = SloX ISO + SISoOX 0 , (3.15) 

where Ox = oX at a. One must now substitute (3.15) into the 
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variation of (3.13). Actually, the same answer is obtained if 
one substitutes in (3.14) the formal relation 

8X=Su-'8X,Su+8Xu, (3.16) 

which results after one sets 8S = S8X = S,Su8x in (3.15). 
The following systems of elliptic equations are thereby ar­
rived at 

J 28Xo + J,i['#1',8Xo] = 0, 

J 2[S 0-'8X,So] + au [d,,,S 0- '8X,So] 

= JU(S 0- 'S ,- '8.UJJ I'S,So) . 

Setting 

8X; = S 0- '8X,So, 

which means 

(3.17a) 

(3.17) 

(3.18) 

(3.19) 

(and, alternatively, e6x , = e - SlXle5), then (3.17b) becomes 

J 28X; + au [d/i ,8X; ] = au! (S,Sol - '8!!iJ I' (S,Sol I . (3.17b') 

The systems of Eqs. (3.17a) and (3.17b') are no more compli­
cated than the system (3.14) obtained by Boulware (in fact, 
the set of equations specified by (3.17a) is simpler, i.e. homo­
geneous). This establishes the existence of the ,y( 1" given the 
decomposition (3.3). I shall not attempt in this paper to prove 
uniqueness for the '#/i' '5 

C. Diagonalizability of the longitudinal sector 

Recall, now, the diagonalizability impass encountered 
in Sec. 2: One has to fulfill ~n(n + I) conditions with only n 
variables in one's disposal, namely the components of S. 
However, it has just been argued that field topology consid­
erations introduce a second [in the case ofSU(2) at least] 
scalar field triplet 1] which will also partake into the con­
struction of G and Q. But, now, with 2n variables in one's 
disposal one has to fulfill the condition 

!n(n + I) = 2n . (3.20) 

Apart from the trivial case n = 0, this condition is uniquely 
fulfilled for n = 3, i.e., it exactly suits SU(2). 

To witness how the actual diagonalization procedure 
works let me first consider the following approximation 

(3.21) 

valid if one works very close to the identity element. 
In this case, (3.3) induces, in comparison with (2.1), the 

replacement 

!j)/iS-!j)I'(S +1])= dexP5+71(JI'S +JI'1]). (3.22) 

The above generalization implies 

Tr!j),A!j)l's-Tr!j) I' CS + 1])!j)I'CS + 1]) 

= JI' CSa + 1]a )Gab CS + 1])auCSb + 1]b) . (3.23) 

Consider, now, the redefinition 

and set 

f~CS ') = OSa/OS b' g'/,(1]') = 01]a/81]b . 
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Then, the diagonalization conditions become 

!f~ CS ')ft CS ') + ~ (1]')g'f, (1]') + f~ CS ')g'f, (1]') 

+ ~ (1]')ftcs ') I GedCS ' + 1]') = Oab . (3.24) 

The above relation represents six algebraic conditions 
on the six variables S ~, 1] ~ at each spacetime point. It is, in 
general, solvable. Consequently, the nonpolynomial La­
grangian expression entering the longitudinal sector of the 
functional integral now becomes 

(3.25) 

Reinterpreting S ' + 1]' as a certain mixture of scalar modes, 
the desired diagonalization of the longitudinal sector has 
been finally achieved. 

Note that approximation (3.21) is hardly necessary for 
arriving at the above result. Indeed, in the general case, one 
has 

(3.26) 

By setting 

~ = 1] + HS,1]] + (l/3!)[S,[S,1]Jl + .... 
one is in position to repeat the steps following (3.21), with 1] 
replaced by ~. 

The final form taken by the longitudinal sector of the 
functional integral is 

Gt '.71' [Y'] = Z £-;.~,. f [!j)~ ][!j)~], 
xexp{ - ; f [!(JI'CS' + 1]')2 + JI'CS' + 1]')Y~ ]d 4x} . 
Note the absence of a Jacobian determinant factor. Its dia­
gonalization is simultaneous with that of G CS + 1]), hence it 
yields unity. 

4. ON THE NECESSITY OF NONZERO WINDING 
NUMBER CONTRIBUTIONS 

In the present section I shall focus on zero-mass limit 
aspects of the diagonalization-decoupling problem and take 
an opposite point of view. I shall assume that the zero-mass 
limit of a massive SU(2) Yang-Mills theory does yield a 
massless, gauge invariant SU(2) Yang-Mills theory and 
study the consequences. 

Consider the equations of motion corresponding to the­
ories (1.1) and (1.2): 

(4.1) 

and 

JVGZ + m 2jfa + E jfn'Gb = 0 (4.2) J.1-V J-l abc J.1-l' , 

where the coupling constant has been set equal to I. 
Consider, next, the infinitesimal version of decomposi­

tion (2, I). It reads 

jf~ = A ~ + EabcSbA ~ + JpSa + tJ(S 2). (4.3) 

Substituting (4,3) into (4,2) (I denote by G ';'V the usual anti­
symmetric tensor constructed from the transverse fields 
A ~), I obtain 

J VG 'a 2A a 2 J;- A C 2J J;- + A eVG ,b 
/LV - m I-' - m Eabc~b J.1- - m Il~a tabe J.lV 
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(4.4) 

Suppose, now, one identifies, in the limit m~, the 
transverse fields A; with the massless (transverse) gauge 
fields B ~. The following identity then results, on account of 
(4.1), 

- m2A; - m2EabcSbA ~ - m2aJ1-Sa + EabcEcdeSdA <YG!" 

+ Eabca"ScG!v=O, (4.5) 

where the prime notation has been dropped in view of the 
assumed lim G '~v -G ~v' 

Consider now infinitesimal quantum oscillations about 
the classical equilibrium points for the fields A ~ and sa, i.e., 

A~-<A~) +8A~, sa_(sa) +8s a . (4.6) 

As the A ; are transverse fields it follows that (A ~) = O. 
Substituting (4.6) into identity (4.5) one obtains, to first or­
der in 8A ~ and 8s a

, 

- m28A ~ - m2Eabc <Sb )8A ~ - m2(aJ1-Sa) - m 2aJ1- 8sa 

+ Eabc(aVSc)8G!v=0. (4.7) 

In particular, for a translationally invariant vacuum, (4.7) 
becomes 

m2(8A; + Eabc <Sb )8A ~ + aJ1-8sa)=0. (4.8) 

Alternatively, without the assumption of a translationally 
invariant vacuum and by the fact alone that 8A ; is an arbi­
trary variation, it follows, from (4.7), 

- m28A ~ - m2Eabc <sb)8A ~ + Eabc «(1'sc )8G!v=0. (4.9) 

From either (4.8) or (4.9) and excluding the trivial case 
m 2 = 0 it becomes obvious that compatibility between theor­
ies (1.1) and (1.2) is only possible, in the limit, if the scalar 
modes Sa have a nonvanishing classical value. But this is 
exactly the case with nonzero-winding number longitudinal 
"modes". Thus, replacing the Sa by ~jS~,j the winding 
number index, and since <s ~ ) # 0 for j # 0, one is now in 
position to consistently fulfill the identity for m=/O. 

In summary, the work in this section has explicitly dis­
played the necessity of the inclusion of scalar fields whose 
expectation value does not vanish at infinity if one insists on 
achieving compatibility between the massive theory (1.2) 
and the massless theory (1.1). One way of achieving this 
compatibility is to insert, by hand, scalar fields with nonvan­
ishing vev. This corresponds to the well known connection 
between gauge invariant theories and those of the spontane­
ously broken variety via Higgs fields (see, e.g., Ref. 10). In 
the absence of Higgs scalars the present analysis shows that 
either the van Dam-Veltman result persists, or the required 
scalar modes with non vanishing vacuum value are furnished 
by way of instant on effects. The findings of the previous sec­
tion show that the possibility cannot be ruled out. 

5. CONCLUDING REMARKS 

Consider the following analogy_ The well known axial 
anomaly which arises in perturbation theory (triangle dia­
grams) can be analyzed via a suitable parametrization. Spe­
cifically, one takes up the dilemma gauge invariance vs con-
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servation of axial current. By employing a certain parameter 
it is detennined that for a certain value one gains gauge in­
variance while for another, different, value one recovers axi­
al current conservation. Naturally, one chooses gauge in­
variance. With the advent of instantons, 't Hooft solved this 
problem5 bridging the gap precisely via the contributions of 
these classical solutions. Now, the van Dam-Veltman analy­
sis, presented in the Introduction, shows that a certain gap 
exists between massive and massless Yang-Mills theories 
within the framework of perturbation theory. The present 
work shows that this gap can, in principle, be bridged via 
instanton considerations. 

A complete solution of the zero-mass limit problem 
could have an important bearing on the infrared behavior of 
Yang-Mills theories. This remains the least understood, al­
beit the most interesting, region of these theories. 

APPENDIX 

I shall presently show that 

(Sk+ 1 Sk) - laJ1-(Sk+ 1 Sk) = S k-11 aJ1- Sk +1 + S k- 1aJ1- Sk 
(AI) 

for k #0. 
I start from 

(Sk + I Sk) - laJ1-(Sk + 1 Sk) 

=Sk-1Sk-11(aJ1-Sk+l)Sk +Sk-1aJ1-Sk' (A2) 

Using that l3 Sk + 1 = (S,l + lone easily obtains 

S k;'l aJ1-Sk + 1 = (k + I)S l-laJ1-SI . (A3) 

Inserting (A3) into (A2) and using Ski SI = Sk + I as 
well as 

(aJ1- S I)S7 = [U(k + 1)]aJ1-(Sll+1 = [U(k + 1)]aJ1-Sk+l' 

one finally arrives at (A I). 
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In color geometrodynamics fundamental spin or fields are assumed to obey a GL(2J,C) ® GL(2c,C) 
gauge-invariant nonlinear spinor equation of the Heisenberg-Pauli-Weyl-type. Quark 
confinement, assimilating a scheme of Salam and Strathdee, is (partially) mediated by the tensor 
"gluons" of strong gravity. This hypothesis is incorporated into the model by considering the 
nonlinear Dirac equation in a curved space-time ofhadronic dimensions. Disregarding internal 
degrees of freedom, it is then feasible, for a peculiar background space-time, to obtain exact 
solutions of the spherical bound-state problem. Finally, these solutions are tentatively interpreted 
as droplet-type solitons and remarks on their interrelation with Wheeler's geon construction are 
made. 

PACS numbers: l1.lO.Lm, l1.lO.Np, 12.40.Bb, 04.50. + h 

I. INTRODUCTION 

Recent speculations I on a new geometrodynamical 
model of extended particles draws attention to the possibility 
of describing composite baryons by a 
G GL(2J,C) ® GL(2c,C) gauge-invariant nonlinear spinor 
equation is curved space-time. In accordance with the strong 
gravity hypothesis2 the curving-up of the internal space is 
expected to occur in dimensions characterized by the modi­
fied Planck length 

1'* = (81riiG,/C3)1I2 = (81T)I/2Ii/cM * z 10 - 13cm (1.1) 

of the order of one Fermi. 
The Poincare-invariant gauge theory of gravity with 

spin and torsion analyzed by Hehl et al. 3 may be generalized4 

to one incorporating the flavor and color generating group 
U (f) ® U (c). Then a nonlinear spinorequation o/the Heisen­
berg-Pauli- Weyl_type5 ,6 

I iU'V
" 

- V *2¢L 5 L'l t/;L 5 L fl - ftc/IiJ t/; = 0 (1.2) 

emerges which is G-gauge invariant. Unlike Heisenberg's 
unified field theory6,7 in color geometrodynamics (CGMD)8 
the / X c fundamental spinor fields 

·'·-I·,'<Ql'q)1 - 1 f; - 1 J '1'= 'I' qj - , ... " qc - , ... ,c (1.3) 

may be interpreted as quark fields distinguished by /flavor 
and c color degrees of internal freedom. In this gauge-the­
ory4 the matrices L Il,L 5 are space-time dependent general­
izations of the familiar Dirac matrices Y' tensored with 
U (f) ® U (c) vector operators Aj (generalized Gell-Mann 
matrices). 

Whereas the nonlinearities induced into (1.2) by Car­
tan's torsion tensor9 are suspected to yield (classical) bound­
states of quarks, their (partial) confinement is conjectured 1.10 
to result from curvature barriers produced by tensor gluon 
fields/flv ' This "role of (strong) gravitation in the building-up 
of elementary particles" has already been envisioned by 
Weyl5 who also gave the prior construction of a generally 
covariant and SL(2,C) gauge-invariant spinor equation. 

The fundamental Heisenberg-Pauli-Weyl spinor equa­
tion has already been the subject of considerable work, the 

internal U (f) ® U (c) symmetry usually being dropped for 
simplicity. Then, in two space-time dimensions the renorma­
lizable theory described by the massless universal field equa­
tion6 of Heisenberg is commonly referred to as the Thirring 
model. I I, I 2 Regarding t/; as interacting quantum fields, 
Glaser13 has obtained explicit solutions (see also Ref. 14). 
More recently, classical instanton- and meron-type solutions 
of (1.2) have also been found 15 in two dimensions. 

In the real world it is notoriously difficult to obtain 
solutions even for the semiclassical problem. Finkelstein et 
al. 16.17 Soler, 18 and more recently Raiiada19 as well as Taka­
hashi20 have obtained radially localized solutions of a nonlin­
ear Dirac equation similar to (1.2). However, their analysis 
rests upon numerical calculations and in addition to that, is 
restricted toflat space-time. On the other hand, it is 
known21 .22 that a nonlinear scalar field theory having a dyn­
amics which is related23

•
24 to the squared form off 1.2) admits 

exactly solvable radial solutions in an Einstein universe. 
In this paper, the freedom in the choice of the back­

ground space-time again is instrumental for the construction 
of exact radial solutions of a nonlinear spinor equation hav­
ing a [compared to (1.2)] algebraically simplified self­
interaction. 

The paper proceeds as follows: In Sec. II the setup of a 
generally covariant nonlinear spinor theory in curved space­
time is reviewed. Emphasis is laid on the case of a spherically 
symmetric background. 

Section III deals with the spherical spinor formalism 
familiar from the bound-state problem of the hydrogen 
atom.25

,26 This formalism allows one to reduce the spinor 
equation to a system of two nonlinear differential equations 
which are of first order with respect to the radial coordinate 
r. Employing a stationary Ansatz, exact spherical spinor 
waves are explicitly constructed in Sec. IV. A peculiar class 
of spherically symmetric space-times is specifically adjoint­
ed to allow for solutions in closed form. Although unlikely, 
the possible physical significance of these exact solutions and 
connections with Wheeler's geon concept27 are discussed in 
Sec. V. 
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II. THE MODEL 

Disregarding from now on internal degrees offreedom, 
the self-interacting spin or model ofCGMD is given4 by the 
Lagrangian density 

Jl"D_w = viii {i¢L/LV/L¢- ~~ C'2(¢LSL/L¢)2 

- (Pclll)¢¢} , £= ± 1 (2.1) 

defined on a curved space-time with pseudo-Riemannian 
metric and connection. [The basic field equation (1.2) may be 
derived by varying the Dirac-Weyl Lagrangian (2.1) for 
82' D._w.!8¢ if £ = + 1 and f'= f' *.] 

In terms of the familiar Dirac matrices Y a (conventions 
are those of Bjorken and Drell2S) satisfying 

yaY(} + Y(3Ya = 2YJa(J' diag(YJa(3) = (1, - 1, - 1, - I), 

space-time dependent matrices (2.2) 

(2.3) 

L 5= ~ _1_ ~""a'L A ... ALL 5 L 5 = 1 (2.4) 
4! viii a, a,' 

are introduced in terms of the vierbein fieldL ~. Thesematri­
ces are via 

!;". = !Tr(LI,L,,) (2.5) 

related to the metric tensor!;,v of the curved manifold (of 
hadronic dimensions). 

The Dirac operator has been generalized to a curved 
space-time by using the SL(2,C) gauge-covariant 
derivative28

.
29 

~=~+~, ~~ 
Following Brill and Wheeler30 the spinor connection r/L can 
be explicitly expressed in terms of the symmetric Christoffel 
symbols 

r ;',.=!fTfT(aJ"/L + alJm' - a"!;,,.) 

(metrical connection coefficients) as follows: 

r - I(r r L vaL (3 Loa L v(3) 
It - 4. ill' T - \' f.l (Tap· 

Here 

(2.7) 

(2.8) 

(2.9) 

denote the infinitesimal generators of the covering group 
SL(2,C) of the Lorentz group. 

According to well-known relations I? between scalar 
products of bilinear forms containing identical spinors the 
self-interaction in (2.1), which is of the axial-vector type, 
may be replaced by a scalar-minus-a-pseudoscalar type self­
coupling, i.e., 

(¢iL 5L
I
, ¢)(¢iL 5£1'¢) = (¢L/L ¢)(¢L /L¢) 

= (¢¢)2 _ (¢L S¢)2. (2.10) 

Therefore we are justified to a certain extent in considering 
instead of (1.2) the nonlinear Dirac equation 

tiL /LV /L + icC' 2¢¢ - f..lclIlJ ¢ = 0 (2.11) 

having an algebraically simplified self-interaction. (The in­
clusion of the pseudoscalar term would lead to a more intri­
cate model.) 
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Besides zero, Eq. (2.11) admits for £ = + 1 the con­
stant solution 

q = 1, ... ,[ -1; 

(2.12) 

Since radially localized "bound-state" configurations 
may (classically) describe extended particles it is consistent 
to base our search for solutions of (2.11) on a spherically 
symmetric background space-time. In the "isotropic" pre­
sentation the corresponding general line element reads 

ds2 -I' dx/Ldx" 
=.J ILV 

= e"c2dt 2 _ eA (dr + rd() 2 + r sin2()dqJ 2), (2.13) 

where the functions v = yep) and A = A (p) depend solely 
on the dimensionless radial coordinate 

p=[(21T) 1/2 It *]r = (M *c/2li)r. (2.14) 

The spherical coordinates r _I x I, (), and qJ may be expressed 
in terms of the usual Cartesian coordinates x. 

In order to facilitate the following analysis it will be 
assumed that the background metricl/Lv is conformally re­
lated to another metric via 

(2.15) 

Obviously, the corresponding vierbein then can be confor­
mally related in a similar way: 

L ~ = ~!2[~. (2.16) 

With respect to the conformal change (2.15) the (symmet­
ric!) Christoffel symbols are related via 

r;". = r;,,, + ~(8;,avA + 8:8/L). - i;,va'A). (2.17) 

[See, e.g., Ref. 31, Appendix (A2)]. Employing also (2.16) a 
short calculation reveals that 

r
" 

= r l, + k(~aaA - 8;;Cf3A )CTa(3' (2.18) 

Thus, as a byproduct, it has been shown that the nonlinear 
Dirac equation (2.11) on conform ally related pseudo-Rie­
mannian manifolds takes the form 

! i[ /L(al, + ir/L + ~'lA) 
(2.19) 

In order to proceed further, the spinor connection r in _ /L 

terms of a metricl/Lv which is via (2.15) conformally related 
to the background (2.13) has to be ascertained. The compari­
son with the results (30) of Ref. 30 obtained for a similar case 
shows that 

r = lie(v-Al/2a (v - 1)1/ Y o 4 ,/I. (O I' 

r , = 0, r 2 = !iY2YI' (2.20) 

r3 = V(sin()Y3Y, + COS()Y3YI)' 

The insertion of these expressions into (2.19) finally leads to 

{iyOao - e(,·-A)!2[iy'(} + iyar(!A + !v)] 

(2.21) 

For later convenience, the spatially flat Dirac operator iy·(} 
which occurs has been expressed in terms of Cartesian 
coordinates. 
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III. SEPARATION ANSA TZ FOR SPHERICAL WAVES 

It may be noticed that the curved background occurs in 
the conformal spinor equation (2.21) only in a multiplicative 
manner, except for the third term. However, this term may 
be absorbed by the factor exp( - A 12 - v 14) in the following 
Ansatz: 

t/J = ~ (2;~C yl2 e - AI2 - vl4e - iwt!'c'lfi 

[ 

iG(p)X;' 1 
X F( ) a-x m p -x~ 

Ixl 
(3.1) 

Following essentially the notation of Rose,26 the spin­
weighted spherical harmonics X~ of parity P = ( - 1)1 are 
defined by 

X~= I C(l!j;m-m,m)y;n-m(e,q:»xm. (3.2) 
m = ± 112 

Here 

f?== + (j +!) for j = I ± ~, (3.3) 

and C (I !j;m - m,m) are Clebsch-Gordan coefficients. 
These spherical2-spinors are known to satisfy the eigenvalue 
equations 

J 2x:; = j(j + 1 )X~ , 

(1'LX'; = - (f? + l)x'; , 

(3.4) 

(3.5) 

for the operators J and L of total and orbital angular mo­
mentum and also 

(1'x/lxl)x:; = -X",-,,· 

Moreover, it can be shown26 that 

iy)y.a [iG(P) :?] 
-F(p) X-I 

= a-x (a
r 

_ J... (1.L) [iF( p) 
Ixl r G(p) 

(3.6) 

x~/] . 
XI 

(3.7) 

with respect to the Ansatz (3.1) the self-coupling term in 
(2.21) takes the form 17 

Jt' 2.1.t/J = 41T.!!!... e - A - v/2 
8 'f Ii 

X (G 2 _F2) 1 y:~:=:(e,q:» 12 (3.8) 

This self-interaction potential has to be spherically 
symmetric in order to ensure separability. This is the case for 
I f? I = 1, only. Then, the quantum numbers for the spin and 
angular momentum of admissible solutions are restricted to 
j = 1/2, I = 0, 1, and m = ± 1/2. 

With all this information at hand the insertion of (3.1) 
into (2.21) yields 

ap.G+ 1 + f? e(V-A)/2G 
p 
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= J...[U) + ev/2 _ Ee- A (G 2 _ F2)]F, 
(3 
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(3.9) 

(3.10) 

for the remaining radial equations. It is convenient, but not 
really necessary in our case, to employ Wheeler's "tortoise 
coordinate"27 p* defined by the differential form 

dp* = e(A - v)/2dp (3.11) 

in the above equations. In (3.9) and (3.10) the ratio 

{3=M*/2fl (3.12) 

measures how much the "bare mass" fl of a fermion contrib­
utes to the (strong) gravitational mass M *. The nonlinear 
term _(G 2 - F2) suggest we utilize the 

Ansiitze 

G (p) = e~(P)cosht,6 (p), 

F(p) = e~(P)sinht,6 (p), 

(3.13) 

(3.14) 

in order to achieve a simplification of the equations. (Similar 
Ansatze have already been used by Finkelstein et al. 17 and 
van der Merve32 in their search for asymptotic solutions at 
spatial infinity.) Solving for the first derivatives yields: 

a p r/J = f? sinh2r/J 
p 

1 + 7i (evl2 - Eew - A - U)cosh2r/J )e(A - v)/2, (3.15) 

and 

a p t'J = ; e(A - V)/2sinh2r/J - ; (1 + f? cosh2r/J ). (3.16) 

IV. POSSIBLE EXACT SOLUTION 

As the resulting radial equations (3.15) and (3.16) form 
an underdetermined system, the freedom in the choice of the 
background space-time may be used to absorb the nonlinear 
contribution e2~ in Eq. (3.15). In particular, the assumption 

evI2 _ Ee2~ - A = U)cosh2t,6 (4.1) 

will cause equation (3.15) and (3.16) to separate. Then, 
(3.15) reduces to 

dr/J Isinh2r/J = f? dpl p. (4.2) 

The left-hand side can be integrated by employing formula 
2.423.1 of Ref. 33: 

f dz/sinhz = In tanh(zI2). (4.3) 

After solving (4.2) this leads to the initial information that 

coshr/J = (1 _ A 2p4">,) -1/2, 

sinhr/J = Ap2:i'coshr/J, 

where A denotes an integration constant. 
To proceed further, the differential equation 

dt'J _ U) (A _ v)/2 
dr/J - {3f? pe 

f?sinh2r/J 
coth2r/J 
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(4.5) 

(4.6) 
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expressing the implicit dependence of {} (p) on ¢J (p), in view 
of condition (4.1) can now be deduced from (3.16) and 
(3.15). 

Under the further assumption that 

(v - A )/2 _ t h2A. = _.2.2p_s::-in_h..!..¢J_c_os_h-,::¢J_ e -pan 'f'-
sinh2¢J + cosh2¢J 

(4.7) 

holds Eq. (4.6) can be easily integrated with the aid of (4.3) 
and 

!(COShz/sinhz)dZ = In sinhz (4.8) 

(formula 2.423.33 of Ref. 33). The result can be expressed in 
terms of the already known functions (4.4) and (4.5) as 

C (1. )(W - {3)12{3J -112 , 
eiJ = 2A A smh¢J (cosh¢J yw + {3 )12{3,Y - 112, 

(4.9) 

where C is a second integration constant. 
The remaining task is to determine the metric functions 

e v and e". The substitution of (4.7) into the other subsidiary 

condition (4.1) leads merely to an algebraic equation 

y3 +3py +2q = 0 (4.10) 

for 

Y e"/2 - vIPI, (4.11) 

With respect to the parameters 

p = [ w(sinh2¢J + cosh2¢J )2 ]2 0 
6psinh¢Jcosh¢J ,;;; , 

(4.12) 

and 
liJ 

_ IP I 3/2 __ Ee __ q- - -
2ptanh2¢J 

(4.13) 

it takes the normal form (4.10) of a cubic equation. If p < 0 
(4.10) has one or three real roots depending whether or not 
the discriminant 

(4.14) 

is positive or not (see Ref. 34, Sec. 59). By introducing the 
complex variable 

a=!arcosh(lql IPI- 3/2
) 

( I 33e2iJp2sinh2¢Jcosh2¢J I) = !arcosh 1 - 2E ---:::---'---c:-----'_--:-~ 
w3(sinh2¢J + cosh2¢J )5 

= larcosh ( 11 _ E3
3c 2 pl,Y> + 2wl{3 

3 2w3 

X (1 + A 2p4J) - 5(1 _ A 2p4!Y)<4{3!y - w)I{3'¥' I ) 
(4.15) 

with respect to the principal value of the inverse hyperbolic 
function, it can be inferred from the trigonometric indentity 

4cosh3a = 3cosha + cosh3a (4.16) 

(Ref. 33, formula 1.324.2) that 

{ 
cosa 

YI = -2sgn(q)vIPI 
cosha 

for D,;;;O, or 

for D>O 
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(4.17) 

is a solution of (4.10) for p < O. Independent of the sign of D 
this solution is always real and therefore acceptable for the 
components of a (pseudo-) Riemannian metric. 

Using this root in (4.11) and employing also (4.12) and 
(4.13) yields (written down below for D > 0 only) 

..A 12 w(sinh2¢J + cosh2¢J)2 [1 2 () h] e = - sgn q cos a 
6psinh¢Jcosh¢J 

w (1 + A 2p4i?y 

6A p2'¥'+1(1-A 2p4!Y) 

X [1 - 2sgn(q)cosha] (4.18) 

as a result for one of the metric functions, whereas evil may 
now be derived from (4.7). 

Since F = Ap2'i"G it is sufficient to record the radial 

dependence of the upper spinor component of the Ansatz 
(3.1). After employing (4.4), (4.5), (4.9), (3.13), (4.18), and 
(4.7) its explicit expression reads: 

G =Ge -Al2 - v/2 = C (!Y12 po';'" + wl{3 

X(l +A 2p4'i')-5/2(1_A 2p4JY3f3>"-w)/2{3? 

X {I _ 2sgn(q)cosh [!arcOSh ( 11 _ E~ 2 p2'i' + 2,"I{3 

X (1 + A 2p4?) - 5( 1 _ A 2p4i' )14{31' - w)I{3~ I ) ] } -3/2 

(4.19) 

A time-independent solution can be obtained from the 
Ansatz (3.1) by putting w = O. This corresponds to the case 
p = 0 which, for a cubic equation, has to be treated 
separately. 

However, then (4.10) admits the obvious solution 

eA 12 = ( Ee
2iJ 

)1/3 

ptanh2¢J 
_ C 2/3 [1 + A 2p4 Y ] 1/3 

2Apl +4 " 13 E(l _ A 2p4/) 
(4.20) 

In the deduction of the second part of this relation use has 
been made of the fact that the expression (4.9) is still valid for 
w = O. The radial dependence of the upper spinor compo­
nent turns out to be comparatively simple: 

(4.21) 

For p <po=A -1/2/ the metric function eA is real as re­
quired, whereas the spinor solutions are real for 
::r = E = ± 1, only. In the domainp >Po both spinor com­
ponents G and Fbecome imaginary. This, in effect, amounts 
to a change of the sign of the self-interaction of our model 
(2.1). Therefore, only the interior (or exterior) solution 
(their domains being separated by a pole of(4.21) and (4.20) 
at Po) would commonly be acceptable for E = +1 (or 
E = -1). 

V.INTERPRETATION AND PROSPECTS 

Some insights into the mathematical structure of these 
solutions may be gained by studying their asymptotic behav­
ior. From the explicit expressions (4.15) it can be deduced 
that the term 
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f 2J' + 2w/{3 
Iqllpl-3/2 -1- lp~ (21" +2w/(3) 

for p-o, 
(5.1) 

for p-oo 

tends to zero with the same degree at the origin and at infin­
ity. Therefore, the radial part (4.19) ofthe stationary solution 
behaves as 

_ {p/ +,,)/{3[1_2sgn(q)]-3/2 
G- p - (.l / H)/(3) [ 1 - 2sgn(q)] - 3/2 for p-oo. 

for p-o, 
(5.2) 

For q < 0 these asymptotic expressions are real. For the low­
er spinor component F Ap2J{; to be asymptotically van­
ishing, it has to be required that w//3> - fP? Furthermore, 
only in the special case35 

w = 3/3fP? (5.3) 

(4.19) and F would constitute a real, completely regular and 
localized solution, if the underlying space-time manifold 
were flat. After all, it follows from (4.7) that the line element 
(2.13) is via 

ds2 = flds6 

conjormally3 t related to the nonsingular line element 

4A 2p4/ +2 

ds~ = ---'--.,---- c2dt 2 
(1 + A 2p4 ")2 

t' *2 
___ (dp2 + p2dfJ 2 + p2sin2fJdq; 2) 

21T 

which is degenerate at the origin (for every fP?). 

(5.4) 

(5.5) 

However, the conformal function fI given by (4.18) in 
the stationary case and by (4.20) for a time-independent solu­
tion is singular at the origin, at p = Po, as well as at infinity. 
This fact could spoil altogether the regularity of the solution 
(4.19) in the case (5.3) if everything is expressed in a different 
coordinate system. For these (and other) reasons the classical 
field energy30 associated with these solutions may turn out 
not to be finite. 

In the time-independent case, the solution (4.21) and a 
similar expression for the lower spinor component are valid 
for a finite radius p <Po for E = + 1. However, the obtained 
background geometries given by (5.4) and (4.20) likewise are 
of finite extent and, therefore, may remotely resemble the de 
Sitter spaces,36 which have been recently considered for con­
fining models. to 

Nevertheless, the physical meaning of the obtained ex­
act solutions so far remains rather obscure. The direction of 
future work may be indicated by the following related, but 
speculative remarks: For a massive nonlinear spin or theory 
with a peculiar self-interaction of polynomial degree k, 
o < k < 1, Werle37 found exact radial solutions in flat space­
time which are also confined to the interior of a sphere. By 
continuing with t/I=O outside this sphere, these solutions are 
claimed to have many features of droplets of "bags". 38 In the 
case of the massive Thirring model exact solutions owning 
the properties of bound states have been constucted by 
Chang et al. 39 and studied as an example of chiral 
confinement. 

Furthermore, the construction scheme for our exact so­
lution should also be commented upon. Recall, that the 
method of Sec. IV would not work in flat space-time. The 
freedom in the choice of a spherically symmetric back-
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ground is essential for the method presented in this paper. 
However, in a self-consistent approach the metric functions 
v( p) and A (p) would have to be determined by the stress­
energy content (see Sec. 10 of the Brill and Wheeler paper'~O) 
of the spinor solution via Einstein's field equations. This 
could be regarded as a geon-type27 construction of spin or 
solitons in CGMD. 

Moreover, the internal symmetries inherent in the G­
gauge-invariant equation (1.2) should be properly dealt 
with. A possible approach in this direction has been under­
taken by Takahashi40 who obtained numerically nontopolo­
gical soliton solutions with vanishing (total) "color" charge. 
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We consider source-free Yang-Mills solutions for which the curvature is decomposable in the 
sense that the curvature 2-form is the product of a single Lie-algebra-valued function and a real 2-
form. If the curvature is everywhere nonnull (or null with twisting rays), then the solution is a 
connection in a principal fiber bundle, which is reducible to a source-free Maxwell principal 
bundle. All such solutions are therefore readily obtained, locally or globally, from Maxwell 
solutions. Our analysis uses the Ambrose-Singer theorem to show that the holonomy group is 
one-dimensional. A principal bundle-with-connection is reducible to the holonomy subbundle of 
any point, and, in this case, since the holonomy group is one-dimensional, the reduced bundle has 
the structure of a Maxwell bundle. On the other hand, if the curvature is null and twist-free on a 
full neighborhood of some point, then the bundle need not be reducible. The holonomy group is 
generally the entire gauge Lie group. The solutions can still be constructed locally from Maxwell 
solutions, there being extra freedom in the construction over regions where the Maxwell field is 
algebraically null with twist-free rays. We extend all these results to the class of solutions for 
which the self-dual curvature is (complex) decomposable. These are all the solutions of type D and 
type N in the classification of Anandan and Tod. 

PACS numbers: 11.1O.Np 

I. INTRODUCTION 

There now exist persuasive arguments I to support the 
view that gauge theories provide a useful description of fun­
dam ental physical interactions. These theories, like general 
relativity, admit an elegant geometrical formulation. Atten­
tion focuses on a connection in a principal fiber bundle over 
spacetime. 2 The gauge field is the curvature of that connec­
tion. 3 The Yang-Mills4 field equations relate the currents of 
source fields to certain derivatives of the curvature. When 
there are no sources present, the field equations simply re­
quire that the dual of the curvature be D-closed, where D is 
the covariant exterior derivative defined by the bundle con­
nection. 3 These field equations governing the connection are 
nonlinear equations, and little is known about properties of 
generic solutions. In this paper we show that there is, howev­
er, a large class of source-free Yang-Mills solutions whose 
properties are easily studied. Although they are too special 
to yield inferences about generic Yang-Mills solutions, the 
class is large enough to provide a substantial reservoir of 
solutions from which to draw examples and 
counterexamples. 

Throughout this paper, reference to a Yang-Mills solu­
tion (or a Yang-Mills bundle-with-connection) should be 
understood as meaning a source-free Yang-Mills solution. 
Similarly, a Maxwell field (or a Maxwell bundle) will always 
refer to a source-free solution. The gauge group of a Yang­
Mills solution is allowed to be any Lie group except where 
we make restrictions. By a Maxwell bundle we shall mean a 
Yang-Mills principal bundle-with-connection whose gauge 
group is one-dimensional. The group need not be U( 1), nor 
even a connected group. It is only necessary that its Lie alge­
bra be the real number line. The base space for any Yang-

Mills bundle is assumed to be a four-dimensional spacetime, 
but it need not be Minkowski's spacetime. 

We begin by recalling a well-known local construction 
ofa class of Yang-Mills solutions: Let /;1' be a reali-form on 
spacetime whose curl is a (source-free) Maxwell field! Ifb is 
a fixed element in the Lie algebra of some group, then 
A: = b.af is a local potential for a (source-free) Yang-Mills 
field. This can be easily verified by showing that A and its 
curvature F satisfy Eq. (2.5). The curvature is F = b! If an 
arbitrary gauge transformation is made, the potential A can 
no longer be expected to be simply a product of a Lie-alge­
bra-valued function with a realI-form. The covariant curva­
ture F, however, is necessarily still a product of a Lie-alge­
bra-valued function with! The above construction, which 
has been described with reference to a local gauge, produces 
a Yang-Mills solution with decomposable curvature, a prop­
erty which is gauge-independent. 

The question now arises as to how general this simple 
construction is. Given a Yang-Mills solution with decom­
posable curvature, does it arise from a Maxwell solution in 
this special manner? The answer is a much qualified yes. The 
above construction is a local construction, employing a local 
gauge. To answer the question globally, we will need to use 
the geometry of connections in principal fiber bundles. Ifwe 
restrict attention to solutions such that the field/ occurring 
in the curvature is algebraically nonnull or null with twisting 
rays, then the answer is yes. If/is null with twist-free rays, 
then the strongest conclusion one can draw is that there ex­
ists a local gauge in which the potential has the form 
A = b(u).af, where.af is a potential for a Maxwell field! 
Here the potential .af has been chosen so that .w f\ du = 0, 
where5 u satisfies/+ f\ du = 0, and b, rather than being con-
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stant can be an arbitrary Lie-algebra-valued function of u. 
Con;ersely, iff = d~ is a null-twist-free Maxwell solution 
satisfying ~ I\du = 0, wheref+ I\du = 0, then it is easily 
checked that A=b(u)~ is a solution of the Yang-Mills 
equation (2.5) for an arbitrary function b(u) of u. 

Let us now regard a Yang-Mills solution as a connec­
tion in a principal fiber bundle, and suppose that its curva­
ture is decomposable: 

n = (3w. 

Here n is the Lie-algebra-valued curvature 2-form, (3 a Lie­
algebra-valued function, and w a real-valued 2-form. At any 
point of the bundle there is defined by f3 a one-dimensional 
subspace of the Lie algebra, and the curvature n maps all 
pairs of tangent vectors at the point into the one-dimensional 
Lie algebra subspace. If the source-free Yang-Mills equa­
tions are satisfied (and n is not null6 with twist-free rays), 
then the Lie algebra subspace is constant along horizontal 
curves in the bundle. This means that if 5 is a point in the 
bundle and 17 is some other point which can be reached from 
5 by a horizontal curve, then the curvature at 17 maps all 
pairs of tangent vectors to the same one-dimensional Lie 
algebra subspace as is defined by the curvature at 5. Now, 
according to the theorem of Ambrose and Singer, 3 the Lie 
algebra of the holonomy group at 5 is spanned by the Lie­
algebra vectors obtained by the action of the curvature 2-
form on all pairs of vectors at all points in the holonomy 
bundle of 5. But the holonomy bundle of 5 is the set of points 
17 which can be reached by horizontal curves from 5, and the 
curvature maps into the same one-dimensional subspace at 
all such points. So the holonomy Lie algebra is one-dimen­
sioanl. Since any bundle-with-connection is reducible to the 
holonomy bundle of any point, in this case it can be reduced 
to a principal bundle-with-connection whose fibers are one­
dimensional. The reduced connection satisfies the Yang­
Mills equations, and so the reduced bundle-with-connection 
can be regarded as a Maxwell bundle. The construction of 
Yang-Mills solutions with decomposable curvature is there­
fore straightforward. Given a Maxwell bundle, it is not diffi­
cult to construct the bundles which are reducible to it. 

In the simple picture just presented we tacitly assumed 
that the curvature was everywhere nonzero, thereby defin­
ing a nontrivial Lie algebra subspace at each point. If there 
are open regions of zero curvature, the global structure can 
be quite complicated. In particular, the holonomy group 
need not be one-dimensional. See Sec. III for further details 
on this. 

The holonomy group may have more than one dimen­
sion also when there is an open region on which the curva­
ture is null with twist-free rays. In such a region the Yang­
Mills field equations do not require the direction of (3 to be 
constant along all horizontal curves, but only along horizon­
tal curves whose projections lie in the hypersurfaces orthog­
onal to the rays. In this case we offer a different bundle de­
scription of how to construct local Yang-Mills solutions out 
ofnuIJ-twist-free MaxweIJ solutions. See Sec. IV for details. 

Whenever the gauge Lie group admits a two-dimen­
sional Abelian subgroup, there is room for generalizing the 
decomposable solutions we are discusssing. Fix two inde-
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pendent Lie algebra elements, band c, which commute. Lo­
cally, suppose d~ =fand d:?lJ = *J, wherefis a Maxwell 
field. Then A: = b~ + c:?lJ satisfies the Yang-Mills equa­
tions (2.5), as can be easily checked. The curvature is 
F = bf + c*J, which is not decomposable. But the self-dual 
curvatureisF+ = (b + ic)f+, which is the product ofa single 
(complex) Lie-algebra-valued function and a complex 2-
form. Such a solution has decomposable self-dual curvature. 
Any solution with decomposable curvature has decompos­
able self-dual curvature, but not conversely. The property of 
decomposable self-dual curvature is gauge invariant and 
thus is also a property of the principal bundle connection. 
When a decomposable self-dual curvature is everywhere 
nonnull or null-twisting, then the Yang-Mills bundle-with­
connection has two-dimensional abelian holonomy groups 
(one complex dimension), and it is reducible to any holon­
omy subbundle. The construction of these solutions, locally 
or globally, is straightforward, The structure of the local 
solutions wih null-twist-free decomposable self-dual curva­
ture will also be given in Sec. V. The entire class of solutions 
with decomposable self-dual curvature is the same as the 
class of solutions denoted as type D or type N by Anandan 
and Tod. 7 The type-N·solutions have null decomposable 
self-dual curvature. 

II. GEOMETRICAL BACKGROUND AND PRELIMINARY 
RESULTS 

In this section we develop the preliminary background 
material utilized throughout the remainder of the paper. 
Generally our arena is that of a principal fiber bundle P 
whose structure group is a general Lie group G. The base 
space M of a bundle is assumed to be a four-dimensional 
spacetime. We denote the projection of Ponto M by 11'. The 
reader may consult Trautman2 or Kobayashi and Nomizu3 

for details regarding elementary properties of fiber bundles. 
To say that s is a local section of P means that s is a 

mapping from an open subset U of Minto P such that 
11'(S(X)) = x for every xEU. In particular s( U) will be a four­
dimensional surface lying in the bundle in such a way that if 
YEU then the fiber 11'~ '(y) over Y intersects s( U) in precisely 
one point. We will deliberately blur the distinction between s 
and the surface s( U) depending on the context. 

Following Trautman,2 we will identify a local section 
with a local gauge. Moreover,we will often refer to a local 
section s as a local gauge. If s, and S2 are local gauges and if 
their respective domains U, and U2 intersect, then there is a 
smooth mapping from U,nU2 into G, x---+g(x), such that 

s,(x) = S2(X)g(X) 

for all xEU,nU2 • This mapping will be referred to as agauge 
transformation. 

The paragraphs above describe the general setting 
which serves as background for the various fields which are 
the objects of our study. For notational convenience, func­
tions and forms defined on bundles will be denoted by Greek 
letters while those on the base space will be denoted by Latin 
letters. Moreover, Lie-algebra-valued maps will be distin­
guished by the fact that they will always occur in bold type. 
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In the setting of fiber bundles both a connection and its 
curvature are Lie-algebra-valued forms on the bundle P. 
Thus, in conformity with our notational convention, «I> will 
denote a connection on P and 0 will denote its curvature. 
Reca1l2

•
3 that the connection «I> is related to its curvature 0 

by the equation 

0= D «I> = hor(d «1» = d «I> + H «1>,«1>], (2.1) 

where hor(d «1» denotes the horizontal partS of d «1>. In Eq. 
(2.1) we have utilized the notation d «I> and [«1>,«1>], which we 
now explain. Generally, if T is a Lie-algebra-valued p-form 
and 1 e, ! is a basis of the Lie algebra, then dT (dTi)e i , 

where T = T iei . Similarly if T = T iei and N = N ie" then 
[T,N]-(T'ANi) [ei,ej ], where [e"ej ] is the Lie bracket of e, 
with ej in the Lie algebra. 

The reader may be more familiar with a local gauge 
formulation of the equation (2.1). Let 

A = s*«I>, F = s*O 

in a local gauge s. Equation (2.1) becomes 

F = d A + HA,A]. (2.2) 

In order to discuss the Yang-Mills equation, we need 
the concept of the dual curvature. To define this concept,let 
*F denote the usual dual of the 2-form F relative to the vol­
ume defined by the spacetime metric on M. Then define the 
dua/ofO, denoted *n, by the requirement that ifsEPandF 
and Ll are tangent vectors to Pat S' then 

(2.3) 

Observe that this definition is independent of which gauge s 
was used to obtain F. It is not difficult to verify that *0 is a 
tensorial2-form9 onPand thus thatD*O = d*O + [«1>,*0]. 

The equation D n = 0 is an identity and is called the 
Bianchi identity. 3 On the other hand, D* 0 = 0 is not always 
valid, but when it is, 0 is referrred to as a solution of the 
source-free Yang-Mills equation. Since, however, we deal 
only with source-free equations we will refer to D*O = 0 as 
the Yang-Mills equation, and in this case we refer to n as a 
Yang-Mills curvature. In a local gauge s the Bianchi identity 
becomes 

DF = dF + [A,F] = 0, 

while the Yang-Mills equation reduces to 

D*F = d*F + [A,*F] = O. 

A field n + may be defined by 

n+ =n-i*n. 

It follows that in this notation the two equations D n = 0 and 
D*n = 0 reduce to a single equation 

D n+ = d n+ + [«I>,n+] = 0, (2.4) 

or, in a local gauge s, 

DF+ = dF+ + [A,F+] = O. (2.5) 

The field n + has the property that * n + = in + and is called 
the self-dual curvature. 

A curvature n is said to be decomposable if, at each 
point S of P, there exists a neighborhood r of S such that 
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n=j3liJ, (2.6) 
where j3 is a smooth Lie-algebra-valued function on rand 
where liJ is a smooth real-valued 2-form on r. Note that even 
though n is smooth, one cannot infer the existence of such a 
j3 and liJ if one merely assumes that, at each point SEP, n" is 
the product of a Lie-algebra element and a real-valued skew­
symmetric bilinear map on TsP. Appendix A clarifies this 
point by giving an appropriate example. 

Recall that if "I is a Lie-algebra-valued function defined 
on a bundle P such that 

(R :y)(s ) = y(Sg) = Ad(g - I )y(S ) 

for all SEP and g in the structure group G of P, then "I is 
called a Higgsjield. 9 Also any real-valuedp-form 70n Psuch 
that 

R:7= 7 

for all gEG will be called an invariant p-form on P. Observe 
that a p-form 7 on P is both horizontal and invariant if and 
only if there is a p-form t on the base manifold M such that 
7 = 1T*t. In that case we sometimes refer to 7 as a pullback 
form on P. 

An open subset of r of a principal fiber bundle P will be 
called a bundle neighborhood of P if 1T( r) is open in M and 
r = 1T- 1 (1T(Y)). 

Observation: Ifn is a decomposable curvature then each 
point SEP is contained in a bundle neighborhood Q of P such 
that n is the product of a Higgsjield "I and a pullback 2-form 
70n Q. 

To see that this is so, choose a local section s of P 
through S such that s lies in the neighborhood r on which 
n = j3liJ. If Vis the domain ofs let Q = 1T- 1(V) and define "I 
on Q by requiring that "I agree with j3 on s( V) and by forcing "I 
to have the Higgs field property on each fiber which inter­
sects s(V); thus y(s(x)g)==Ad(g-I)j3(s(x)) for XEV, gEG. lt is 
clear that "I is smooth and is a Higgs field on Q. Define a 2-
form 7 on Q as follows: At each point of s( V) let 7 agree with 
liJ, but for a pair of vectors (r,Ll ) at a point s(x)g on a fiber 
through s( V) let 

7 Six)g(r,Ll ) = (v'lx) (dR g ,(r),dRg ,(Ll )). 

lt is not difficult to show that 7 is a smooth invariant 2-form 
on Q. We have that 

fi'iXi = j3(s(X))liJS(Xi = y(S(X))7s(x)' 

Since n is tensorial9
, "I is a Higgs field. and 7 is invariant, it 

follows that n = "17. It does not yet follow that 7 is horizon­
tal. Indeed, if SEPis a point where both nand j3 vanish, then 
the equation n = j3liJ offers no information about liJs ' and, 
consequently, 75 might fail to be horizontal. On the' other 
hand, n = "17 implies that n = horn = y(hor7) and hor7 is 
an invariant horizontal form and thus is a pullback form. 
The observation follows. 

Our results require a rather careful analysis of n in the 
vicinity of those points of P where n and certain of its Lie 
derivatives vanish. With this in mind let 2'0 denote the set of 
points SEP such that n(S ),==0 and let 2' denote those SE2'n 
such that 
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for every sequence A I,A 2, ••• ,As of horizontally lifted vector 
fields on P. The set ~ will be called theflat set of a. 

Observe that if A is a horizontally lifted vector field on P 
and 13 is a local Higgs field, then:£' A 13 is a local Higgs field. 
Similarly if 1" is a pullback form, so is :£' A 1". It follows that 
the Lie derivative of the product 131" is the sum of two terms 
each of which is the product of a local Higgs field and a 
pullback form: 

Y A (131") = (Y A 13)1" + 13(2" A 1"). 

Thus, if a is decomposable, then, for every sequence ofhori­
zontally lifted vector fields A 1,.12'''',.1" (:£' A:"Y A,)a is 
tensorial. One consequence of this fact is that ~ is "bundle­
like," i.e., 17'~ 1(17'~) =~. Obviously ~n also has this 
property. 

We need to distinguish three classes of decomposable 
Yang-Mills curvatures. Let SEl'. A curvature a is said to be 
null atSif(n 1\ *a)(S) = Oandotherwiseit is nonull atS' In a 
local gauge s the null condition translates into 
(F 1\ *F)(17'(S)) = O. It is well known that ifF is null in a neigh­
borhood of xEM and F x =I 0, then there is an open set U about 
x and a I-form 1 (unique up to scale factor) on U such that 
F+ 1\ 1 = O. The vector field corresponding to the I-form 1 
gives the "repeated principal null direction" ofF. Moreover, 
1 can be pulled back to the bundle neigborhood 17'-I( U) of P. 
Thus we obtain a horizontal invariant I-form A = 17'*1 on 
1T~I(U) such that 

a+ 1\..1 = O. (2.7) 

Observe that if n is nonnull at a point S, then it is non­
null throughout a neighborhood of S. If a is null and nonze­
ro throughout a neighborhood of S, then there exists a pull­
back I-form A satisfying (2.7) above. In case (dA 1\ A )(s ) =I 0 
we see that dA 1\ A =I 0 in a neighborhood of S, and we say that 
n is null-twisting at S. Thus if we say that a is null-twisting 
at a point, we will mean that A exists in an entire neighbor­
hood of the point and that dA 1\ A =I 0 on the neighborhood; 
in particular, a is nonzero throughout the neighborhood. 
Finally, if a is nonzero and null on a neighborhood of SEl' 
and if dA 1\ A = 0 at S, then we say that n is null-twist-free at 

S· 

III. DECOMPOSABLE CURVATURES: THE NONNULL 
AND NULL-TWISTING CASES 

In this section we will assume that the Yang-Mills cur­
vature is decomposable and is not null-twist-free on any 
open subset of P -~. We will show that in the presence of 
certain topological restrictions on the flat set ~ of n the 
holonomy subbundle P (S) of Pthrough sEl'has fiber dimen­
sion 1. Utilizing this fact, we will show that the curvature is a 
Maxwell curvature on P (S ) and that the Yang-Mills bundle 
arises as an "extension" of a Maxwell bundle. 

Lemma 3.1: Assume that a is a decomposable Yang­
Mills curvature which is not null-twist-free on any open sub­
set of P -~. If SEl' - ~, then there is a bundle neighbor­
hood Qs of sin P - ~ such that a = I3lU on Qs with lU an 
invariant horizontal form on Qs and 13 a non vanishing Higgs 
field on Qs such that 
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D 13 = I3v 

for an appropriate I-form v. 
Proof Let SEl' - ~ and let Y be a bundle neighborhood 

of S in P - ~ such that a = I3lU for some Higgs field 13 and 
some pullback 2-form lU on Y. The Yang-Mills equation 
implies 

o = D a + = hord (j30) +) 

= hor[(d 131\0)+) + I3dlU+ J 
= D 131\ 0) + + I3hor(dO) +) 

= D 131\ 0) + + I3dO) + . 

Let· denote an arbitrary positive definite inner product on 
the Lie algebra G I and define a I-form v on Y-~n by 
v = [13·D 13]1[13·13]. The identity (D 131\ 0) +) + I3dO) + = 0 
implies that 

dO)+ + (vI\O)+) = 0 (3.1) 

and hence 

(D 13 - I3v) 1\ 0) + = O. (3.2) 

If a is nonnull at S 'EY, then it follows from (3.2) that 
D 13 = I3v on a bundle neighborhood of S I in Y. Moreover, if 
a is null and nonzero at S 'EY, then (3.2) implies that 

(3.3) 

where A is defined by the principal null direction of a and 
where 1) is an appropriate Lie-algebra-valued function de­
fined in a bundle neighborhood of S I. 

We now argue that it is possible to modify 1) and v in 
(3.3) to obtain a local Higgs field ~ and a pullback form v 
such that D 13 = I3v + itA. Because D 13 is tensorial, so is 
I3v + 1)..1, and, since 13 is a local Higgs field and A is a pull­
back form, it follows from the tensorial property that v is a 
pullback form modulo addition of some multiple of A. Sup­
pose a is a function such that v: = v + aA is a pullback form. 
ThenD 13 -l3vis tensorial and by (3.3) is equal to (1) -l3a)A. 
Since A is a pullback form it follows that i): = 1) - l3a is a 

local Higgs field. Thus D 13 = I3v + ~, where v and ~ have 
the desired properties. 

We now show that if n is null, nonzero, and not twist­
free at S I, then D 13 = I3v on a bundle neighborhood of S I. To 
accomplish this, wewi11showthat~(dA 1\..1) = - (l(dv 1\..1). 
It will then f~llow that ~ is a multiple of 13 and thus that 
D 13 = I3v + 1)A = 13,u for an appropriate,u. We will then see 
that,u = v. First observe that 
D 213 = D (D 13) = [a,l3] = [130),13] = O. Sincevisahorizontal 
invariant form Dv = dv and (3.3), appropriately modified 
for ~ and v, yields 

o = D 213 = D (I3v) + D (~ ) 
= (D 131\ v) + I3(Dv) + D~ 1\..1 + ~(DA) 
= ~(A 1\ v) + I3dv + (D~) 1\..1 + ~dA. 

If we wedge this equation with A, we get 

l3(dv 1\..1) = - ~(dA 1\..1). (3.4) 

By transvecting this equation with an appropriate triple of 
vector fields we see that ~ is a multiple of 13 and thus that 
D 13 = 13,u for some,u. Dotting both sides ofthe this last equa­
tion with 13 and dividing by 13·13, we obtain 
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J1. = [(3·D (3]/[(3·(3] = v 

and consequently D (3 = (3v on a bundle neighborhood of 
S 'Er. It follows that D (3 = (3von r -.In. 

If(3ft )#0, then there is an open set abouts on which f3 
does not vanish, and, since f3 is a Higgs field, there is a bundle 
neighborhood Qs on which 13 does not vanish. In this case Qs 
and (3 have all the r*operties required in the lemma. 

If 13(s ) = 0, we must find another decomposition of n 
near S whose Lie algebra part is not zero at S. Since sa, it 
follows that there exist horizontally lifted vector fields 
A J>A 2, .. ·,A s such that [(Y A, ... y A, Y A, )n](S) #0. If s = 1, 
it follows that (Y A, 13)(S )#0 since Y A, n = f3(Y A,W) 
+ (Y A, (3)w and f3(S) = 0. More generally, it follows from 

the Leibniz formulae that there exist k>O such that all Lie 
derivatives of 13 with order less than k vanish at S, but there 
exists a sequence of horizontally lifted fields A I,A 2"",A k 
such that [(Y A;"Y A, Y A, )f3](S) #0. We know that 
D 13 = 13v on r -.In. But Y A, f3 
= d 13(A d = d f3(horA I) = D f3(A d = f3v(A d and 

Y A, (Y A, (3) = Y A, ((3v(A I)) 

= (3Y A, (v(A d) + (Y A ,(3)v(Ad 

= (3 [2" A, (v(A d) + v(A 2)v(A d l. 
An inductive argument shows that on r -.In 

(Y A • ... Y A, )(3 = (3¢ 

for some smooth real-valued¢. Since [(YAk .,.2" A, )f3](S) #0, 
there exists an open subset of r on which a: 

= (1 Ak "'1,1,)13 does not vanish. Moreover, a is a Higgs 
field and thus there is a bundle neighborhood Qs of S in 
p - .I on which it does not vanish. Thus ¢ does not vanish on 
Qs -.Ill and on this set l!¢ = (a·13)1(a·a). The right-hand 
side of the last equation is meaningful on all of Qs' and, if we 
define (J = (a·(3)/(a·a) on Qs' we have that 
n = f3w = (ae)w = a(ew). Since a = (Y A" .. ·1 ,1,)13 is a 
Higgs fields, we see that ew is a pullback form (it is a horizon­
tal invariant 2-form on Q€;). If J1. = (a·Da)l(a·a), one can 
show as before that Da = CtJl on Qs -.In. But J1. is defined 
on all of Qs and In contains no open subsets of Qs' Thus it 
follows from continuity that Da = CtJl on all of Ql;' The 
lemma follows. . 

Theorem 3.2: Assume that n is a decomposable Yang­
Mills curvature which is not null-twist-free on any open sub­
set of P - I. If I is the fiat set of nand Q is any connected 
component of P - I, then Q is an open bundle neighbor­
hood of P such that the holonomy bundle Q (s ) of Q through 
SEQ has one-dimensional fibers. Moreover, on the holonomy 
bundle Q (s ) there is an aoEG ' such that n = aow for some 
smooth I-form won Q (s). 

Remark: It should be noted that the Lie-algebra con­
stant a o need not be a Higgs field on Q (S ) and w may not be a 
pullback form. 

Proof of Theorem 3.2: Let sEQ and let y: [0, l]-Q be an 
arbitrary horizontal curve in Q such that y(O) = S. Let 
n = 13w be a decomposition of n on some bundle neighbor­
hood Qs of s such that 13 is a nonvanishing Higgs field on Qs 
andD 13 = (3vfor some v. For each O<t< llet Q" 13t' W" V t be 
similarly defined at y(t) with Qo = Qs' 130 = 13, Wo = w, 
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Vo = v. Since y([O, 1]) is compact, there exists 

0=tO <t l <t2 < .. ,<t" = 1 

such that y[tuti+ 1] ~ Qt· Let 13i = f3t and Vi = V t . We have, 
for fi<t<ti + 1, ' , , 

:r [(3i(y(t))] = d 13,( ~;) = D 13i( ~;) = (3i(y(t ))v,( ~;) 
Thus, for t, <t<t, + 1 , 

13, (y(t )) = exp ( fv i ( d; (S))dS ]13i(y(t,)), 

and (3i(y(t)) is a multiple of 13;(y(ti I)· It follows that 13i(y(t)) 
cc (3(s) for tErti ,f; + I]. If ao = 13(s), then n1) has a o as a factor 
for each TfEQ (s)· It follows that n = aoW for some smooth 
real-valued 2-form w on Q (s). From this and the Ambrose­
Singer theorem3 we see that the fibers of Q (s ) are one-dimen­
sional. The theorem follows. 

Observation 1: In general, decomposable Yang-Mills 
solutions do not reduce to subbundles of P having one-di­
mensional fibers. Indeed, suppose P - I is disconnected 
with disjoint components QI and Q2' If SIEQI and S2EQ2' 
then one could have n = a l w l on QI(sd and n = a 2w 2 on 
Q2(S2) with a l and a 2 independent elements of G '. If there 
exist horizontal curves from 51 to S2 in P, then the fibers of 
the holonomy bundle P (SI) = P (S 2) would be at least two­
dimensional. This follows from the Ambrose-Singer theo­
rem and the fact that a l and a 2 are independent. 

Observation 2: Note that even in case P - I has a single 
component Q, one generally still does not attain reduction of 
n to subbundles with one-dimensional fibers. Indeed, if I 0, 

the interior of .I, is multiply connected, then ~ ° can have a 
nontrivial reduced holonomy group as a bundle over 17'(.I 0).3 
This is true even though the curvature of the connection <P is 
obviously zero in IO. It follows that if sEQ, then there may 
exist horizontal curves y such that y(O) = S, but y enters the 
zero curvature region I 0, "picks up holonomy" in I 0, and 
reenters Q at a subbundle Q (Tf) # Q (s ). In such a case P (s ) 
would contain both Q (7]) and Q (s) and thus its holonomy 
group would necessarily contain both the groups ofQ (7]) and 
Q(s)· 

Observation 3: We indicate one final obstruction to re­
ducing n to some subbundle with one-dimensional fibers. It 
is possible that the boundary of the fiat set I of n is not 
connected and that, for sEQ, this disconnection of a~ could 
introduce additional holonomy in P(s) which is not present 
in Q (S). As an indication of how this could happen let the 
spacetime M be Minkowski space Mo with a 2-plane S 
through the origin removed, and let the connection <P be 
defined on an appropriate bundle P over M. Choose <P such 
that the fiat set I of the curvature of <P projects onto an open 
half-space H of Mo such that the boundary of H contains the 
2-plane S. By modifying <P it is possible to introduce extra 
holonomy in P (s ) by requiring that certain noncontractible 
curves be horizontaL 

Other than the three restrictions pointed out in the ob­
servations above, the only other obstructions to reducing n 
to a subbundle of P with one-dimensional fibers are some­
what minor. In fact in order to reduce the connection to such 
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sUbbundles the following hypothesis is sufficient. 
Hypothesis: The flat set ~ ofn is a manifold with bound­

ary and the boundary of ~ is a connected orientable submani­
fold of P with codimension 1. Also Q = P - ~ is connected 
and the holonomy group of the bundle ~ 0-"1T(~0) is trivial. 

Observe that if ~ 0 is simply connected, then the holon­
omy group of ~ 0 is trivial since n is zero on ~ o. Also notice 
that even if P is simply connected, deletion of the closure of Q 
from P may introduce multiconnectivity depending on how 
Qsits in P. 

Most of the remainder of this section will be devoted to 
a proof of the following theorem. 

Theorem 3.3: Let n be a decomposable Yang-Mills 
curvature which is not null-twist-free on any open subset of 
P - ~. If the flat set ~ is such that the above hypothesis is 
satisfied, then the holonomy bundle P (t ) through any tEP 
has one-dimensional fibers. 

Proof In order to show that, for tEQ, P(t) has one-di­
mensional fibers, it suffices to show that, on P (t ), n is a 
multiple of a single Lie algebra direction; i.e., we show there 
exists aoEG' such that, for every 71EP (s) and r, i1.ET"P, 
n" (r,.J. ) is a multiple of a o. To facilitate the proof of this 
statement, define an equivalence relation ~ on G' - [0] by 
/3 1 - /32 if /3 1 and /32 are linearly dependent. We denote the 
equivalence class of a nonzero /3EG ' by [/3] and the set of 
equivalence classes by ProjG '. It is easily seen that ProjG 'is a 
manifold and that n defines a mapping 4» from Q - ~n to 
ProjG' via 4»(71) = [n'l(r,.J. )] for r,.J.ET'IPsuch that 
nT, (r,.J. ) i= O. To see that 4» is well defined, recall that Lemma 
3.1 implies that there is a bundle neighborhood r of an arbi­
tary point 71EQ and a decomposition of non Yas a product 
of a non vanishing Higgs field /30 and a real-valued I-form WOo 

It follows that, for 71EQ - ~n' 4»(71) = [/30(71)] independent of 
rand.J.. It is also apparent from the decomposability prop­
erty that 4» has a unique smooth extension to all of Q since 
~n contains no open subsets in Q. 

We will show how to extend 4» to all of P such that 4» is 
constant on every holonomy sUbbundle of P. Assuming for 
the moment that this is possible, we show how to complete 
the proof of the theorem. 

Let SEQ and choose aoEG' such that 4»(71) = lao] for all 
71EQ (t ). Since 4» is constant on every holonomy subbundle of 
P, 4» is constant on P (s ) which contains Q (s). Thus 
4»(71) = lao] on P(s)· On P - ~n = Q - ~n we know that 
4»(1]) = [n'l (r,.J. )] for arbitrary r,.J.. It follows that there is a 
real-valued2-formwoonP(s) -~n suchthatn = aowo·If· 
is a positive-definite inner product on G', we see that 
Wo = (ao·n)/a0

2. Since this equation makes sense on all of 
P (S ), we see that Wo is well defined on P (t ) and n = aoWo on 
P (t). It follows from the Ambrose-Singer theorem that the 
fibers of P (t ) are one-dimensional. 

Thus it suffices to show that 4» has an appropriate exten­
sion to all of P. First choose a tubular neighborhood U of 
a (1T(~ )) in M. (Recall that such a neighborhood exists 10 and is 
diffeomorphic to the normal bundle of J (1T(~)); under this 
diffeomorphism a(1T(~)) is identified with the zero section of 
the normal bundle.) Since a (17' I ) is orientable and the fibers of 
the normal bundle are one-dimensional, we can assume the 
fibers have an ordering on them such that the positive ele-
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ments of a "fiber" of U are in 1T(~ 0) while negative elements 
are in 1T(Q). Now if sEa~, then 1T(S )Ea (1T~) and we can hori­
zontally lift the fiber of U through 1T(S ) to a horizontal curve 
85 throughs. NowletY =u,EaI8s ' WeseethatYisa 
tubular neighborhood of a~. Since 4» is constant on horizon­
tal curves in Q, it is natural to extend 4» to Y by letting 4»(8,) 
be the constant 4»(8snQ). Thus 4» has a smooth extension to 
Y. We wish to extend c!» to all of P. Since the holonomy 
bundle of I 0 over 1T(~ 0) is trivial by the Hypothesis, it follows 
that there is a global horizontal section S:1T(~ O)-..~ 0 of the 
bundle ~ o. Moreover, each point of ~ 0 lies on the image of 
some such section and, for each such s, S(1T(~ 0)) intersects Y. 
Ifwe can show that c!» is constant on .'Tns(1T(~ 0)), then it will 
be natural to extend c!» to all of s( 1T(~ 0)) by requiring that c!> be 
constant on S(1T(~ 0)). Thus we wish to show that 4» is constant 
on .'Tn S(1T(~ 0)). Note that if 711' 712E.rUS(1T(~0)), then there 
exist Sp S2E a (I) such that 71,E Ds, and 712E 852 , A rather 
tedious argument can be utilized to show that there exists a 
horizontal curve Y from S 1 to S 2 in the boundary of Q. If we 
can show that c!>0Y is constant, then it will follow that 
c!»(71d = c!»(8s,) = c!»(SI) = c!»(y(O)) = c!»(y(1)) = c!»(Ds,) = c!»(712) 
and that c!» is constant on .rns(1T(~0)). Thus, to see that c!» has 
an appropriate extension to all of P, we need to show that 
c!>0Y is locally constant. Let x = 1TOy and let (Xl ,X2,X3,X4

) de­
note local coordinates at a point x(to) of X. Choose the coordi­
nates in such a manner that X4 > 0 defines points of 1T(~ 0), 
X4 < 0, define points of 17'( Q ), and X4 = 0 is contained in 
1T(JI) = 1T(JQ). Now define curves [XE ]«0 in 1T(Q) by Xi(XE 
(t)) = xi(x(t))fori = 1,2,3 butx4(x£(t)) = E.ltisnowpossible 
to find horizontal lifts of the cuvesxE to YE in Q which have Y 
as a limit: lim£~OrE(t) = r(t). Sincec!» is constant on horizon­
tal curves in Q (by Theorem 3.2), we see that 
(c!>0y)(t) = limE_oc!>(YE(t)) is independent of t. Thus ~oy is 
constant and, as we have seen above, ~ is well defined on all 
ofP. 

Finally, we show that c!> is constant on P (t) by showing 
that c!> is constant on horizontal curves in P. Let Y be any 
horizontal curve in P. The interval [a,b] on which y is de­
fined is the union of subintervals [a i ,bi ] such that, for each i, 
y(ai ,b i ) lies completely in Q, or in I 0, or in JI = aQ. If 
y(a i ,b i ) ~I·, it follows that it is a subset of a single horizon­
tal global sections of the bundle~ "-1T(IO), and, since c!» was 
defined to be constant on such sections, c!>(y(ai,bi )) is con­
stant. If y(ai ,bi ) ~ Q, we know that c!» is constant on horizon­
tal curves in Q and thus c!»(y(ai,bi)) is constant. In the pre­
vious paragraph it was shown that c!> is constant on 
horizontal curves in JQ = J~. Thus if y(aj>biKaQ, c!»(y(ai , 

bi)) is constant. Therefore, c!»0Y is constant on each of the 
subintervals (ai,bi ), and, since 4» is continuous, it follows that 
c!>°Y is constant on [a,b]. The theorem follows. 

In the introduction we mentioned a well-known result 
which shows how to build solutions of the Yang-Mills equa­
tions from given solutions of Maxwell's equations. The re­
sult can be formulated in fiber bundle language and is de­
scribed below for the convenience of the reader. 

We postulate a Maxwell bundle E (M,Go) over a space­
time M with a connection Cl»o on E such that the Maxwell 

Fulp, Sommers, and Norris 2045 



                                                                                                                                    

curvature is 0 0 = D «1»0' We also assume that the one-dimen­
sional structure group Go of the Maxwell bundle can be iden­
tified with some Lie subgroup H of a more general Lie group 
G. We show that the bundle E can be "embedded" in a prin­
cipal bundle P (M,G ) and that the connection «1»0 can be "ex­
tended" to a connection «I» on P with «I» satisfying the Yang­
Mills equations and having decomposable curvature. 

First we "extend" E. Since E is a bundle, we know that 
there exists a family! (Ua ,sa) J oflocal gauges of E such that 
the! Ua J cover M. If (a,/3) is a pair such that UanU{3 #0, 
then we know that there is a gauge transformation ga{3: Ua 
nU{3-Go such that s{3 = saga{3' Since Go is identified with 
H ~ G, we see that the !ga/3 J have their values in G, and thus 
by Proposition 5.2 of Ref. 3 there is a principal fiber bundle 
P (M,G) with transition functions !ga/3 J.1t also follows from 
Proposition 5.3 of Ref. 3 that P reduces to a subbundle i: 
E-P of P. By Theorem 6.1 of Ref. 3 there now exists a 
connection form «I» on P such that i*«I» = «1»0 and the curva­
ture 0 of«l» is related to the curvature 0 0 of «1»0 by i*O = 0 0, 

We now show that 0 is decomposable. To see this, first 
observe that the Lie algebra of Go' ~H' is one-dimensional 
and can be realized as a one-dimensional subalgebraH' ~ G' 
of the Lie algebra of G. Let JJo be a nonzero generator of this 
subalgebra. Since 0 0 has its values in Go' = H', every value 
of 0 0 is a multiple of JJo. Thus, if tEE ~ f(E ) ~ P and r andLl 
are tangent to E in P, then Os (F,Ll ) is a multiple of JJo. Since 
o is horizontal, we see that Os (F,Ll ) is a multiple of JJo for 
every pair of vectors F and Ll at tEE. Since 0 has the proper­

ty that R;O = Ad(g-I)O, we see that !l,;g is a mUltiple of 
Ad(g- I ) flo for each gEG. Thus, if we define JJ by 
JJ(tg) = Ad(g-I)JJo for every tEE and gEG, then fl is a well­
defined global Higgs field on P. Moreover, if 
U)=[JJ·!l]/[fl·JJ] for an arbitrary positive definite inner prod­
uct • on G' then we see that 0 = JJU). Thus 0 is globally 
decomposable on P. 

Finally we show that !l is a Yang-Mills curvature. If 
r,Ll,A are tangent to E, we have 

o = (D !lo+ )(F,Ll ,A ) = D (i*!l + )(r,Ll ,A ) 

= hor(d (i*O+)(F,Ll,A )) 

= i*(d !l+)(horr,horLl,horA ) 

= d !l + (di(horF ),di(horLl ),di(horA )) 

= D !l + (di(F ),di(Ll ),di(A )). 

But if F o' .1 0 , Ao are tangent to P at a point of i(E), then 
horFo' horLl o, horAo are tangent to E and thus are of the 
form di(F ),di(Ll ),di(A ) for appropriate r,Ll ,A, respectively. 
ThusD!l + (Fo,Llo,A 0) = O. SinceD!l + is tensorial, it follows 
that D !l + = 0 everywhere and!l is a Yang-Mills curvature. 

Theorem 3.4: If (E,M,Go) is a Maxwell bundle and!lo is 
a Maxwell curvature on E, then for each Lie group G con­
taining Go as a subgroup there exists a principal bundle 
(P,M,G) containing (E,M,Go) and a globally decomposable 
Yang-Mills curvature !l on P such that P reduces to E and !l 
agrees with !lo on E. 

Observe that this theorem shows how to construct 
Yang-Mills fields from given Maxwell fields even in the case 
when the Maxwell field is null-twist-free. At this point al­
ready we obtain a partial converse to this theorem in case the 
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given field is not null-twist-free on any open subset of P. 
First recall that a connection «I» reduces to a subbundle 

i: E_P of P if and only if the horizontal subspaces of Pat 
points of i(E ) are tangent to i(E ). Thus any connection «I» of a 
bundle P reduces to anyone of its holonomy subbundles.3 If 
«1»' is such a reduced connection, then «1»' = i*«I» and the cur­
vature !l' of «1»' satisfies !l' = i*!l. Moreover, 

D '!l+ = hor'(d (i*!l)+) = hor(di*(!l+)) = i*(D !l+) = O. 

Thus!l' is a Yang-Mills curvature on the holonomy bundle. 
In the presence of the Hypothesis it follows from Theorem 
3.3 that each holonomy subbundle has one-dimensional fi­
bers. Consequently, each holonomy subbundle of P is a Max­
well bundle with Of as its Maxwell curvature. From these 
remarks we have the following: 

Theorem 3.5: Assume that 0 is an arbitrary decompos­
able Yang-Mills curvature which is not null-twist-free on 
any open subset of P. If the flat set of!l satisfies the Hypoth­
esis, then 0 arises from a Maxwell curvature as in Theorem 
3.4. 

In the next section we give a local characterization of 
null Yang-Mills curvatures with twist-free rays and obtain a 
local converse similar to Theorem 3.5 above. 

IV. DECOMPOSABLE CURVATURES: THE NULL­
TWIST-FREE CASE 

In the last section where the decomposable curvature 
was assumed to be nonnull or null with twisting rays, we 
were able to give, under suitable topological restrictions, a 
simple global characterization of the bundle structure-the 
bundle and connection reduce to a subbundle with one-di­
mensional fibers. In this section we show that if the decom­
posable curvature is null with twist-free rays, then this bun­
dle reduction does not occur in general, not even locally. 
However, we will see that the curvature 2-form can be relat­
ed to a null Maxwell field. The following theorem demon­
strates that, locally, null decomposable curvatures with 
twist-free rays are readily constructible from null-twist-free 
Maxwell fields on the base space M. 

Theorem 4.1: LetP (M,G) be an arbitrary principal bun­
dle over M, and letJ be a null-twist-free Maxwell field on M. 
For each pEM there exists a bundle neighborhood Qp of 
Jr-I(p) such that on Qp Jinduces a class of decomposable 
null-twist-free curvatures!l = flJr*(f) satisfying the Yang­
Mills equation. The Lie-algebra element JJ = JJ(u) is an arbi­
trary function of one variable. 

Proof Let pEM. SinceJis null-twist-free on M, there is a 
neighborhood Uofp and a I-form Ion Usuch thatJ+ 1\ I = 0 
and such that I = du for some real-valued function u on U. 
Moreover, since P is locally trivial andJis a Maxwell field, 
we can assume without loss of generality that Jr- I( U) is triv­
ialand that on U J = daforsome I-forma. LetQp = Jr-I(U) 

and note that da 1\ du = 0 on U. The potential a thus satisfies 
the conditions of the lemma given in Appendix 0 and there­
fore may be written in the form 

a =Hdu +dK 

for some functions Hand K. We may choose the Maxwell 
"gauge" such that a = H duo 
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Choose an arbitrary section s: U_Qp and ~t ~ be the 
flat connection on Qp determined by requiring «I> to vanish 
on vectors tangent tos( U). Thus, for any sEQp the horizontal 
subspace:ff's ~ TsQp is defined to be 

:ff's = dR g T'i 1rs /J, 
where iJ = s(U) and S = Rg(s(1T(s)))· 

Next choose an arbitrary Lie-algebra-valued function 
b: U---G' that is constant on each "u = const" hypersurface 
in U. Thus b = b(u). We use b to define a Higgs field /3: Qp 
-G' by requiring it to agree with b on the gauge s and then 
by extending it to all of the Qp by right translation. For each 
SEQp there is a gEG such that S = S(1T(S )).g. Define /3 by the 
equation 

/3(S) = Ad(g-l)b(1T(S I)· 
We now define a Lie-algebra-valued I-form «I> on Qp by 

«I> = ~ + /31T*(a). (4.1) 

It is easy to check that «I> defines a connection I-form on Qp. 
The curvature n of «I> can be evaluated using the structure 
equation (2.1): 

o =d«l> +H«I>,«I>] 

= d (~+ /31T*(a)) + H~ + /31T*(a),~ + /31T*(a)] 

= n + /31T*(da) + (d /3 + [~ + /31T*(a), /3]) 1\ 1T*(a). 

Since ~ is flat the curvature n of cf, is zero and thus 

n = /31T*(f) + D /31\ 1T*(a), (4.2) 

where D /3==d /3 + [«1>,/3]. In the local gauge s used above to 
define ~ the connection «I> takes the form 

A =s*«I> =ba. 

Thus 

s*(D /3) = Db = db + [A,b] 

= db + a[b,b] 

= db. 

Furthermore, as b = b(u), db = c du for some Lie-algebra­
valued function c. Hence 

Db = c duo (4.3) 

As D /3 is tensorial this equation implies that on Qp there 
exists a Lie-algebra-valued function y, with s*y = c, such 
that 

D /3 = Y1T*(du). 

Hence D /31\ 1T*(du) = 0, and, since 1T*(a) = 1T*(H du), the 
last term in (4.2) above vanishes. The curvature n reduces to 
the form 

n = /3UJ, (4.4) 

where UJ=1T*(f). The curvature n is thus a null decompos­
able curvature with twist-free rays. To verify that n satisfies 
the Yang-Mills equation, we must show that D*O = O. 
From (4.4) we have 

D*n = D /31\ *UJ + /3d*UJ. (4.5) 

As shown above, D /31\ 1T*(du) = o. Since/is a null Maxwell 
field, *UJ will contain a factor 1T*(du) and thus the first term 
on the right-hand side of (4.5) will vanish. Moreover, 
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d*UJ = 0 since *UJ = 1T*(*/) and d*/ = o. The curvature n 
thus satisfies the Yang-Mills equation. The theorem follows. 

Remark: in the above construction the Lie-algebra-val­
ued function b was choosen to be constant on each u = const 
hypersurface, but otherwise b could be any smooth function 
b = b(u). Such a b was shown to satisfy Eq. (4.3), namely 
Db = db = c du in a local gauge. The Lie-algebra-valued 
function c is thus also arbitrary to the extent that it is defined 
by db = c duo In fact, one could choose c = cluj arbitrarily 
and then determine b locally by integrating the equation 
db = c duo On the bundle Qp' /3 will satisfy D /3 = Y1T*(du) 
where y enjoys the same arbitrariness that c does on 1T(Qp). 
These facts will prove useful in interpreting Theorem 4.2 
given below. 

Now suppose that 0 is a null decomposable curvature 
on a principal bundle P (M,G ) over spacetime. Let In denote 
the set of points of Pwhere 0 vanishes and set Q = P - In. 
We shall show that if n is a null-twist-free Yang-Mills cur­
vature on Q, then for each SEQ there exists a bundle neigh­
borhood Q5 of S on which the curvature n is related to a 
Maxwell field in the manner described in the proof of the 
Theorem 4.1. 

Theorem 4.2: Let 0 be a null decomposable Yang-Mills 
curvature with twist-free rays on the principal bundle Q. For 
each sEQ there exists a bundle neighborhood Q5 of S such 
that n = /31T*(f) on Qs- where/is a null-twist-free Maxwell 
field on 1T(Qs) and where D /3 = Y1T*(du) for some Lie-alge­
bra-valued function y. 

Proof Let sEQ. As discussed in Sec. II, we may assume 
that there is an open bundle neighborhood Q €: of S such that 
on Q ~ the curvature 0 can be written as the product 
n = aUJ. In this case a is a smooth non vanishing Lie-alge­
bra-valued Higgs field on Q ~ and UJ = 1T*(h ) is the pullback 
under 1T of a real-valued 2-form on 1T(Q g). We choose Q g 
small enough so that it is trivial. 

The field equations D n + = 0 now imply 

Da AUJ+ + a dUJ+ = O. (4.6) 

As in the proof of Lemma 3.1 an arbitrary positive definite 
inner product can be choosen in G' so that (4.6) can be rewrit­
ten in the form 

dUJ+ + f1 AUJ+ = 0, 

Da = C1Jl + 1]/1. 

(4.7) 

(4.8) 

Without loss of generality we may assume that TJ is a Lie­
algebra-valued Higgs field andf1 is a pullback I-form on Q g. 
Again as in the proof of Lemma 3.1, we may use Eq. (4.8) 
together with the identity D 2a = [n,a] to show [see the cal­
culations leading up to Eq. (3.4)] 

a(df1 A,.{) + TJ(d"{ I\"{) = O. 

This equation implies that df1 A"{ = 0 since d"{ I\,.{ = 0 
and a#O on Q i. 

As,.{ is twist-free, there is an open bundle neighborhood 
Q ; ~ Q ~ such that on Q; the I-form,.{ can be rescaled so 
that,.{ = dv. The I-form f1 now satisfies the equation 
df1 A dv = 0 and thus satisfies the conditions of the lemma 
given in Appendix D. Hence there exist functions () , and 1// 
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such that 

f1 = If/dv + dO' (4.9) 

on a possibly smaller bundle neighborhood Qs ~ Q g. Now, 
although f1 and A = df1 are pullback I-forms on Qs' we can­
not conclude from (4.9) that tI/ and 0 ' are invariant functions. 
If they are not, we may replace them by invariant functions 
in the following way. Choose an arbitrary local gauge 
s: 1T(Qs)-Qs' From (4.9) we have 

s*f1 = (s*tP')(s*dv) + s*(dO 'i. 
Pulling this i-form back to Qp using 1T*, we have 

f1 = 1T*(s*tP')dv + 1T*s*(dO 'I, (4.10) 

where we have used the fact that f1 and dv are invariant. 
Define new invariant functions 0 and tP by 

tP = 1T*(S*tP/), 0 = 1T*(S*O 'I· 
Equation (4.10) may now be rewritten as 

f1 = tPdv + dO. (4.11) 

Returning now to the field equations, we substitute 
(4.11) into (4.7) and (4.8) to obtain 

dw + + dO 1\ w + = 0, 

Da = adO + (atP + 1])dv. 

(4.12) 

(4.13) 

Now 0 is invariant and we write it as 1T*(t ) for some smooth 
function ton 1T(Qs)' Using 0 and w+=1T*(h +), we define a 
new fieldf+ by the equation 

f+ = e'h +. 

Hence 

eOw+ = 1T*((+). (4.14) 

The exterior derivative of eOw + is 

d {e li
(} +) = eO (dO 1\ w + + dw +), 

which vanishes by (4.12). The fieldf+ is thus a null-twist­
free Maxwell field on 1T(Qs)' Define also a new Higgs field P 
by 

P = e -lia . (4.15) 

The exterior covariant derivative of P is 
D P = e - 0 ( - adO + Da). 

Substituting (4.13) for Da in this last equation, we obtain 

D P = I'1T*(du), 

where I'-e - O(atP + 1]) and 1T*(du)=dv. 
Finally observe that from (4.14) and (4.15) we have 

P1T*((+) = e -lJaeow + = aw+. 

Hence on Qs the curvature takes the form 

o = P1T*((), 

where P andfhave the required properties. The theorem 
follows. 

Remark: In Sec. III it was shown that if a decomposable 
Yang-Mills curvature is nonnull or null-twisting and if the 
bundle and curvature are sufficiently regular, then the ho­
lonomy subbundles P (t ) through each point tEl> have one­
dimensional fibers. This result followed from the Ambrose-
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Singer theorem and rested on the fact that the Higgs field P 
in 0 = J3w satisfied D P = pv. This latter equation was used 
to show that, along horizontal curves in P, P maps into a 
single Lie-algebra direction. In the null-twist-free case we 
have shown in Theorem 4.2 that P satisfies a different equa­
tion, namely 

D P = I'1T*(du) (4.16) 

for some Lie-algebra-valued Higgs field 1'. Letx(t) be a curve 
lying entirely within a "u = const" submanifold N ~ 1T(Q.;l. 
For each tthetangentx(t) will satisfydu(x(t)) = O. Leti(t I-be 
a horizontal lift ofx(t) to a curve in Qt;. Then from (4.16) we 
have -

D P(.i(t)) = I'{i{t ))1T*{du)(.i(t)) 

= I'(i(t ))du(d1T(.i(t))) 

= I'(i(t ))du(x(t )) 

=0. 

Thus P is constant on horizontal curves over each 
"u = const" submanifold N. However, suppose thaty(t) is a 
curve transverse to the u = const submanifolds so that for 
each t the tangent.Y(t ) satisfies duty(t ) # O. Denote the hori­
zontallift ofy(t) to a point ofQs by.v(t). Then from (4.16) we 
have 

D PlY(t)) = I'if(t ))1T*(du)lY(t)) 

= I'if(t ))du(Y(t i), (4.17) 

which does not vanish in general. From the remarks follow­
ing Theorem 4.1 we know that l' can be almost any Lie­
algebra-valued Higgs field. Equation (4.17) now shows that a 
generic P will trace out a general curve in the Lie algebra G ' 
as we follow a horizontal curve that projects to a curve trans­
verse to the "u = const" submanifolds in M. Now 0 = pw 
and the Ambrose-Singer theorem states that the Lie algebra 
of the holonomy group of a point tEl> is generated by 
0" (..:1 ,tP) at all points 7] connected to t by horizontal curves. 
One would expect, then, that in the generic null-twist-free 
decomposable case the holonomy group of the connection 
would be the full gauge group G. In this case the holonomy 
bundle through any point tEl> would coincide with P. 

Suppose, however, that the Lie-algebra-valued Higgs 
field l' in (4.16) above is proportioanl to p, that is, l' = O'p for 
some smooth function 0'. By using a replica of the proof of 
Theorem 3.2, one can show in this case that the holonomy 
subbundles Q,;-(7]) for each 7]EQs have one-dimensional fi­
bers. Since 0 = P1T*(f) on all ofQs and sincefis a Maxwell 
field on M, these holonomy subbundles are Maxwell bun­
dles. We state this result in the following theorem as a local 
converse to Theorem 3.4 in the null-twist-free case. 

Theorem 4.3: If the Lie-algebra-valued Higgs field l' 
defined in Theorem 4.2 is proportional to p, then the holon­
omy subbundles Q,;-(7]) for each 7]EQt; are Maxwell bundles. 

Returning now to the general null-twist-free case, we 
show that the induced bundle P (N,G) over each "u = const" 
submanifold N is a bundle with a flat connection. 

Let Q (U,G ) be a bundle neighborhood of the type de­
fined in the statement of Theorem 4.2. Let I b III be such that 
for each tE I there is a three-dimensional submanifold N, 
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obtained as the intersection of U with the hypersurface 
u = t. By rechoosing U and u if necessary we may assume 
that each Nt is connected. Denote the inclusion map by it : Nt 
----..U, and for each tE !let P (N"G) denote the bundle over Nt 
induced3 by it. 

Theorem 4.4: For each tE I the induced connection 1-
form ell; on the bundleP(N"G ) is flat. Consequently, Q (U,G) 
is partitioned into the disjoint union of flat (3 + n)-dimen­
sional bundles, where n = dim(G). 

Proof Reca1l3 that for each t the induced bundle 
P (Nt ,G) is the subset of Nt X Q such that, for (Y,s )ENt X Q, 
it (y) = tr(s). There is a natural homomorphism it :P (Nt ,G) 
----..Q (U,G ) given by it (y,S) = S, and the corresponding group 
homomorphism G----..G is the identity automorphism of G. 
Given this structure, one can show3 that there is a unique 
connection in P (N"G ) whose horizontal subspaces are 
mapped into the horizontal subspaces of the given connec­
tion in Q (U,G ). Moreover, the curvature 2-form fit' of this 
connection in P (Nt ,G) is related to the curvature 2-form 
fi = (3tr"'(f) in Q (U,G ) by 

fi/ =j~fi. 

We show that fit' vanishes for each t. Let rand Ll be two 
vectors tangent to P (Nt ,G) at (y,S ) E PINt ,G). Then 

fit '(r,Ll ) = fi(ditr,d}tLl ). 

A vector r tangent to P(N"G) at (y,S) is of the form (X,B) E 

TyNt X TsQ, where dit(X) = dtr(B). Hence ditr = B. Simi­
larly, writing Ll = (Y,I/;)ETyNt X TsQ with di,(Y) = dtr(I/;), 
we have dit(Ll ) = 1/;. Hence 

fi, '(r,Ll ) = fi(ditr,d},Ll ) 

= fi(8,1/;) 

= (3(s)(tr"'f)(B,I/;) (4.18) 

= (3(S )f(dtr8,dtrl/;) 

= (3(S)f(ditX,dit Y). 

Now di,X and dit Yare both tangent to Nt' and hence 
du(ditX) = du(dit Y) = O. SincefA du = 0, we see that 
f(di,X,di, Y) = 0 and thus fi/(r,Ll ) = 0 by Eq. (4.18). As r 
and Ll were arbitrary vectors, it follows that fi,' = O. The 
connection I-form ell,' of fit' is thus a flat connection. 

Finally, observe that it (Nt) n it' (Nt' ) = 0 for t -1= t " and 
tr(Q) = U'Eli, (Nt). Identifying P (N, ,G) with}, (P (Nt ,G)l for 
each t, we see that Q is partitioned into the disjoint union of 
flat (3 + n)-dimensional bundles, where n = dim(G) and 
3 = dim(N, ) for each tE I. The theorem follows. 

V. COMPLEX-DECOMPOSABLE SELF-DUAL 
CURVATURES 

In our analysis so far we have been concerned with the 
decomposability of the curvature 2-form fi. The concept ofa 
decomposable curvature can be generalized to the case 
where only the self-dual curvature 2-form fi+ is assumed 
decomposable. 

We say that a self-dual curvature fi + is complex-decom­
posable if, at each point S of P, there is a neighborhood r of s 
such that on r fi + = cuu +, where a = (3 + i1' for smooth 
Lie-algebra-valued functions (3 and l' and where w + is a 
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smooth complex-valued 2-form on r. Observe that since 
*fi+ = ifi+ it follows that *w+ = iCtJ+. In this case we can 
define CtJ = ~(CtJ + + ii)+) = Re (CtJ +) and thus CtJ + = CtJ - i*CtJ. 
It follows that 

fi = (3CtJ + l' * CtJ (5.1) 

and 

*fi = -1'CtJ + (3 *CtJ. 

If(3 and l' are linearly dependent, then fi itself is real decom­
posable, and the analysis of the previous sections applies. 
Here we are particularly interested in curvatures for which (3 
and l' are linearly independent. 

It is not hard to show that if fi + is complex-decompos­
able, then at each point S E P there is a factorization fi + = 
aCtJ + , where a is a Higgs field 11 and CtJ + is a complex-valued 
invariant horizontal 2-form on some bundle neighborhood 
of S. This follows as in the Observation of Sec. II. 

A self-dual complex decomposable Yang-Mills curva­
ture has many properties that are analogous to the properties 
obtained in the preceding sections in the decomposable case. 
As before, one may analyze the structure of self-dual com­
plex-decomposable curvatures by considering the nonnull, 
null-twisting, and null-twist-free cases. In fact, the anslysis 
is so similar that we are contented with a statement of the 
main results along with some comments regarding appropri­
ate modifications of the proofs of the results of Sec. III and 
IV. 

The most important difference occurs when one at­
tempts to prove a result analogous to Lemma 3.1. This result 
should be modified to read as follows: 

Lemma 5.1: Let fi+ be a self-dual Yang-Mills curvature 
which is not null-twist-free on any open subset of some bun­
dle neighborhood r of P. If fi + = cuu + is complex-decom­
posable on r with a = (3 + iy and CtJ + = tr'" (f+), then 

Da = av 

on r - 2n+ and 

[(3,1'] = O. 

If, on the other hand, fi + = aCtJ + is null-twist-free at each 
point of r then on r - 2n' the Higgs field a satisfies 

Da = ap. + T0 
for some Higgs field 11 and some pullback complex-valued 1-
form fJ. such that 

dfJ. A J. = O. 

Here J. is the null I-form of fi. 
The main difference in the proof of the first part of this 

Lemma and its counterpart in Sec. III occurs in the calcula­
tion of D 2a [see the calculations just prior to Eq. (3.4)]. For 
the present case 

D 2a = [fi,a] = [(3w + l' *w,(3 + i1'] 

= [1',(3] *CtJ + [(3,1']iw (5.2) 
= i[(3,y]w+. 

On the other hand, the field equations D fi + 0 im-
ply, as in Sec. III, that on r - 2n-
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dw + = - 11/\ w + , 

Da = al1 + 1'\,,{ 

for some I-form,u. Moreover, as in Sec. III it can be shown 
that it is no loss of generality to assume that 1'\ is a Higgs field 
and,u is a pullback form. Note that the term 1'\,,{ does not 
appear when n is nonnull. Computing D"a from the last 
equation and setting the result equal to the right-hand side of 
(5.2), we obtain 

i[B,Y]w+ = a d,u + (D1'\/\,,{) + 1J((,,{ /\,u) + d"{). (5.3) 

In the null cases one wedges this equation with the null 
I-form,,{ to obtain: 

(5.4) 

If,,{ is twist-free, then d"{ /\,,{ = 0, and Eq. (5.4) implies 
that d,u /\,,{ = O. The assertions about the twist-free case now 
follow. 

We claim that in both the nonnull and the null-twisting 
cases (5.3) reduces to 

i[B,y]w+ = a dv. (5.5) 

for an appropriate I-form v. The latter statement is obvious 
in case fl is nonnull since 1J = 0 for this case and (5.5) is an 
obvious consequence of (5.3) if we take v = 11. On the other 
hand, ifn is nuH and"{ is twisting, then (5.4) implies that 1'\ is 
a multiple of a and consequently Da = av for an appropri­
ate I-formv. ThusD 2a = adv + Da /\ v = adv + 
a(v /\ v) = a dv. This result along with (5.2) implies equa­
tion (5.5) 

We now utilize Eq. (5.5) to show that [B,y] = o. Sup­
pose [B,y] i= O. Then dv i= 0 and thus there exist vector 
fields r,ll such that dv(r,ll ) i= o. Transvecting (5.5) with 
these fields shows that a = CT[B,y] for some nonvanishing 
complex-valued function CT. But this equation implies that 
the real and imaginary parts of a are linearly dependent, i.e., 
13 = py for some real-valued function p. Hence [13,y] = 
fpy,y] = 0 contrary to assumption. Thus [B,y] = o. The 
remainder of the proof follows as in the proof of Lemma 3.1. 

Remark: We can now pretty well follow the proofs of 
Sec. III to obtain results analogous to those of that section. 
For example, if n is not null-twist-free on any open subset of 
p - ~ and r is a horizontal curve from some point S in a 
connected component Q of P -~, then [a 0 r] is constant 
for every a which arises via a decomposition of n +: n + = 
acu + . I t follows, as before, that on the holonomy bundle Q (5 ) 
of Q through 5 one has n + = aow + for some constant a o in 
the complexified Lie algebra G' Ell iG '. If a o = 130 + iyo, 
then it follows from the Ambrose-Singer theorem that the 
fibers of the holonomy bundle are either one or two dimen­
sional depending on whether or not 130 and Yo are dependent. 

We have: 
Theorem 5.2: Assume that n + is a self-dual complex­

decomposable Yang-Mills curvature which is not null­
twist-free on any open subset of P -~. Let Q be a connected 
component of P - ~ and SEQ. Finally, let n + = aw + 

with a = 13 + iy in a neighborhood of S: 
(1) If 13(5 ) and y(5 ) are linearly dependent then the ho­

lonomy bundle Q (S ) of Q through 5 has one real fiber dimen­
sion. If, on the other hand, 13(s) and y(S) are independent, 
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then Q (S ) has two real fiber dimensions. Moreover, in both 
cases, if a o = 130 + iyo with 130 = 13(s) and Yo = y(S), then 
on Q (s) we have fl + = aoQ)+ for some pull back form Q) +. 

(2) If n satisfies the Hypothesis of Sec. III, then the 
holonomy bundle P (5) of P through S either has one fiber 
dimension over each point of M or it has two fiber dimen­
sions over each point of M. 

By a similar modification of the results of Sec. IV we 
have: 

Theorem 5.3: Let fl + be a self-dual complex-decom­
posable Yang-Mills curvature which is null-twist-free at 
each point of P -~. 

(1) For each S E P - ~ there exists a bundle neighbor­
hood Q. of s such that on Q. 

n+ = a1T*(f+), 
wheref+ is a null twist-free self-dual Maxwell field on 1T(Qt) 
and where 

Da = pl7*(du) 

for some Higgs field p. 
(2) In case p is a multiple of a on the neighborhood Qi; 

the Lie-algebra function a = 13 + iy is constant on Qs and, 
for each 7/EQs' the fiber dimension of the holonomy subbun­
die Q (7/) of Q" is precisely the dimension of the Lie algebra 
generated by j3 and Y (generally, [13,y]i'O). 

Finally we obtain the local gauge expressions for the 
potentials of a self-dual complex-decomposable Yang-Mills 
curvature referred to in the Introduction. In the following 
we will only be concerned with a connected component Q of 
P - ~ since the components of the curvature will be zero in 
every local gauge lying in the flat set ~. 

Let n+ be a self-dual complex-decomposable Yang­
Mills curvature which is not null-twist-free on any open sub­
set of P -~. For each soEQ let Q (So) be the holonomy bun­
dle through So and let n + = aow + be the decomposition of 
n + on Q referred to in Theorem 5.2 (1). By the same theorem 
we know that the fiber dimension of Q is either 1 or 2. For 
brevity we consider just the second case so that if 
a o = Bo + iyo, then 130 and Yo are independent. By Eq. (5.1) 
the curvature n on Q is thus 

n = 130w + Yo *w. (5.6) 
The connection cI> on Q (So) may also be written in terms 

of 130 and Yo as 

(5.7) 

for some real I-forms rp and tf;. 
Now by Lemma 5.1 and Theorem 5.2 the holonomy 

group of Q (50) is commutative. Calculating the curvature 
using Eqs. (2.1) and (5.7) and equating the result to (5.6) 
shows that 

w = drp, *w = dtf;. (5.8) 

The 2-form w = 17*( f) is a pullback form on Q (So), and 
by (5.8)fis a Maxwell field on 1T(Q (So)). Locally we may 
therefore writef and its dual in terms of potentials as 

f=dd, *f=dYJ. 

The I-forms rp and tf; of the connection cI> may hence be 
written as 
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and 

l/J = 1T*(3iJ) + db· 

Substituting these expressions into (5.7) yields 

<I> = ((301T*(.if) + Yo1T*(.%') J + ((3adx I + YodX2 J. 

Since the connection <I> sends the fundamental vertical 
vector field 8 * corresponding to an arbitrary f)EG I to f), it 
follows that a submanifold given by X I = k I and X 2 = k2 can 
have no vertical tangent vector. Since such a submanifold is 
transverse to the fibers, it can be used to define a local gauge 
s: U-Q (so). In this local gauge the potential A = s*<I> is 
equal to 

A = bo.a1 + co.%' , (5.9) 

where bo and Co are constant Lie algebra vectors. 

VI. DISCUSSION 

We have considered the source-free Yang-Mills solu­
tions with decomposable self-dual curvature. These are the 
solutions of type 0 and type N in the Anandan-Tod classifi­
cation. Any such solution is locally intimately related to a 
Maxwell solution. Indeed, there always exists a local guage 
in which the Yang-Mills potential takes the form of a Lie­
algebra-valued function multiplied by a Maxwell potential. 
Because of this relationship, one can use his knowledge of 
local properties of Maxwell solutions to infer properties of 
these special Yang-Mills solutions. For example, these spe­
cial Yang-Mills fields propagate at the speed oflight. 

Globally, on the other hand, these algebraically special 
Yang-Mills solutions are not so simply related to global 
Maxwell solutions. That is to say, even if null-twist-free re­
gions are disallowed, it is not true that a Yang-Mills solution 
with decomposable curvature is necessarily globally reduc­
ible to a Maxwell bundle. Global reducibility requires more 
than just decomposable curvature. It is necessary that the 
holonomy groups be one-dimensional, and, as stated in 
Theorem 3.4, this will be the case provided the conditions of 
our Hypothesis are met. 

A part of the Hypothesis is the asusmption that the flat 
set does not divide the region of curvature into disconnected 
sets. If the spacetime is Minkowski space, this assumption is 
superfluous since it is not possible to have two Maxwell fields 
in Minkowski space with nonoverlapping supports. In more 
general spacetimes, however, the assumption is not trivial. 
Consider, for example, a spacelike hyperplane in Minkowski 
space and Cauchy data for two Maxwell fields such that the 
two Cauchy data sets have non overlapping supports on the 
hyperplane. By deleting suitable regions from the Min­
kowski space, the two developed Maxwell solutions may 
have nonoverlapping supports on the resulting spacetime. 
We might say, therefore, that the Hypothesis is reasonable 
for special relativistic physics, but in the context of general 
relativity one should not expect global reducibility of Yang­
Mills solutions with decomposable curvature. 

Remark: If a global Yang-Mills solution with decom­
posable curvature is analytic and not null-twist-free, then it 
necessarily reduces to a Maxwell bundle. (A Yang-Mills so-
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lution is analytic if the bundle and connection are real ana­
lytic.) Analyticity forces the restricted holonomy group to 
agree with infinitesimal holonomy group,) which, for these 
solutions, is one-dimensional. Thus the holonomy group it­
self is one-dimensional, and consequently the reduced ho­
lonomy bundle is a Maxwell bundle. Alternatively, one can 
see that a global analytic solution can have no flat set (unless 
it is everywhere flat), and so the conditions of the Hypothesis 
are necessarily met. 

Remark: Yasskin l2 showed that a local Einstein-Max­
well solution can be used to generate local Einstein-Yang­
Mills solutions with decomposable curvature. The method is 
to multiply the Maxwell potential by a constant Lie algebra 
element to produce the local gauge components of a Yang­
Mills connection. Provided the Lie algebra element has unit 
length with respect to the Killing metric, the stress-energy 
tensor of the Yang-Mills field will be identical to that of the 
Maxwell field. Our analysis shows that, except for null­
twist-free curvatures, any local Yang-Mills solution with 
decomposable curvature arises from a Maxwell field as in the 
Yasskin construction. In any Einstein-Yang-Mills solution 
with decomposable curvature which is not null-twist-free; 
therefore, the local spacetime geometry agrees with that of 
some Einstein-Maxwell spacetime. This result needs some 
qualification if the Killing metric is not positive definite. For 
then it is possible to have Einstein-Yang-Mills solutions of 
this type which do not confirm to the positive energy condi­
tions which Maxwell solutions satisfy. 

Remark: Einstein-Yang-Mills solutions with null­
twist-free curvature are excluded from the previous remark 
because there is additional freedom in generating Yang­
Mills solutions from Maxwell solutions when the Maxwell 
fields are null-twist-free. Examples of null-twist-free de­
composable Einstein-Yang-Mills solutions which are not of 
the Yasskin type can be found in the work of Giiven. 13 

Remark: From the close relationship between algebra­
ically special Maxwell solutions and Yang-Mills solutions of 
type N, we infer a simple extension of Robinson's theorem 14: 

If a spacetime admits a type-N Yang-Mills solution, then it 
has a shear-free geodetic null congruence of curves. Con­
versely, given a shear-free geodetic null congruence, one 
may construct Yang-Mills solutions of type N. 
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APPENDIX A 

The notion of a "decomposable curvature" is based pri­
marily on an algebraic criterion: At each point it must be 
possible to factor the curvature as a product of a Lie algebra 
vector and a real 2-form. In addition, however, we have re­
quired that in a neighborhood of each point it be possible to 
choose the factors so that each factor is Coo. We present an 
example, due to Mostow and Schecter, 15 of a connection 
whose curvature is everywhere C '" and which can be fac­
tored at each point, but at some point So it is impossible to 
choose factors of the curvature which are C 00 throughout a 
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FIG. I. Here a cone is represented by a half-plane with the positive and 
negative x axes identified. The ordinary arrows represent a locally constant 
electric field, while the single-barbed arrows indicate a value in the Lie 
algebra so 13). In this figure these fields are represented in a neighborhood of 
the y axis. 

neighborhood of 50. 
Let the gauge group be an abelian 2-dimensional group 

with Lie algebra basis [e"e2 l. Let the spacetime M be Min­
kowski space with global coordinates (x,y,z,t ). The bundle P 
is a trivial bundle, and we express the connection, curvature, 
etc., in terms of a fixed global gauge of the bundle. Thus let 
the potential I-form (connection) be given by A = A ieo 
where 

A '= - xy dx + k (y) dz, 

A 2 = xh ( - y) dy. 

Here k is any anti derivative of hand h is any C 00 function 
from IR to IR which is zero at each negative number and non­
zero at each positive number. The essential property is that 
h (y)h ( - y) = 0 for every y EIR. The curvature F = rei of A 
has components 

F' = x(dx 1\ dy) + h (y)(dy 1\ dz), 

F2 = h ( - y)(dx I\dy). 

The curvature defined by F does not admit smooth factors 
on any neighborhood of any point on the fiber over the origin 
of M. On the other hand, the curvature can be factored at 
each point since Fi = b 1. where: 

(1) for x:j:O, b ' = I, b 2 = (l/x)h ( - y),J = F '; 

(2) for x = Oandy;>O, b' = I, b 2 = OJ = h (y)(dy I\dz); 

(3) for x = 0 andy.;;O, b ' = 0, b 2 = 1, 

/ = h ( - y)(dx 1\ dy). 

APPENDIX B 

We mentioned in the text that a Yang-Mills solution 
could have decomposable curvature everywhere and yet not 
admit global forms p and w such that n = f3w everywhere. 
We shall illustrate this with a simple example. 

This Yang-Mills solution is a connection in a trivial 
principal bundle with sructure group SO (3). The spacetime 
is flat, with topology S ' X R 3. Let us regard it as a cone trans­
lated in one space dimension and one time dimension. The 
Yang-Mills solution is also invariant under those transla­
tions, so the solution will be described only on the two-di­
mensional cone. Since the bundle is trivial, we may specify 
the solution by describing it on one (global gauge) cross 
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section. 
Figure 1 represents the cone by a half-plane with the 

negative x axis identified with the positive x axis as indicated 
by the solid arrowheads. On this cone is a (locally) constant 
electric field, shown with ordinary arrows. The local electric 
field defines a local Maxwe1l2-forml We emphasize that the 
field is local because, as drawn in Fig. I, it is discontinuous at 
points of the x axis where it has two limits differing by a 
factor of - 1. Also shown in Fig. 1 is a field of radially 
pointing (single-barbed) arrows. These are intended to indi­
cate a local Lie-algebra-valued function b. At each point on 
the cone is a single-barbed arrow which represents a value in 
the Lie algebra so (3). In the gauge we are using, these values 
all fall in a single plane of so (3), and by identifying points of 
that plane with points of the (cone's) xy plane we have indi­
cated a b field. Note that, since the positive and negative x 
axes in so (3) space are not identified, the b field is also discon­
tinuous on the cone's seam (thex axis) because it too has two 
limits differing by a factor of - 1. The product F = bf, on 
the other hand, is smooth, having an unambiguous limit on 
the seam. Figure 2 shows a neighborhood of the seam, with a 
smooth b and a smoothjyielding the same smooth product 
F = bi Note that the single-barbed arrows representing the 
value ofb at identified points of the x axis define the same 
vector in so (3). 

This curvature 2-form arises from a Yang-Mills solu­
tion, as can be seen by considering a neighborhood of any 
point. By a suitable point-dependent SO (3) rotation (to a 
different gauge) the barbed arrows can be made locally con­
stant, say b'. Ifa is a local potential for the electric field, so 
that/ = da, then A: = b'a satisfies the Yang-Mills equation 
(2.5). 

On the global cross section we employed in Figs. 1 and 
2, there is no global smooth b or global smooth/such that F 
= bl Since a global decomposition is not possible on that 

section, it is certainly not possible on the entire SO (3) 
bundle. 

APPENDIXC 

The example presented in Appendix B suggests the fol­
lowing question: When does a decomposable Yang-Mills 

FIG. 2. Here a cone is represented by a half-plane with the positive and 
negative x axes identified. The ordinary arrows represent a locally constant 
electric field, while the single-barbed arrows indicate a value in the Lie 
algebra so (3). In this figure these fields are represented in a neighborhood of 
the x axis. 
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curvature admit a global decomposition? A partial answer to 
this question is given by the following: 

Theorem: Let 0 be a decomposable Yang-Mills curva­
ture which is not null-twist-free on any open subset of P. If 
H 2 (M - 1T(.I ),R *) = 0, then there is a non vanishing Higgs 
field P and a pullback form W on P - .I such that 
OI(P -.I) = pw. v 

Remark: In the proof below we utilize Cech cohomo­
logy since in that case it is easy to describe the cocycles and 
coboundaries as follows. If Q2I is an open cover of M - 1T(.I ) 
which has the property that for U, V E '2t either Un V = 0 or 
Un V is not empty and contractible, then a 2-cocycle is a 
function which associates with each pair (U, V) such that 
UnV #0 an element Cuv of the group R*. The function 
C = {c uv } must satisfy the identity 

Cuw = CuvCvw 

whenever Un Vn W # 0. A 2-coboundary is a function b from 
u21 to R*. To say that H 2(M - 1T(.I), R*) = 0 means every 2-
cocycle can be obtained from a 2-coboundary as follows: 
Given C there is a b such that Cuv = bub v -I whenever 
UnV #0. A reference where this is all spelled out in some 
detail is Ref. 16. 

Pro%/the Theorem: First choose an open cover {Ua } 
of M - 1T(.I ) such that 

(1) for (a,y) such that UanUy #0, UanUy is 
contractible, 

(2) if Y a = 1T- 1( Ua ), then 01 Y a = Pawa for some non­
vanishing Higgs field Pa and some pullback form Wa on Y a. 
We may also assume, by Lemma 3.1, that DPa = Pafia for 
some I-form fi" on Y a . 

If u,xnUy #0 letg"y = (Pa'Py)/Pa 2, where· is an arbi­
trary positive-definite inner product on G '. We note that 
0= p"w" = PyW y implies w" = gayWy and thus that Py 
= g"yP,,· It follows that gay is an invariant function on Y a 
nYy ' which is never zero. Now 

DPy = (Dguy)Pu +gay(DPu) 

= (Dg''1')(g"y -IPy ) + gay(Pafia) 

= [(Dgay)gal' -I + fi" 1Py. 

Since D Pl' = Pl'fi l' , we have that 

fiyP y = [(Dgal')g"y -I + fi" 1Py. 

Dotting both sides with Py and cancelling Py 2 yields 

dg"y/g"y =fi l' -fi,,' (CI) 

Since UanUy is connected and simply connected, we may 
choose an arbitrary point Xo in UanUy and, for each XE Ua 
nUl" an arbitrary curve c(x) fromxo tox in UanUy • We then 
integrate both sides ofEq. (CI) to get 

gay(x)=cayexp[l (Py -fi,,)]. 
c(x) 

for some constant c"y' Now Cay exists for every pair 
(U,x' Uy) such that UanUy is not empty. We claim that [cay l 
is a cocycle. To see this, observe that if Y"nYynY/i #0, then 
Pb = gyh Py = g y/ig"y p" and 

gal'> = gyl>g"y. 

This implies that 
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caoexp[l (Po-fia)] 
c(x) 

= CY/iexp [ ( (P/i - fiy)]c"yex p[ ( (Py - fi")] 
J~~ J~~ 

and thus that Cat> = CayCyt>. It follows that [c"t> l is a cocycle. 
Choose a coboundary {ba } defined by the cover {U,,} such 
that C"l) = bab/i -I. Then we have 

Ifwe define 

P,,'(x) = baexp( - ( fi")P,,(X), 
JC!X) 

Wa '(x) = ba - 1 exp( ( fia )Wa (x), 
l(x) 

then we see that on U"nUy #0 we have Pa' = Py' and 
wa' = wy'. Thus there exists globally defined P and won 
P - .I such that P agrees with Pa' on Y" and W agrees with 
wa' on Y a for each a. We have that 

0= pw 

and the theorem follows. 

APPENDIX D 

Lemma 17: If dw A du = 0 for a I-form wand a function 
u, then there exist functions Hand K such that W = 
Hdu +dK. 

Proof If dw A du = 0 for a I-form wand function u, 
then dw must contain a factor duo Hence we may write 

dw = e Adu 

for some I-form e. Using the Frobenius theorem, one can 
show that this equation implies that w is of the form 

w =/(x,u)dx + g du 

for some functions/ = /(x,u), x and g. Thus 

dw = if;Adu, 

where 

if;= - aj dx +dg. 
au 

(DI) 

(D2) 

Now the I-form if; satisfying (DI) is fixed only to within 
addition of a I-form proportional to du. Thus, if we define 

ifi= if; + hdu, 

then ifi also satisfies 

dw=ifiAdu. 

(D3) 

(D4) 

We show that the function h in (D3) can be chosen so 
that difi = O. From (D2) and (D3) we have 

difi = dif; + dh A du 

a2
/ 

= - ~u Adx + dh Adu (D5) au-
= (~~dX + dh ) Adu. 

Choose h = h (x, u) such that 
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a2

f + ~ =0. 
au 2 ax 

Then by (05) we have d¢ = O. Hence locally 

!b=dH 

for some function H. Using ¢ = dH in (04), we obtain 

dw = dH 1\ du = d (H du), 

or equivalently 

d(w -H du) = O. 

The I-form (w - H du) is thus closed and locally may be 
written as dK for some function K. We then have 

w = H du + dK. 
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KAt each point 5 of a principal fiber bundle P there exists a subspace 
V, k: T,P. the vertical subspace at 5, consisting of all vectors tangent to the 
fiber through 5. A connection in P can be defined as a choice for each 5EP 
of a complimentary subspace H, k: T,P, the horizontal subspace at S. sat­
isfying certain conditions.' Onc'e a connection is specified each vector 
,1ET,P can be decomposed uniquely into a sum of a vertical part and a 
horizontal part: ,1 = ver(,1 ) + hor(,1 ). If 1jJ is a Lie-algebra-valued p-form 
on p. then the horizontal part of 1/;. denoted hor(1jJ). is defined by 
(hor1jJ)(,1 " ... ,,1") = 1jJ(hor,1 " .... hor,1 p ). 

9 A pseudotensorial p-form on P of type Ad is a Lie-algebra-valued p-form 1jJ 
on PsatisfyingRg *1jJ = Ad(g-')1jJ. RereR.· is the pullback map on forms 
on P induced by the right "translation" map R.: P~P defined by Rgs 
= 5g. Ap-form 1jJ that is pseudotensorial of type Ad and which in addition 

satisfies 1jJ(,1 , ... .• ,1 p) = 0 if anyone of the vectors ,1 , ..... ,1 p is vertical is 
termed a tensorial p-form of type Ad. For a more complete discussion of 
pseudotensorial forms see Ref. 3. Where no confusion would arise, we will 
refer to a pseudotensorial p-form of type Ad as simply a pseudotensorial p­
form. Moreover. for brevity we will. following Trautman. 2 often refer to a 
tensorial zero-form as a Higgs field. The exterior covariant derivative of a 
pseudotensorial form 1jJ. denoted D1jJ. is defined by" Dell = hor(d1jJ). Note in 
particular that a connection I-form $ is pseudotensorial while the curva­
ture of ell. n:=D $. is a tensorial 2-form. 
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Generalized SchrOdinger representation and its application to gauge field 
theories 
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A generalization of the Schrodinger representation is presented and applied to theories with 
indefinite metric as weB as those with positive definite metric. It enables us to construct the 
wavefunctional formalism of the quantum electromagnetic field equivalent to the operator 
formalism in covariant gauges. The theoretical foundation of the Wick rotation of the dynamical 
variable Ao(x) is established. 

PACS numbers: 11.1O.Np, 03.70. + k, 03.65.Db 

1. INTRODUCTION 

In 1926 Schrodinger presented the wave functional for­
malism of quantum mechanics equivalent to the algebraic 
formalism given by Heisenberg in 1925. There the argu­
ments of the wavefunctions are real numbers and it cannot 
describe a theory with indefinite metric. 

On the other hand, the third formalism, path integral, 
was proposed by Feynman in 1948. In the last several years 
the structure of the QCD vacuum has been investigated ex­
tensively using the path integral. In these works the prescrip­
tion of the Wick rotation (Ao = - icp, t = - if3 ) is used fre­
quently.1 The theoretical footing of the Wick rotation of the 
time axis (t = - if3) is given by Matsubara in his study of 
finite temperature Green's functions. 2 However, the Wick 
rotation of the dynamical variable (Ao = - icp) is still lack­
ing its theoretical foundation. 3 

In this paper we will give the theoretical ground to the 
Wick rotation of dynamical variables Ao(x). For this purpose 
we present a generalization of the Schrodinger representa­
tion. In this generalized Schrodinger representation (GSR) 
the arguments of the wavefunctions are complex in general. 

It has been believed that the eigenvalue of a Hermitian 
operator is real in a theory with definite metric. The usual 
argument proceeds as follows: Let abe a Hermitian operator 
(a+ =8)and (al be its eigenstate (ala=a(al). Then 

{(a l lala 2 )}* = )a2 Iala l ) 

gives 

(ar - a 2 )(a2 Ia l ) = O. (1.1) 

Putting a 2 = a I we have 

(ar -al)(alla l ) =0. 

Since (alla l ) #0, we get ar = ai' i.e., a l is real. However, 
this argument does not hold for a Hermitian operator with 
continuous spectrum. In this case (a 2 Ia l ) is not a function 
but a distribution. In general the numerical value of a distri­
bution is meaningless by itself. In fact we will give an exam­
ple which satisfies Eq. (1.1) as a distribution for complex 
eigenvalues. We can generalize consistently the theory in the 
Schrodinger representation on the real axis (aER) to that on a 
curve r in the complex plane (aEFC C).4 

Although we are interested in gauge field theories, the 
essential point of GSR and Wick rotation of the dynamical 

variable will be clarified by studying harmonic oscillators 
with positive definite and indefinite metrics. In Sec. II, GSR 
for the harmonic oscillator with definite metric is presented, 
which is equivalent to the Fock representation in the opera­
tor formalism. The completeness and orthogonality rela­
tions are examined, where a nontrivially generalized {j func­
tion is introduced. In Sec. III it is shown that, using this 
GSR, the indefinite metric harmonic oscillator can be treat­
ed on the same footing as the positive metric one. In Sec. IV, 
the wavefunctional formalism of the electromagnetic field is 
developed using the GSR. 

It is shown that the GSR provides the foundation of the 
Wick rotation of the dynamical variable Ao(x). 

2. GENERALIZED SCHRODINGER REPRESENTATION 

In this section we investigate the harmonic oscillator 

H = !(p + q2), (2.1) 

with the commutation relation 
r:: A] . If',q = - I. (2.2) 

We take the Fock space as our starting point. The defi­
nition of the annihilation and creation operators (a and a +) is 
given as follows; 

ft = (a+ + a)/v'2, 

q = (a+ - a)/(v'2)i, 

and their commutation relations are 

[a,a+] = 1, 

[a,H] = a, 

[a+,H] = -a+. 

(2.3) 

(2.4) 

The positivity of energy eigenvalues and the above commu­
tation relations require us to define the vacuum as follows: 

alO) = 0, 

with 

(010) = 1. 

The Fock space is spanned by the basis vectors 

In) = (l/v'nl) (a+tIO). 

(2.5) 

(2.6) 

Now we construct the eigenstate (ql of the operator q 
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from the Fock space. It is defined by the following equations: 

(qlq=q(ql, (2.7) 

(qlft = - i~(ql. 
dq 

(2.8) 

Expanding (ql by the basis (nl, 

(ql = I(nl[(i)n/(V1T2nn!)1/2lfn(q); (2.9) 
n 

the coefficientln (q) satisfies the recursion equations from 
Eqs. (2.3), (2.7), and (2.8), 

In + I (q) - 2qfn(q) + 2nln _ I (q) = 0, 

d 
I" + I (q) + 2 dqfn (q) - 2nln _ dq) = O. 

(2.10) 

(2.11 ) 

Equation (2.10) implies thatln (q) is proportional to the Her­
mite polynomial Hn (q) (- l)"eq'(d n/dqn)e - q', 

In(q) =/(q)Hn(q)· (2.12) 

Then, since (d /dq)Hn (q) = 2nHn _ dq), Eq. (2.11) leads to 

d 
dqf(q) = - qf(q), (2.13) 

so that 

(2.14) 

where the overall factor is taken to be unity for later conve­
nience. Thus we get 

(ql = I(nl [(i)n/(V1T2nn!) I 12]Hn (q)e- Q"/2, (2.15) 
n 

and its conjugate 

Iq) = I[( - i)n/(V1T2"n!)1/2]Hn(q*)e- Q"
12 ln), (2.16) 

n 

where we have used the relation [H" (q)] * = Hn (q*). Notice 
that, in the above construction ofthe state (ql, we have not 
made the assumption that the eigenvalue q is real. In fact, the 
above argument holds for a general complex number q.' 

Next we analyze the structure of the space {(qll qEC}. 
For this purpose we define a set of connected curves in the 
complex plane as follows: 

Definition: A curve r is called "real-like" if there exists 
a parametrization of r [z = z(s)] such that 

lim Iz(s) I = 00, 
... ~ L ~ 

lim 11T-argz(s)I<1T/4-E (E>O), 
s • -- 00 

lim largz(sll < 1T/4 - E' (E' > 0). 
\: .. + oc 

From now on we denote r -JR if r is real-like. 
It is important to note that the orthogonal property of 

Hn (q) holds for an arbitrary real-like curve r. 

I dq Hm(q)Hn(q)e- q
' = Dmn(1T)1I22t1nL (2.17) 

r-B 

It is precisely this property that enables us to generalize the 
Schrodinger representation. 

Now we are at the stage to discuss the structure of 
[ (qll· First, by virtue of Eqs. (2.15)-(2.17), we obtain 
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I dq Iq*) (ql = Ilm) (nl (i)" m 

r~1! m.n (1T2m + nm!n!)'/2 

xl dq Hm (q)Hn (q)e . q' 
r~1! 

= Iln) (nl = lL (2.18) 

This equation shows that the set {(qll qEV'r -JR} forms a 
complete set. Observe that S r_lldqlq) (ql =/=1 except for 
r = JR, and that only the combination Iq*) (qlleads to 1. 
From Eq. (2.18) the inner product of If) and Ig) becomes 

(fIg) = L~/q (flq*) (qlg) = L_lldq [f(q*))"g(q). 

(2.19) 

Second, according to the orthogonality of the Fock 
bases (min) = omn' we have 

(qllq!> = Iv 1 H n(ql)Hn(q2)e- lQ;-lQi. 
n 1T2nn! 

(2.20) 

We call this the generalized delta function DG(q, - q2).6 This 
is, of course, not a function and it has meaning only as a 
distribution. Let us restrict the functional space to the Hil­
bert space (rlf(q) = ~nan [1I(V1T2nn!)'/2]Hn(q)e-q'!2, 
~n Ian 12 < 00 J. For any element of this space the generalized ° function acts as follows: 

I dq2 0G(ql - q2)f(q2) =/(q,)· 
r-Il 

(2.21) 

This also means 

Surprisingly, Eq. (2.21) holds for any qIEC, even for q1lf; 
i.e., the "support" of DG(Z) is not concentrated on the origin 
(z = 0). Further, in spite of the fact just mentioned, 
ZDG (z) = 0 as a distribution from Eq. (2.22). (Recall the argu­
ments in Sec. 1). 

Finally, we check the Hermiticity of the operators q and 
p; 

(flqg) L-H dq[f(q*)rq g(q) = L_Bdq [q*/(q*)rg(q) 

= (lflg), (2.23) 

and 

(flftg)-L~/q [f(q*)r( - i ~g(q)) 

= I dq i ~[f(q*Jrg(q) 
r-IR dq 

= I dq [ - i ~/(q*)]·g(q)=(ft/lg). (2.24) 
r-IR dq* 

In conclusion, GSR of the harmonic oscillator has been 
constructed, where the wavefunction defined on arbitrary 
real-like r is used. It would be appropriate to call it "the 
Schrodinger representation (SR) on r." The SR on each r is 
equivalent to the Fock representation.? The transformation 
matrix relating the SR on r , with that on r 2 is the general-
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ized D function 

(qllq!) = DG(ql - q2)' 

where 

q I8 1 -lR, q28 2-lR. 

(2.25) 

3. SCHRODINGER REPRESENTATION OF INDEFINITE 
METRIC THEORY 

In this section we consider the indefinite metric har­
monic oscillator 

(3.1) 

in the Schrodinger representation. This is a system with in­
definite metric, and is unavoidable, to introduce complex 
eigenvalues for Ii because if the theory were constructed only 
with real eigenvalues the inner product would be positive 
definite 

(f If) = i dq [((q)]*f(q) > 0. (3.2) 

Hence, the generalized Schrodinger representation devel­
oped in Sec. 2 is crucial. 

As in Sec. 2 we start from the Fock space. The annihila­
tion and creation operators (a and a +) are defined as follows: 

P = (a+ + a)lv2, 

q = (a - a+)/v2i, 

and their commutation relations are 

[a,a+] = - 1, 

[a,H] = a, 

[a+,H] = -a+. 

(3.3) 

(3.4) 

To guarantee the positivity of energy eigenvalues we must 
define the vacuum as 

alO) = 0, (3.5) 

with 

(010) = 1. 

The basis vectors of the Fock space are given by 

In) = (lIvn!) (a+nO). (3.6) 
Then we have the indefinite metric 

(min) = (- !tDm.n· (3.7) 

Let us construct the eigenstate (ql of the operator q 
from the Fock space, which is defined by 

(qlq = q(ql· 

(qlp = - i ~(ql. 
dq 

(3.8) 

(3.9) 

The eigenstate (ql is expanded by the bases (nl as 

1 
(ql = ~(nl(V1T2nn!)1/2gn(q). (3.10) 

From Eqs. (3.3), (3.8), and (3.9), we have the recursion equa­
tions for the coefficient gn' 

Comparing these equations with Eqs. (2.10) and (2.11), it is 
easily seen that the solution of the above equations is given 
by 

gn (q) = Hn (iq)eq212
• 

So we have 

( I "'( I 1 H (. ) q'/2 q = £.. n < / 2n ,)1/2 n lq e , 
n ( V 1T n. 

and its conjugate 

Iq) = '" 1 Hn( - iq*)eq
'

12 ln) 
~(v1T2nn!)1/2 

(3.13) 

(3.14) 

= I[( - 1)"/(V1T2nn!)1/2]Hn(iq*)eq
• 12• (3.15) 

n 

To investigate the nature of these states we define a set 
of connected curves in the complex plane. 

Definition: A curve ris called "imaginary-like" if there 
exists a parametrization of r such that 

lim Iz(s) I = 00, 
s ± 00 

lim 1!1T-argz(s)I<!1T-e (e>O), 
s---+- = 

lim 1~1T - argz(s) I <!1T - e' (e' > 0). 
s_ + oc 

We denote r - [ if r is imaginary-like. The orthogonal prop· 
erty of Hn (iq) is given by 

. f d H (. )H (. ) q' - " 1/22n, I q m lq n Iq e - U mn 1T n .. 
r-I 

(3.16) 

Using the above property, the completeness of the set 
{ (q II qE \;/ r - [} can be shown as follows: 

Jr_,dq Iq*) (ql 

= Ilm) (nl (- l)mi 1
0 

( dqHm(iq)Hn(iq)eq ' 

m.n (1T2m+nm!n!)1 -Jr-I 

= I( - 1)"ln) (nl = 1. (3.17) 
n 

From Eq. (3.17) the inner product of If) and Ig) becomes 

(fIg) = IJ_1dq (flq*) (qlg) = iL_,dq [((q*)rg(q). 

(3.18) 

The generalized D function in this case is given by 

DG(ql - q2)=(qllq!) 

1 . . !q~ -t ~q~ 
= I Hn(IqIlHn(Iqo)e· . (3.19) 

n V1T2 nn! -

Thus in the case of the indefinite metric space, the 
Schrodinger representation on each r - [is equivalent to the 
Fock representation. In this way, we are ready to study the 
indefinite metric quantum field theories in the Schrodinger 
representation. 

gn + I (q) - 2iqgn (q) + 2ngn _ I (q) = 0, (3.11) 4. ELECTROMAGNETIC FIELD 

gn + I (q) + 2dgn (q)ld (iq) - 2ngn _ I (q) = 0. (3.12) The free electromagnetic field is described by the action 
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s = fd 4X { - lF Fill' - _1_(a A Ilf} 
4 ,,,. 2a" . (4.1) 

In the following we choose the gaugea = 1 (Feynman gauge) 
for simplicity. Dropping the total divergence - ~ 

a" (A,a'A I' - A "a,A 'I, the action becomes 

S = fd 4
X ( - la A 'JI'A ) (4.2) 2 J1 l' • 

The Hamiltonian in terms of the field A I' and the momenta 
77"'(=8.:1'/8,,1/,) = - A" is given by 

H = f d Jx ( - ~1T,,77'" - ~aiA,.a,A ') (i = 1,2,3), (4.3) 

and we take the following canonical commutation relations 

[77"'(x),A,.(y)L,,~Y<> = - i8~~8:l(x - y). (4.4) 

This system consists of infinitely many four-component 
harmonic oscillators. For positive metric harmonic oscilla­
tors [Ai (x), i = 1,2,3] the GSR developed in Sec. 2 is applica-

ble, and for indefinite metric harmonic oscillators [Ao(x)] the 
GSR exhibited in Sec. 3 can be adopted. 

From the above discussion, the set of states 
C (T" )={ (A" lIA()ETo~ n, AiEri ~ IR} (we omit the space 
index x for brevity) forms a complete set for the indefinite 
metric space. It should be noted, however, that the set of 
representations {C (r

" 
) I ro ~ 1I, r i ~ IR} is not closed under 

the Lorentz transformation, which mixes A, and A". In fact, 
the components of the Lorentz transformed field 
A;, = A ,';A, (AoETo-1, AiEri -1R) lie neither on an imagi­
nary-like line nor on a real-like one. However, as will be 
shown in the Appendix, the set of states 

C (rll;A ;; ) 

-{(A;,IIA~ =A~Av' A"ET", ro~lI, ri~lR} 
also forms a complete set of states. This leads us to a further 
generalized representation C (rll;A ;, ), and the set ofrepre­
sentations {C (rll;A;')lro-lI, ri~lR, A~Ap" =g",,} is 
closed under the Lorentz transformation. 

Now we proceed to discuss the path integrals. The propagation kernel is decomposed as 

(Ajle ~ iHt IA n = (Ajle - iH"t le - iH"t le - iH"' ... e - iH'''le - iH", IA n, (4.5) 

where 

1 = fr-R for A,(x) Ii= 1.2.3)~A,,(X) IAIl(x)*) (AIl(X)I· (4.6) 

r-I for A"lx) 

We obtain 

!iJ All (x) exp(i fL dt ), 

r-R for A,(x) Ii = 1.2,3) 

r ~]( for Ao(x) (4.7) 

where L = fd 3X ( - ia"A "a"A,,j. Note that the contour of integration of Ao(x) is an imaginary-like curve. 
Finally we mention the density matrix, which is written as 

r-R for A,(x)(i= 1.2.3) 

= (IAII 

JIA,I 
r-R 

_ ~A>XP[ - fdx4fd 3
XX E]' 

for A"lx) ill = 1.2,3,4) 

where All = (Aj>iAo) and :f E = ~~~." = 1 (aIlA,,) (aIlA,,), 
which is precisely the same as the Lagrangian used in the 
usual Euclidean field theory. In other words, the density 
matrix of Electromagnetics is given by the Euclidean path 
integral. This establishes the prescription of Wick rotation in 
the path integral expression. 
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(4.8) 

5. SUMMARY AND DISCUSSION 

In this paper we have constructed GSR and have shown 
that the GSR on each T is equivalent to the Fock representa­
tion. For the positive metric harmonic oscillator T is a real­
like curve, and for the indefinite metric harmonic oscillator 
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r is an imaginary-like curve. The transformation matrix be­
tween GSR on rand r ' is given by the generalized 8 func­
tion. In the wave functional formalism of the electromagnet­
ic field, GSR does enable us to construct a theory equivalent 
to that in the Fock representation. Even in the path integral 
form of the propagation kernel, the integral contour is an 
imaginary-like curve for Ao(x). Furthermore, the path inte­
gral expression for the density matrix is correctly given by 
the Euclidean path integral. 

We have developed GSR for the abelian gauge field the­
ory, but the extension to the nonabelian gauge field theory in 
perturbative sense is trivial. We hope that nonabelian gauge 
theories would be described correctly by the GSR with 
r - IR for A ~ and r - [ for A ~ also in the nonperturbative 
treatment. In that case, calculations based on the Euclidean 
path integral are meaningful. Of course, there remains a pos­
sibility that GSR on another set of r's is needed in these 
treatments. 
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APPENDIX 

In this appendix, we show that the set of states 

C(rl';A~) 

={(A~IA~ =A~Av, AI'EFI' ro-[, r;-R} 

forms a complete set for the indefinite metric space. We con­
sider, for simplicity, the Lorentz boost along the third axis, 

A b = Aocoshr + A 3sinhr, 

(AI) 

A 3 = Aosinhr + A3coshr. 

To prove the completeness of the set of states C WI';A ~) it is 
sufficient to show that 

f-~u for AodAo dA3ifiA r, A r) (A b, A ;Ig) 
r~1R for t, 

=Jr-u forAodAodA3ifIA;l',At) (A o,A3Ig), (A2) 
r~1R for A, 

for arbitrary states ifl and Ig). (We have omitted the irrele­
vant components A I and A2') We first note that the wave­
functions take the form 

P (Ao.A 3)expa(A ~ - A ~) (a> 0), 

where P(Ao.A3) is a polynomial inAo andA 3 • Notice that the 
exponential factor, which is Lorentz invariant, guarantees 
the convergence of the integral in both sides ofEq. (A2). The 
proof ofEq. (A2) proceeds as follows. The right-hand side of 
Eq. (A2) can be written as 

f . dAo dAd(A;l', A t)*g(A o, A 3), = i ( dA4 dAd( - iA4.A3)*g(iA4' A 3 ), 
r-l for Ao Jr= R for A4 and AI 
r-R for AI 

= J "dA ~ dA 3 I( - itA ~ cose - A 3 sine), A ~ sine + A 3 cose )* J r -=-= IR for A 4 and A J 

g(i(A ~ COSe - A 3 sine ), A ~ sine + A 3 cose ), 

where we have performed a rotation in the real A3-A4 plane in the last equality. Since the last expression in Eq. (A3) is 
convergent and the result of integration is independent of e, we can make an analytic continuation e_ir, and Eq. (A3) 
becomes 

(A3) 

i ( dA4 dA 3 /( - i(A4coshr + iA3sinhr), - iA4sinhr + A 3coshr)*g(i(A4coshr - iA3sinhr), iA 4sinhr + A3coshr) J r = R for A" and A \ 

= f dAo dAd(A ;l'coshr + A tsinhr, A tsinhr + A tcoshr)*g(Aocoshr + A3sinhr .Aosinhr + A 3coshr), (A4) r-l for A() 

r- iR fOT AI 

which is the left-hand side of Eq. (A2). This completes the proof of Eq. (A2). 
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analytic functions. 
6By formal calculation using the integral representation 

2n 
, 

Hn (q) = --f", = dA.e·· A(q + iA. r, it yields 
""17' 

(q, IqT) = exp[ - irq, - q2)2)-I-foc dA.exp[ - iA. (ql - q2))' 
217' - 00 

'Strictly speaking, we define the SR on r only for a pre-Hilbert space, i.e., 
the space generated from a free vacuum by applying polynomials of cre­
ation operators. 
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We investigate in detail the representation of the Dirac propagator as a path integral over virtual 
trajectories in the phase space with anticommuting variables. Using the reparametrization and 
supergauge invariant action integral proposed by Berezin and Marinov [Ann. Phys. 104, 336 
(1977)], we analyze the relation of causality to reparametrization in variance, and we construct the 
Faddeev-Popov measure for the symbol ofthe evolution operator. We present a precise definition 
?f the path integral as a limit of finite dimensional integrals, and we explicitly perform the 
mtegration obtaining the familiar result. We also analyze another approach, where 
reparametrization and supergaugeinvariance of the action is preserved with the help of 
independent einbein variables. This method, as opposed to Faddeev-Popov technique, dispenses 
with the gauge fixing problem and allows us to construct the correct functional measure by 
explicit factorization of the volume ofreparametrization group and supergauge group; the former 
is infinite, the latter identically vanishes. A sequence of finite dimensional approximations to the 
functional measure is given also in this case together with explicit calculations. 

PACS numbers: Il.lO.Qr, 03.70. + k, 11.30.Pb 

1. INTRODUCTION 

Recent years brought a series of papers devoted to the 
relativistic classical mechanics of spinning particles with 
spin degress of freedom described by Grassmannian varia­
bles. 1-5 The canonical quantization of these systems has been 
extensively studied and the appearance of relativistic wave 
equations as constraint conditions is well understood. 

Here we examine in detail the alternative quantization 
procedure based on phase space path integrals which, to the 
best of our knowledge, has not been successfully carried out 
in the case of Grassmannian "pseudomechanics" of relativ­
istic spinning particles. To describe classically the relativisi­
tic spin ~ particle we adopt the framework proposed by Bere­
zin and Marinov. I Althoug a consistent interpretation at the 
classical level is not possible, this model correctly repro­
duces the Bargman-Michel-Telegdi equation,6 and thus 
provides a good justification of this choice of variables prior 
to quantization. It is an amusing question, therefore, how to 
construct the path integral over virtual trajectories in their 
model of "classical" phase space to obtain explicitly the Fey­
man kernel of the Dirac equation: 

S(x x') = f d
4
p eiP(x-x') y'p" + m 

, (21Tt p2 _ m2 + iE 

-(iy"a" +m)S(x,x')=o(x-x'). (1.1) 

The point is that there is no intrinsic distinction between 
canonical momenta and coordinates in the phse space of an­
ticommuting variables.? So it is important to realize what 
quantity should be defined by a path integral, and to find its 
relation to the position space propagator (1.1). It follows 
from the general discussion in Ref. 1 that once phase space 
variables are treated on an equal footing it is natural to for­
mulate the quantum theory in terms of symbols of opera­
tors,8 in contradistinction to the representation of operators 
by their kernels, which presupposes the difference between 

positions and momenta. Since we want to construct a phase 
space path integral for the propagator (1.1), which is ex­
pressed in terms of position variables and y-matrices, we 
found it convenient to consider a hybrid quantity. A kernel 
in position space with respect to space-time variables, and 
simultaneously a symbol with respect to fermionic variables. 

The crucial feature of relativisitc mechanics of spinning 
particles is the reparametrization and supergauge invariance 
of the action. In the canonical quantization it immediately 
leads to the appearance of relativisitc wave equations as con­
straint conditions on physical states. In the functional lan­
guage, however, it leads to the modification of the measure 
on the space of virtual trajectories. We present two different 
solutions of this problem here. One is the application of the 
Faddeev-Popov technique to our case, another is based on 
the reformulation ofthe model in terms of independent La­
grange multipliers (einbein variables of Ref. 5), which after 
some manipulations allows to find a proper measure by ex­
plicit factorization of the volume of reparametrization and 
super gauge group. It should be noted that the latter ap­
proach does not require us to fix the gauge, and is suitable for 
calculation of gauge-invariant quantities. In the case of a 
spinless particles we obtain in this way the path integral de­
rived earlier from the Fock's proper time formalism9 

L1 F(X - x') = roc dL e im'L f n dX'l I x e iJ>'V" 
Jo [0,/. [ x' 

We should say here that many different approaches to 
the path integral representation of the Dirac propagator 
have been proposed in the past, 10 It is difficult to trace all 
references to the subject, and we apologize for not giving the 
'Complete list. Generally speaking, two principal ideas were 
involved: The first, already suggested by Feynman II extends 
the proper time formalism, here however, the space-time po­
sition x" (s) and the spin part are treated asymmetricaly, the 
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latter being represented by y-matrices already on the classi­
cal level. Another method emerged from consideration of 
relativistic spinning top,12 however here usually all values of 
spin are obtained and one must use subsidiary conditions to 
select a particular spin component. The organization of the 
paper is the following: First, in Sec. 2 we recapitulate briefly 
the pseudoclassical model of Ref. 1 and its canonical quanti­
zation mainly for the convenience of the reader. Section 3 
begins with a discussion of a relation between reparametriza­
tion invariance and causality, and contains the construction 
of a Faddeev-Popov measure as a limit of finite-dimensional 
approximations. We show that the unphysical parameter la­
belling the points on the trajectory of a particle completely 
disappears from the final result. In Sec. 4 was reformulate 
the problem in terms of einbein variables, and we construct 
another path integral by explicitly factoring out the gauge 
group volume. 

Throughout the paper we treat the case of a massive 
particle. It is only the einbein formulation that has the zero 
mass limit ), s and the integration procedure of Sec. 4 can be 
carried through also in this case. 

We use the system of units fl = c = 1, and our Min­
kowski metric has the signature (+ - - -). 

2. RESUME OF THE CANONICAL FORMALISM 

To describe the massive spin! particle we follow Bere­
zin and Marinov l who supersymmetrized the standard re­
parametization invariant action S ds (x~) 1/2 of a spinless par­
ticle by introducing five anticommuting generators SI" and 
S s of a real Grassmann algebra. The S I" transform as compo­
nents of a pseudovector, and Ss as a pseudoscalar under the 
full Lorentz grop (before quantization one could equally 
well require them to transform as vector and scalar, respec­
tively). The following action integral is postulated: 

~ = IdS { - !issts - !isI"tl" 

[ ( 
. i A )2 ] 112 } 

- m X" - m SI"S5 . (2.1) 

The action is invariant under reparametrizations of the time 
s 

s-s' =/(s), (2.2) 

where/is a strictly monotonic function on the interval [D,L ], 
and (up to a total derivative) under supergauge transforma­
tions parametrized by an anticommuting "gauge function" 
a(s): 

SI"-SI" + (lIm)ap
"

, 

S5-SS +a, 
x,,_xl" + (ilm 2)ap

"
ss' 

(2.3) 

Because the derivatives of Grassmann variables SI" and 
Ss enter the Lagrangian linearly, they can be treated as phase 
variables from the beginning. Introducing the momentum 
conjugate to position xI" 

oL m [xI" - (ilm)SI"t5] 
p =-=-

I' ox" [(xv - (ilm)svt5)2]1/2 
(2.4) 
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and the appropriate Poisson Bracket one finds that nonvan­
ishing PB's of the phase space variables are 

ISI"'Sv j = - igl"v' 

IS5,S5j = i, 

Ix,l,p,.j = gl"v' 

Invariance under (2.2) and (2.3) results in first class 
constraints 

(2.5) 

CPt = p2 - m 2
, CP2 = PS - mS5. (2.6) 

Following the quantization rule I .,.j-(l/i)[,,.] ± It IS seen 
that the classical generators of the Grassmann algebra are 
replaced after quanitzation by the generators of the corre­
sponding Clifford algebra. Its irreducible representation is 
finite-dimensional, and within this approach there is no 
more reference to Grassmann variables on the quantum lev­
el. They are replaced by the appearance of spinor indices of 
the state vectors. Quantum operators iI"' is can be represent­
ed by 

il" = (V!)Y5Yl" , i5 = (V!)Ys (2.7) 

and the constraints (2.6) which are interpreted as conditions 
on physical states give the mass-shell condition and the 
Dirac equation up to multiplication by y s from the left. This 
deviation from the ordinary Dirac operator (1.1) is impor­
tant, because the propagator obtained from the path integral 
constructed with the action (2.1) would then yield the propa­
gator G (x - x') corresponding to the equation 

ys(ilp - m)G (x - x') = 0 (x - x') (2.8) 

rather than to (1.1). It is clear that these two functions are 
related by G (x - x') = S (x - x')ys' 

3. THE PATH INTEGRAL: FADDEEV-POPOV MEASURE 

There is a subtlety in defining the time evolution of the 
system (2.1). The physical time variable is xo, the time com­
ponent of a position four-vector xI" of a particle relative to 
the Lorentz frame in which the motion is described-one may 
be tempted to call it "time of external observer". Moreover, 
energy of a particle is related to translations of Xo' In the 
canonical framework, however, Xo appears as one of phase 
space variables and it is the arbitrary parameter s that plays 
the role of time in classical equations of motion. It follows 
that the Hamiltonian, governing the evolution in s, vanishes 
on the physical subspace of the phase space: The canonical 
Hamiltonian identically vanishes, and evolution in param­
eter s is generated by the extended Hamiltonian in the sense 
of Dirac. 

(3.1) 

in which each particular choice of Lagrange multipliers a 
and /3 as functions of phase space variables corresponds to 
definite parametrization of trajectories. It is evident now 
that the quantum evolution kernel, expressed by matrix ele­
ment of the type 

(3.2) 

will be dependent of s for physical states which are annihilat­
ed by constraints. 
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Related to the above remark is the problem of causality: 
The phase space path integral must be defined in such way 
that it gives the Feynman propagator (1.1). We can disregard 
the spin variables for a while, for they are essential for this 
problem and concentrate on the spinless particle described 
by the action .rY = - mS(x~ )1/2. The constraint 

o 0 , 

p- - m- = 0 splits the physical subspace of the phase space 
of varibles x," P" (in a relativistically invariant manner) into 
two disjoint connected components characterized by Po > 0 

andpo < 0, respectively. Recalling that momentum Po conju­
gate to Xo is 

Pols) = - mxO(S)/(X2) I 12, 

we see that for classical motion from point x' to x" the trajec­
tory will lie on the sheet Po < 0 if x; > x~, and on the sheet 
Po> 0 if x; < xb. We will show that this also holds for virtual 
trajectories from x' to x" , because they are subjected to mass­
shell constraint. The correct phase space path integral for 
the Feynman propagator is therefore a sum of two terms, 
where the momentum integration is carried over two sheets 
of the physical phase space, and the choice of sheet in which 
the virtual trajectories lie corresponds to the causal ordering 
of points x' and x" . 

This reasoning, needless to say, is mostly a conveneint 
reformulation of ideas contained in Feynman's papers of 
1948-9, especially in Ref. 13, and may be summarized in the 
well known identity 

L1p(x) = 8 (xo)L1 <+l(X) + 8( -x~L1 <-)(x), 

which we could take as a starting point showing that it is 
L1( +) (x) that has a simple and unambiguous phase space 
path integral representation. 

After this introductory exposition of ideas we return to 
the problem of the Dirac particle defined by (2.1). We re­
mind the reader that we will consider a hybrid quantity 
closely related to the Dirac propagator, namely a kernel of 
the evolution operator with respect to space-time variables 
and a symbol of evolution operator with respect to Grass­
mann spin variables. For unconstrained systems with Grass­
mann variables symbols of evolution operators were intro­
duced in Ref. 1. We consider therefore the formal expression 

using a condensed notation 

S = (S5S,,); S01/ = S51/5 - s,,r/, 

G 1 ± i(X",X',s) 

2062 

X8( +il)lsdetlXa,tpb II 

Xexp {ilL ds[px - ~i1/r, 
+ H 2t (1/(0) - 1/(L )) + 1/(O)1/(L ) 1 } , 
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(3.4) 

with the boundary conditions x (0) = x',x(L) = x" while the 
remaining variables are entirely integrated. 

We immediately observe that with the suitable choice of 
gauge conditions X a the integrations need not be complicat­
ed (althogh not Gaussian), for the canonical Hamiltonian 
which ordinarily appears in the exponent identically vanish­
es. We are left essentially with an integral over a chain of 
delta-functions. The crucial point, however, is the choice of a 
sequence of finite dimensional integrals which gives meaning 
to the formal expression (3.4) especially the finite dimen­
sional (lattice) approximation of individual terms in F-P 
measure. 

We remark in passing that we deliberately did not put 
the L- dependence in the LHS of (3.4) because, as was an­
nounced earlier, with the correct choice of finite dimensional 
approximations this dependence completely drops out. 

The well known gauge conditions fixing the parameter s 
are the laboratory time gauge 

and the proper time gauge 

XI = (l/m)xp + s. 

(3.5) 

(3.6) 

To fix the super gauge freedom we impose the simplest possi­
ble constraint 

(3.7) 

which could equally well be replaced by the condition that 
any others of the 1/1'- vanishes. We remind the reader that for 
Grassmann variables 0(1/) = 1/, for S1/ d1/ = 1. We have per­
formed explicit calculations in both gauges (3.5) and (3.6). 
Below we will limit the discussion to the laboratory time 
gauge (3.5), which is a little simpler in actual calculations, 
together with (3.7). 

Using a standard prescription for calculation of the su­
perdeterminant 14 we find that 

(
2Po 

sdet [X a ,tpb I = sdet 0 
2ipo 

=--. (3.8) 
m 

We turn now to the main result of this section, that is, the 
correct finite dimensional approximations to (3.4) that 
would eventually lead to the Dirac propagator. As usual, we 
replace the interval (O,L ] by a linear lattice 
ISI,s2, ... ,sN,sN + I I with uniform spacing e = Sk + I - Sk 

= L / N. The integrand in (3.4) is approximated according to 
the Weyl quantization rule, the so-called "midpoint pre­
scription" consisting in the replacement U 

f(x(sd,p(Sk»----+f(1(xk + Xk + I ),h)· 

We found that it is necessary then to extend the midpoint 
rule also to Grassmann variables. Summarizing, we consider 
(3.4) as a limit 

G(±)(x",x',S) = lim G~±)(x",x',s), (3.9) 
N-oc 

with (including suitable normalization constants) 
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f N N dJli. N 
G:v±i(X",X',S) = II dxt II ~ II drtnd1J~(2f/2 

k = 2 L = I (21T) m = I 

X LUI D(P~ - m
2
)B (+ P~ )215 (!Pd1Jk + 1Jk + I) - ~ (1Ji -1JL I)) } 

X { J't DH(x~ + xL I) + !(Sk + Sk + 1))15 [!(1J~ + 1J~ + I )] } 

1 ~ 5 5 1 [ 5 5 2k ( ) + 2 1~11JI1Jl+ I - 2 1J11JN+ I -1JI1JN+ I + ~ 1J1 -1JN+ I 

2s 5(1Ji -1J~+ dl } . 

Despite the complicated form, (3.1O) is relatively easy to 
integrate in a straightforward manner. 

First, however, we would like to comment on some rel­
evant features of (3.1O). 

1. It is crucial to have the number of delta functions in 
the gauge term one less than then the number of delta func­
tions corresponding to constraints. The reason for this will 
become evident in the next section. 

2. Correspondingly, there are N -1 terms in the ap­
proximation of functional determinant. 

3.xN + 1 =x" XI =X'. 
4. On the contrary, the seemingly free variables rtf. + I , 

1J~ + I are completely spurious and were introduced for the 
sake of notation, because they can be eliminated by 
translation. 

Evaluation of the mUltiple integral (3.1 0), which in 
practice reduces to the stepwise elimination of all integra­
tions save one due to delta functions, can be conveniently 
performed in the following order: first we integrate over 
P~ and x~, and in the next step over xk so that after disentan­
gling the delta functions only one integration over PI 
remains. 

In the next step we integrate out the Grassmann varia­
bles in descending order, from 1J1 to 1J~ and from 1J~ to 1J?, 
and consequently over ilk' obtaining 
D(Ps - mss) = PS - mss from the last integration over 1Ji . 
The result 

G ( ±)( " I k) - 1 f dp 
N x,x,~ - (21T)3 2uJ(jf) 

X expi{ + (j)(Pl(x~ - xo) - p(x" - x') J 

X (Ps - mss) Ipo = '+' w(jj) (3.11) 

is independent of N andL, as expected. It may be worthwhile 
to mention that in proper time gauge also no dependence on 
the internal parameter-the proper time-remains (see Ref. 
2). 

Putting both frequencies, G ( + ) and G ( ~ ) together ac­
cording to (3.3) we obtain the familiar expression 

G(x" 'k)-'f d
4
p ipi,x'~x'i ps-ms5 

,x,~ -I e . 
(21T)4 ? - m2 + i€ 

(3.12) 

To relate the last formula-which is a symbol of the Dirac 
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(3.10) 

propagator with respect to anticommuting S variables-to 
the Feynman kernel (1.1) we have to refer to the general 
argument presented in Ref. 1. It is simpler to notice, howev­
er, that since we employed the midpoint rule in the evalua­
tion of the path integral which corresponds to Weyl (or rath­
er "anti-Weyl") quantization, the transition from a symbol 
d( s) of arbitrary operator to its representation A (i) in 
terms of y-matrices is effected by a substitution of i given by 
(2.7) followed by the antisymmetrization of all products. 
The expression (3.12), however, is linear in anticommuting 
variables and it suffices to make the replacement s~i of 
(2.7) to transform it to the Dirac propagator multiplied by 
Ys' The appearance of this additional Ys is necessary for con­
sistence, as explained at the end of Sec. 2. 

4. THE PATH INTEGRAL: EINBEIN FORMALISM 

An alternative approach to quantization of gauge invar­
iant system, which was widely used in lattice field theories, is 
to calculate the functional integral ignoring gauge fixing 
terms completely. This technique applied for calculation of 
gauge-invariant quantities allows us to factor out the gauge 
group volume from the final result, which then can be 
dropped by a suitable normalization of the measure. For 
successful calculations, however, we have to rewrite the ac­
tion (2.1) in a more tractable form using the einbein varia­
bles, introduced in this model by Brink, di Vecchia, and 
Howe.5 On the c1assicallevel the action (2.1) is completely 
equivalent to the following one: 

.if = - ~ IL ds { i( slil' - sis) 

+itf(mss - ~xs )+em2+ ~x:,}, (4.1) 

since after elimination of e and tf from (4.1) by their Euler­
Lagrange equations we reobtain the original form (2.1). The 
Lagrangian in (4.1) is invariant under reparametrizations 
and supergauge transformations, provided that e and tf 
transform as 

e'(s') = df e(f(s», 
ds 

tf'(s') = df tf(f(s», 
ds 
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under reparameterization (2.2), and if we consider the fol­
lowing supergauge trnasformationss: 

tix" = ias" 

tis" = a [(i/2e)¢s" -x,Je] 

tie = - ia¢ (4.3) 

ti¢ = 2£i 

tiSs = ma + (ilme)ass(!m¢ - ts)' 

It is important to remark that the Lagrangian in (4.1) is not 
degenerate any more, because e and ¢ are independent La­
grange multipliers and not functions of dynamical variables. 

We could attempt now to set up a path integral of the 
type 

which is a configuration space path integral with respect to 
space-time variables. Although not strictly Gaussian, this 
integral is calculable provided we relegate the integration 
over einbeins to the last stage of calculations. Its true virtue, 
however, is that it is the integral that can be calculated in 
Euclidean space, and the such result can then be Wick rotat­
ed back to Minkowski metric. 

We have performed the explicit calculations in the man­
ner described above, obtaining the correct result (3.12). 
However, configuration space path integrals require extra 
normalizations, which are automatically included in phase 
space integrals, and because we feel that phase space treat­
ment is simpler we will describe the latter approach in more 
detail. 

There is a fine point in defining functional integration 
over the einbein variable e(s), due to its relation to reparame­
trizations. From the geometric viewpoint e(s) for sE[O,L ] de­
fines the orientation of the one-dimensional "parameter 
manifold" [O,L ]. Its sign therefore may not change on each 
particular trajectory, and thus to avoid double counting we 
should integrate only over positive values of e(s). The causal 
character of the propagator calculated by a method de­
scribed in this section will emerge thus in a way different 
from that of Sec. 3. 

We introduce the momenta conjugate to x" from (4.1) 

P" = - (l/e)xl' + (l/2e)¢sl' (4.4) 

to rewrite (4.1) in a Hamiltonian form 

(4.5) 

with 

(4.6) 

The decomposition (3.8) need to be used now and we have 
instead 

G(x",x',s) 

= (l/V) f I} !iJe(s)!iJ¢(s)!iJp(s)!iJx(s)!iJ",(s)!iJr/(s) 

Xexp[ iJ!! + HsO(",(O) - ",(L» + ",(O)",(L)] J. 
(4.7) 

The integration is to be performed only over positive values 
of e(s) , while the momentum integrations are not restricted. 
The only nonintegrated variables are x(L) = x" and 
x(O) = x'. V is a normalization factor. 

Our goal is to show that one may explicitly factor out 
the reparametrization and supergauge group volume from 
(4.7) by a suitable change of variables, obtaining essentially 
the functional measure of the Fock s proper time formation, 
which within our approach clearly shows its relation to 
gauge invariances, and by no means appears as related to the 
ad hoc introduction of additional time parameter conjugate 
to mass as an earlier discussions. 16 

Precisely, we necessarily have to provide a finite dimen­
sional approximation to (4.7). First, we must notice that the 
very geometric interpretation of einbein variables e k = e(s k)' 
and ¢k = ¢(Sk) implies that they are not sitting on sites Sk of 
the linear lattice, but rather on links (s k ,s k + I ); and therefore 
the midpoint rule used in construction of finite dimensional 
approximation of the integrand should not be used for these 
variables (this is similar to the rules of momentum 
integration). 

We consider therefore the following integrals: 

I lifO N f N f N N { N GN(x" ,x',s) = - II dek II d¢kd'lhd1J~ II d
4
pk II d 4

x/exp ~ ih(Xk + 1 - x k) + !1Jk 1Jk+ 1 
VN 0 k ~ 1 k _ 1 k.- 1 / - 2 k - 1 

- ~€ek(m2 - pD - ~¢dPk("'k + 1Jk + I) - m(1J~ + 1JL 1)]€ + !«1JI1JN + 1 + 2s (1J1 - 1JN ~ I» } . (4.8) 

We will show that after integration over P k' X k and", k the only dependence of the integrand on the einbein variables is through 

the combinations r From formula (4.8) it is already seen how the causal 

and 
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N property of G is obtained: the momentum integration is not 
L [e] = k?lek (4.9) well defined, and has to be improved in a standard way by 

N 

A [¢] = I ¢k' 
k~1 
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(4.10) 

the introduction of a small imaginary part in the exponent. It 
is simpler, however, to perform first the integral over x k , 

which is unambiguous and produces the momentum delta 
function eliminating all momentum integrations save the 
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last one, and to postpone the necessary iE prescription till the 
next stop. We obtain 

GN = (lIVN ) J JJ! (dekdt{!k) 

x J d 4p ei(p' - m')Le' (P5 - mS')eiP(x- - x'>, 

which suggests the following change of variables 

e! = L, ek = ek for k = 2, ... ,N 

and 

if! = A, ifk = t{!k for k = 2, ... ,N. 

(4.11) 

(4.12) 

The Jacobian is equal to unity. Here it is clearly seen that 
only N - 1, and not N integrations over einbeins correspond 
to the gauge freedom of the system, which explains why we 
had one fewer delta function in the gauge fixing term in the 
finite-dimensional approximations to F-Pmeasure (3.10). 
Factorizing the redundant integration 

(4.13) 

(4.14) 

which in the lim N-- 00 correspond to the "volume" of re­
parametrization group and supergauge group, respectively, 
and putting V N = V ~. V ~G we have 

G
N 

= LX> dL d 4p eip(X' - x')ei(P' - m')L (Ps _ mS 5) 

(4.15) 

where in order to define the last integral we had to use the 
standard prescription m 2 

__ m 2 
- iE. The relation of (4. 15) to 

the Dirac propagator has been discussed in Sec. 3. 
It should be said that the volume of the reparametiza­

tion group (4.13) is already infinite for finite N, while the 
volume of the supergauge group vanishes identically. The 
latter property is typical for supergroupsl7 and is a conse­
quence of specific properties of integrals over anticommut­
ing Grassmann variables. 

CONCLUDING REMARKS 

We have shown that supersymmetric relativistic "pseu­
domechanics" of the spinning particles, known to lead to the 
conventional wave equations for the spinorial wave func­
tions in the canonical quantization scheme, can also be con­
sistently quantized in the path integral framework. This re­
quies us to consider the less familiar concept of the symbol of 
operator, whose connection with the standard Dirac propa­
gator is fortunately very simple. Our motivation to investi­
gate this time-honored problem was not, of course, to learn 
anything new about the spin! particle itself, but theintrerest 
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in finding the correct way of defining and calculating path 
integrals for constrained supersymmetric mechimical sys­
tems. In conclusion we would like to make several 
comments: 

1. The polynomial form oftime reparametrization in­
variant Lagrangians, which is so troublesome in attempts to 
directly calculate the configuration space path inte­
gralslO,15,16Ieads to strinkingly simple integrals in the phase 
space if the integration measure is suitable chosen. This is 
due to the general property of such system: the canonical 
Hamiltonian identically vanishes, and the phase space path 
integral essentially reduces to a chain of delta-functions. 

2. We have not included in the discussion the problem 
of spinning particles interacting with external fields: electro­
magnetic, Yang-Mills, gravitational. 1.5.18 Since these prob­
lems do not appear to be exactly solvable at present, it would 
be interesting to try to formulate the saddle-point method for 
the approximate calculations of corresponding path inte­
grals, and to compare the results with known WKB approxi­
mation for relativistic wave equations. In particular, this 
could show whether classical solutions for anticommuting 
variables have any relevance for the quantum theory. 
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in the three-quark sector 
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It was shown that the natural 16-dimensional representation tPa a a a , an = 1,2, n = 1,2,3,0, of the 
three-quark U(2) color charge algebra proposed by Adler, cont~i~~ five irreducible 
representations (1,0), three irreducible representations (3, 0), and one irreducible representation 
(1, !) of the SU(3) EI1 SU(2) subalgebra. 

PACS numbers: 11.30.Jw, 12.40.Bb, 02.20.Rt, 02.20.Sv 

I. INTRODUCTION 

In an attempt to generalize the U(n) classical chromo­
dynamics to the case of noncommuting source charges, Ad­
ler l suggested a new algebra with the elements being the 
noncommuting vectors 

u = {ua, a = 1,2, ... ,n2}, v = {va, a = 1,2, ... ,n2}, 

and with the outer product 

~(u,v) = {~a(u,v), a = 1,2, ... ,n2
}, 

~a(u,v) =ga(3Y(ufV - vf3uY), 

where ga(3y are determined from the multiplication rule of 
the generators A. U of the U(n) group: 

A. aA.(3 =ga(3yA. Y. 

As the examples of this new algebra Adler introduced the 
quark color charge algebras whose elements are the opera­
tors acting on the product Hilbert space constructed by tak­
ing the direct product of the color Hilbert spaces for various 
quarks and anti quarks. Recently a new composite model for 
quarks and leptons was proposed by Harari2 and Shupe.3 

The Adler color charge algebra may be relevant in construct­
ing the mathematical tools for the composite models of this 
kind. 

The color charge algebra for the U(2) group in the three 
quarks sector was studied in detail by many authors.4

-
7 For 

the convenience, instead of the n2-dimensional vectors uU,va 

we can use the matrices 

Then the outer product ~a(u,v) will be substituted by the 
usual commutator 

~(U,v) = [U,v], 

and the color charge algebra becomes a Lie algebra. In this 
language the three-quark color charge algebra for the U(2) 
group is isomorphic to the SU(3) EI1 SU(2) EI1 U(I) EI1 U(I) alge­
bra. In the present paper we study the decomposition of the 
natural representation of the three quarks U(2) color charge 
algebra into their irreducible representations. For this pur­
pose we must consider in detail the SU(3) EI1 SU(2) 
subalgebra. 

II. GENERATORS OF THE SU(3) ffi SU(2) ALGEBRA 

We shall use following notation for the Pauli matrices 

-f, i = 1,2,3,0 and the Gell-Mann matrices 

A. u, a = 1,2, ... ,8: 

71 
= (~ ~). r=e ~i). 

7' = (~ ~J 7° = (~ ~), 

A' ~(! 
1 

~). A'~G 
-i 

~). 0 0 

0 0 

A' ~(~ 
0 

~). A'~G 
0 

~) -1 0 

0 0 

A'~G 
0 -') A'~G 

0 

!). 0 o , 0 

0 0 1 

A '~(~ 
0 

~} A, ~ ~~(~ 
0 

~) 0 1 

0 -2 

According to the definition of the three-quark color 
charge algebra for the Ui2) group, its elements are the opera­
tors acting on the 16-dimensional vector space direct prod· 
uct offour two-dimensional spinor spaces of the U(2) group. 
These operators themselves are those of the natural repre­
sentation of the given color charge algebra. The basis vectors 
in this representation depend on four indices 
an = 1,2, n = 1,2,3,0 and will be denoted by tPa,a,a,ao' 

From the Pauli matrices 7!n) acting on the indices 
an' n = 1,2,3,0, we can construct 13 operators 
H I , ••• ,H6 , 11,. .. ,14' K I , K 2, K3 commuting with the operators 

Si=r;I) +7;2) +7;3) +r;O)' (1) 

The definitions of these 13 operators were given in Ref. 6. 
Introduce their linearly independent combinations 

X I = (1Iv 6)(.'if I - (l12v2)9 2)' 

X 2 = - (1IV6)(.%' 2 + (1I2v 2)9 1), 

X 3 = '0 3, 

X 4 = 1('6 I + y:; 2) + (1/4V3)(.%' 1+ .%' 2) 

+ (1I4v6)(9 2 - 9 1), 
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X 5 = WG' 2 - CtJ I) + (1/4v3)(aJ 2 - aJ I) 

- (1/411'6)(9' 1+ 9'2)' 

X 6 = - A(CtJ 1+ CtJ 2) - (1/4v3)(aJ 1+ &J 2) 

+ (1/411'6)(9' 2 - 9' d. (2) 

X 7 = A(CtJ 2 - '{j I) + (1/4v3)(&J I - &J 2) 

+ (1/4V6}(9' 1+ 9'2)' 

X 8 = &J 3' Z = :§ , W = .7, 

y 1= (1/4V 3)(,cf , - 9' d. 
y2 = (1/4V 3)(.cfz - 91 2). 

y3 = (1I8V'3)/f, 

where the operators sf' i,&J i' CtJ p!iJ p cg ,.7,:§ were defined 
by Eqs. (29)-(41) in Ref. 6. It is easy to verify that the opera­
torsXa,a = 1.2, ... ,8 and yi. i = 1,2.3 satisfy the same com­
mutation relations as those for yt a and ~r'. resp.; X a com­
mute with Z. W commute with all these operators. For the 
fundamental representation 3 of the SU(3) algebra or the 
fundamental representation withj = ~ of the SU(2) algebra 

we have, resp., xa_0 a. a = 1.2 ..... 8. yi-..~r'·. i = 1.2.3. 

III. DECOMPOSITION OF THE NATURAL 
REPRESENTATION 

Each irreducible representation of the SU(3) 9 SU(2) al­
gebra can be characterized by two numbers (mJ). the integer 
m = 1,3,3.6.6,8,10. 10,27 ... specifying the irreducible repre­
sentation of the SU(3) subalgebra and the half-integer 
j = O,~, 1,~ determining that of the SU(2) subalgebra. The ba­
sis vectors in the irreducible representation (mJ) will be de­
noted by 
(mJlcp (al• (mJlcp '(0-1, (mJI7f~.al, etc., 

where the meaning of the indices 0', i will be explained later. 
We have calculated the matrix elements of the opera­

tors xa, a = 1,2,3 .... 8 and yi, i = 1.2,3 in the natural basis 

7fa,a,a,a" ,an = 1,2, of the 16-dimensional vector space of the 
natural representation of the given color charge algebra. It 
can be shown that this 16-dimensional space is split into the 
invariant subspaces with following basis vectors: 

(3.017f\11 = (e - Ilrr / i3) [7fllZ! + ( - ! + i!i3)7fzlI1 

+ (-! - i!~3)7f1211 ], 

(3.01,/,111 - (ei,,,./ 13) [.1. + ( _ I il 13)'" '1'2 - ',/ '1'1121 :2 - 2',/ '1'2111 

+ ( - ~ + i~~3)7f1211 ], 

13,O)7f~11=(1/~12)[37f1112 -(7f1121 +7f2l11 +tfIZll)]' 

13,O)7f\0) = (e - i,rr / .J6)[(tf22 II - tfl122) 

+ ( -! + i!.J3) (tf1221 - tf2112) 

+ ( - ~ - i!.J3) (tf2121 - tflZl2) J. 
(3.017f~1 = V1rr / .J 6') [ (1fz211 - 1/1 I 122) 

+ ( -! - i!,j"j) (tf1Z21 -7f2ll2) 

+ (-~+i~.J3)(7f2l21 -7fI2IZ)]. 

13.0)7fjO) = (1/ ~6) [( 7f2211 - 7fIlZ2 ) + (tfl22l - 7f2112 ) 

+ (tf2l21 - 7f12IZ)]. (3) 
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(3.0)7f\ - I) = (e - iJ1T 1.J3) [tf2212 

+ ( -! + i!.J3 )tfI222 + ( -! - Q.J3)tf2122 ], 

(3.01#2- 1) = (eil1T/.J3J[tf22l2 

+ (-! - i!.J3 )7f1222 + ( -! + i!.J3 )tf2l2J. 

(3,017f~-I)=(1!.J12)[3tf2221 - (tf2212 +1f1222 +7f2l22)]' 

(I,Olcp 121 = 1f1111' 

(1,01d> (I) _ 1[.1. + .1. + ,I. + .1. ] 
'l' - 2 '1'2111 'f'1211 'f'1121 'f'11I2 , 

(I,olcplOI = (1I.J6) [1f221l + 1f1122 + 1f1221 

+ ¢2112 + ¢2121 + ¢12l2 ]. 

(I,Ocpl-1) = H¢2221 +¢22tZ +1f2122 +¢122Z]' 

(I,Olcp 1 - 2) = 7fZ222 , 

(l,ll¢1 = (1/ .J6) [( 1f2211 + 1f1l22 ) 

+ ( -! + i!~3)(tPI221 + ¢2112) 

+ (-~-q~3)(tP2I21 +1f12l2)]' 

(1,]1¢2 = (1I.J6)[(7f2211 + 7f1l22) 

+ (-~-q.j3)(1f1221 +1f2ll2) 

+ (- i + ii.J3) (1f2l21 + ¢1212 d· 

(4) 

(5) 

In each three-dimensional subspace with three basis vectors 
(3,0)1f\al•I3.0 1¢t.;I,(3.01¢t;:) for each given value of the index a. the 

matrix elements of the operators X a are identical to those of 
the matrices - irA a) T; 

X"-.. - irA a)T, 

while the operators Y i vanish. 

Y'-..Q. 

Therefore we have three irreducible representations with 
m = 3 andj= 0, 

In the two-dimensional subspace with the basis vectors 
(1,]I1f1 and (1,]l tPz• the matrix elements of the operators yi are 

identical to those of the matrices ~Ti, 

yi-"ir', 

while those of xa are equal to zero, This is the space of the 
irreducible representation with m = l.j = i. 

Acting on each basis vector (I.Olcp (al the operators X a 

and Y i give zero: Each of these fi ve vectors corresponds to a 
one-dimensional representation (1,0) of the SU(3) 9 SU(2) 
subalgebra. 

Let us consider the transformations of the basis vectors 
(3)-(5) under the SU(2) algebra generated by the operatorsS i, 
i = 1,2,3. defined according to Eq. (1). Denote be s the half­
integer characterizing each irreducible representation of this 
algebra. It is easy to verify that five vectors 1I.0lcp 0', 

S = - 2, - 1.0,1,2. span the invariant subspace of the irre­
ducible representation with s = 2 of the SU(2) algebra with 
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generators S i; each triplet (3,OIt/J~°"l,u = - 1,0, I for each given 
i = 1,2, or 3 is an irreducible representation with s = I of this 
algebra, while (l,llt/J, and (1,11t/J2 are two singlets with s = 0, 
The index u is equal to the corresponding eigenvalue of the 
operator S 3, 

IV. CONCLUDING REMARKS 

In connection with the conclusion in Refs, 5,6 that the 
three-quark U(2) color charge algebra contains an SU(3) 61-

SU(2) 61 U(l) subalgebra, it is natural to ask whether the giv­
en color charge algebra is related to the physical 
SU(3) ® SU(2) ® U(l) symmetry, SU(3) being the color group 
of QCD and SU(2) ® U( I) being the broken symmetry group 
of the Weinberg-Salem theory of the electroweak interac­
tion, To answer this question, it is necessary to study the 
decomposition of the natural representation of the color 
charge algebra into the irreducible representations of the 
SU(3) 61 SU(2) subalgebra, 

We have shown that the natural16-dimensional repre­
sentation of the given color charge algebra contains five sing­
lets, three SU(3) triplets, and one SU(2) doublet, each compo­
nent of an SU(3) triplet being an SU(2) singlet and each 
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component of the SU(2) doublet being an SU(3) singlet. Ifwe 
identify the SU(3) subalgebra with that of the color symme­
try group in QCD, then there are two alternatives: either the 
SU(2) 61 U( 1) subalgebra cannot be identified with that of the 
Weinberg-Salem theory or we cannot assign the members of 
the triplets as the left handed u and d quarks. This means 
that the SU(3) 61 SU(2) 61 U(l) subalgebra of the given color 
charge algebra cannot be identified with that of the physical 
symmetry group SU(3) ® SU(2) ® U(l). 

The physical implications of the particle assignments of 
above SU(3) ® SU(2) multiplets will be discussed elsewhere. 
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The general pattern of symmetry breaking due to two Higgs multiplets in. the adjoint 
representation ofSU(N) is studied. It is shown that w?en N> 2, .the reqUirement of 
renormalizability raises the minimum number of multIplets reqUired for a complete breakdown 
from two to three. 

PACS numbers: 11.30.Qc, 11.30.Ly, 02.20.Qs, 11.1O.Np 

1. INTRODUCTION 

Ever since the discovery of the Higgs mechanism for 
generating masses for gauge bosons 1 there has been a lot of 
interest in the ways in which various gauge groups can be 
broken by Higgs fields in various representations. The pio­
neering in this direction was done by Li,2 who considered 
several groups and studied Higgs fields in quite a few irredu­
cible representations. The results of this and related papers 
have been applied to gauge models attempting to unify dif­
ferent interactions between fundamental particles. While the 
weak and the electromagnetic interactions have now been 
definitely united, there is still no universally accepted gauge 
model encompassing all nongravitational phenomena. Thus 
it is that interest still survives in general questions of symme-
try breaking by Higgs fields. 3 

. 

Recently, O'Raifeartaigh et al. 4 have shown that HIggS 
fields in the direct sum of any number of adjoint representa­
tions in a renormalizable SU(N) gauge theory can acquire 
vacuum expectation values only in certain special directions. 
We may point out in this connection that the adjoint repre­
sentation of SU(N), where N> 2, is not isotropic. In other 
words, the representation admits vectors having different 
little-groups. The special directions chosen by Higgs fields 
correspond to rather large little-groups. We shall refer to 
vectors in such directions as H-vectors (precise definition in 
Sec. 2). Apart from the physical significance of H-vectors, 
they are mathematically interesting in their own right. We 
shall not go into their geometric properties, however (see 
Michel and Radicati5

). . ..•. 

In this paper we shall be mterested m the Jomt httle-
group (i.e., the intersection of the little-groups) of two or 
three H-vectors. For two vectors in the adjoint representa­
tion of SU(N), the joint little-group can, in general, be triv­
ial. 6 We shall show that if the vectors happen to be H-vec­
tors, and if N > 2, the joint little-group cannot be trivial. 
Indeed we shall derive the most general form of this group. 
Then we shall demonstrate that three H-vectors can have 
little-groups with a trivial common intersection. In other 
words, we shall study the most general symmetry breaking 
pattern with two Higgs multiplets in the adjoint representa­
tion of SU(N) and show that if N > 2, three are needed for a 
complete breakdown6 of the symmetry. The requirement of 
renormalizability of the gauge theory, as imposed through 
our use of the results of O'Raifeartaigh et al.,4 is crucial in 
drawing this conclusion. Without the requirement, two 

Higgs multiplets in the adjoint representation suffice to 
break SU(N) completely. 

2. H-VECTORS IN THE ADJOINT REPRESENTATION OF 
SU(N} 

The adjoint representation ofSU (N) is conveniently de­
fined on the (N 2 - 1 )-dimensional real vector space of trace­
less HermitianN X Nmatrices. The action of an elementgof 
the ~roup on a vector of this space, say the matrix x, is given 
by 

x--+U(g)xU(gt l , 

where U (g) is the representation of g in a fundamental (N­
dimensional) representation. The little group of x is deter­
mined by the degrees of degeneracy of its eigenvalues: If 
there are n eigenvalues of one value, n2 of another, and so 
on, with n ,I + n2 + ... = N, the little-group of x is S [U (n d 
® U (n 2) ® ... ]. Thus it is convenient to classify the matrices x 
according to the degrees of degeneracy of their eigenvalues. 
We shall be interested in those matrices x which have exactly 
two distinct eigenvalues. These will be called H-vectors. 7 If 
one eigenvalue occurs n I times, and the other n2 times 
(n, + n2 = N), we shall say that the H-v.ector is of tYI?e 
(n "n 2 ), without distinguishing between dIfferent ordenngs of 
the two numbers. 

The importance of H-vectors in the context of the Higgs 
mechanism is indicated by the following theorem.4 When in 
a renormalizable SU(N) gauge theory with one or more 
Higgs multiplets in adjoint representations, the Higgs poten­
tial attains its absolute minimum, the Higgs fields become 
either zero or H-vectors. The residual symmetry group is 
simply the subgroup of SU(N) transformations which leave 
all these H-vectors invariant. We are thus led to the study of 
the joint little-group of a set of H-vectors. 

For a single H-vector of type (n l,n2), the little-group is 
S[U(nl) ® U(n 2)]. For two H-vectors, the form of the joint 
little-group depends on their relative direction. In the next 
secti()n we discuss the general case. Section 4 contains some 
remarks about the case of three H-vectors. 

3. JOINT LITTLE-GROUP OF TWO H-VECTORS 

We start with the observation that a H-vector H, since it 
has two eigenvalues, must satisfy a quadratic equation, say 

H2 + aH + b = O. (1) 

Let H' be a second H-vector, satisfying 
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H'2 + a'H' + b' = O. (2) 

Let H have the two distinct eigenvalues c 1 and c2 , occurring 
respectively n I and n2 times, and let c; , c;, n; , and n; be the 
corresponding quantities for H'. Of course C I and C2 can be 
expressed in terms of a and b, but we do not need their ex­
pressions. It may be noted that n l + n2 = n; + n; = N. 

We construct the traceless Hermitian matrix 

x =aH' + a'H + (HH' +H'H -2N- I trHH'). (3) 

It may vanish, but this will not affect any of our arguments. 
We can see that it always commutes with Hand H': thus, 

[x,H] = a[H',H] + [H',H 2
] = [H', - b] = O. 

So x and H can be simultaneously diagonalized. Let tP be a 
common nonzero eigenvector, with eigenvalues xo and co' 
say (co = C I or c2). We shall show that the space spanned by 
tP and tP ' = H' tP is left invariant by Hand H '. That the 
actions of Hand H' on tP do not produce anything outside 
this space is trivial to see. As regards tP', we see, using (2), 
that 

H'tP'= -a'tP'-b'tP, 

while (3) gives 

HtP' = (xo - a'co + 2N- I trHH')tP - (a + co)tP'. (4) 

Thus we have found a subspace of the N-dimensional repre­
sentation space such that it is left invariant by Hand H' and 
is of dimensionality at most two. Since Hand H' are Hermi­
tian, the orthogonal subspace too is left invariant by them. If 
this subspace is nontrivial, we can pick out a common eigen­
vector of x and H and repeat the above procedure. By going 
through the same steps a finite number of times, we can de­
compose the N-dimensional space into a direct sum of or­
thogonal subspaces each of which is left invariant by Hand 
H' and is of at most two dimensions. 

Consider any of the two-dimensional invariant sub­
spaces obtained in this way, spanned as above by tP and tP '. 
The fact that it is two-dimensional means that tP ' is linearly 
independent of tP. It is easy to see that the restriction of the 
matrix H' to this subspace has to have two distinct eigenval­
ues: Otherwise it would be proportional to the identity in this 
subspace and tP' would be linearly dependent on tP. In fact 
the restriction to this subspace of H too must have two dis­
tinct eigenvalues. If it had only the eigenvalue Co, we would 
have 

HtP' = cotP ' 

which, for consistency with (4), would require that 

Co = -aI2. 

But (1) shows that the sum of eigenvalues of His - a, so that 
if one is - a/2, the other has to have the same value, contra­
dicting the datum that H has two distinct eigenvalues. We 
also see that the restrictions of H, H' to the two-dimensional 
subspace cannot commute: If they did, tP would be an eigen­
vector of H', so that tP' would be linearly dependent on tP. 

Let m be the number of two-dimensional invariant sub­
spaces in our decomposition of the N-dimensional space. 
Then there are N - 2m one-dimensional invariant sub­
spaces. Such subspaces can be of four kinds, corresponding 
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to the four possible combinations of the eigenvalues of Hand 
H '. The number of those where H has the value C i and H ' the 
value c; (i = 1, 2;j = 1,2) will be denoted by nij • Since, the 
total number of eigenvectors of H corrsponding to the eigen­
value Ci is n i , and m of these go into the two-dimensional 
invariant subs paces, we must have 

ni = m + nil + n12 . (5) 

Similarly, 

(6) 

These four equations are not all independent. The sum of the 
two equations in (5) gives the same result as the sum of the 
two equations in (6). Between the five quantities m, n ij , there 
are thus three relations, so that only two of them are inde­
pendent. This, however, does not mean that two can be cho­
sen completely arbitrarily: there are the obvious restrictions 
m>O, nij>O. 

Now, we are well set to determine the most general 
forms of H andH', and then the structure of their joint little­
group. We choose a basis for our N-dimensional representa­
tion space as follows. First we take n I I normalized vectors, 
one from each of the n II one-dimensional invariant sub­
spaces where H, H' have the respective values c I' c; . These 
are followed by n l2 normalized vectors taken similarly from 
the subspaces where the corresponding eigenvalues are CI, 

c;. Next we take m normalized eigenvectors of H with the 
eigenvalue c I' one being selected from each of the two-di­
mensional invariant subspaces. After these come normalized 
eigenvectors of H with the eigenvalue C2 from the same sub­
spaces but in the reverse order. Next we place n21 normalized 
vectors, one from each of the one-dimensional invariant sub­
spaces where H, H' take the respective values c2, c;, and 
finally n22 normalized vectors taken similarly from the one­
dimensional spaces with the corresponding values cz, c; . 
This completes our basis of N orthonormal vectors. If we 
write down H, H' using this basis, the matrices will look like 
the following: 

H= 
H3 

H4 

Hs 
H 

H' I 

H' 2 

H' E 3 

Et H' 4 

H'= 

H' 6 

Here HI' H2, H 3, H4, H." H6 are square submatrices, with 
nil' n 12, m, m, n21 , n22 rows, respectively. The corresponding 
primed matrices have the same sizes. H is totally diagonal 
and all diagonal elements in HI, H 2 , H3 are C I , while all 
diagonal elements in H4, H." H6 are C2• H;, H 2, H;, H ~ are 
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constant matrices with eigenvalues c; ,c;, c; ,c; respectively. 
The matrices H 3 , H ~ also are diagonal and real. E is an 
m X m matrix which has no vanishing element on the diag­
onal joining its top right-hand corner with the bottom left 
hand corner, and no nonvanishing element elsewhere. These 
properties of E follow easily from what we have said above 
about the two-dimensional invariant subspaces. 

In order to determine what matrices commute with H 
and H', we apply the simple rule that they should not con­
nect eigenvectors (of H or H ') having unequal eigenvalues. 
Thus a matrix commuting with H must be of the form 

(~), 
where P, Q are respectively (nil + n 12 + m) 
X(n ll + n l2 + m) and (m + n21 + ndX(m + n21 + nd 
submatrices. If the matrix is to commute with H' as well, it 
must have further restrictions, e.g., it must not connect vec­
tors in the subspace corresponding to H; (H;) with those in 
the subspace corresponding to H; (H ~). Before determining 
the other restrictions, it is convenient to write down the gen­
eral form of a Hermitian matrix that obeys the ones so far 
found 

LI ° MI ° L2 M2 
M! M! L3 

L4 M3 M4 

M; Ls ° 
M! ° L6 

Here, of course, L I' L 2, L 3, L 4, L s, L6 are square Hermitian 
matrices with nil' n 12, m, m, n21 , n22 rows, respectively. M I , 

M 2, M 3, M4 will not be square matrices in general. The com­
posite matrix clearly commutes with H but if it is to com­
mute with H' as well, the following additional relations have 
to be satisfied: 

MJE = 0, M2E = 0, EM3 = 0, EM4 = 0, (7) 

MJ(H; -c;)=O, M 2(H; -c;)=O, 

(H ~ - c; )M3 = 0, (H ~ - c; )M4 = 0, (8) 

L3E = EL4, (9) 

[H;,L3 ] =0, (lOa) 

[H~,L4]=0. (lOb) 

Now, E is invertible, so that (7) yields 

MI = 0, M2 = 0, M3 = 0, M4 = 0. 

Then (8) is automatically satisfied. From (9) we obtain 

L4 =E-IL 3E. (II) 

(lOa) is nontrivial, but we shall show that once it is satisfied, 
(11) enforces (lOb). Consider the submatrix 

(H' E) E: H~ , 
and recall how it was constructed. The rr element of H 3 
(I <r<m) and the ss elements of H~, where s = m + 1 - r, 
are the two diagonal elements of the restriction of H' to a 
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two-dimensional invariant subspace. The sum of these is 
therefore the sum of the eigenvalues of this 2 X 2 matrix, 
which is the sum of the two eigenvalues of H', i.e., - a'. 
Thus, H ~ is obtained from H ; by subtracting from - a' and 
reversing the order of the diagonal elements. Noting that if D 
is any diagonal matrix, E -I DE is what is obtained by revers­
ing the order of the elements of D, we can write 

H~ = -a'-E-IH;E, 

which, together with (lOa) and (II), implies (lOb). 
Hence the most general Hermitian matrix commuting 

with both Hand H' is of the form 

LI 

(12) 

L 

where L I, L 2, L s, L6 are arbitrary Hermitian matrices of 
dimensions nil Xn ll , n 12 Xn I2, n21 Xn21 , n22 Xn 22, respec­
tively, L3 is an m X m Hermitian matrix commuting with H ; 
and L4 is another such matrix determined in terms of L3 by 
E. In order to know what matrices L3 are allowed, it is neces­
sary to know the frequencies of repetition of the different 
diagonal elements of H 3' In general, nothing more can be 
said about H 3 than that it is diagonal and real. Correspond­
ingly, all that can be said about the set of allowed Hermitian 
matrices L3 is that it includes the set of real, diagonal m X m 
matrices. Let us denote by G the group of unitary m X m 
matrices which leave H 3 unchanged, so that G is some sub­
group of U (m) containing a Cartan subgroup. Then it is clear 
that the group generated by traceless, Hermitian matrices 
commuting with Hand H' is S [U(n ll ) ® U(n 12) ® G 
® U (n 21) ® U (n 22)]. This is the most general form ofthejoint 
little-group of two H-vectors. The numbers nIl> n 12, m, n21 , 
n22 have to satisfy the restrictions given above. Some of them 
could be zero, in which case the corresponding factor could 
be omitted. For example, if [H,H '] = 0, m vanishes and the 
factor G drops out. Obviously, all the factors cannot drop 
out simultaneously. Indeed, the rank of the joint little-group 
is nil + n l2 + m + n21 + n22 -1 

= N - m -1>N -1 - min(n l,n2,n;, n;), which sets 
a lower bound on the size ofthis group. For N > 2, it has to be 
a nontrivial group. 

4. H-VECTORS WITH TRIVIALLY INTERSECTING N 
LITTLE-GROUPS 

It is well known that the intersection of the little-groups 
of two vectors in the adjoint representation ofSU(N) can be 
trivial. That is to say, there exist two traceless Hermitian 
matrices such that no nonzero, traceless, Hermitian matrix 
commutes with both of them. For example, one can be taken 
to be diagonal, with N distinct eigenvalues, and the other to 
have all nondiagonal elements nonvanishing. Then any ma­
trix which commutes with the former has to be diagonal, and 
if it is to commute with the latter, its diagonal elements must 
all be equal, so that it has to be proportional to the identity 
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matrix; the tracelessness condition then forces it to be zero. 
Our results of the previous section show that if N > 2, one 
can always find nonzero traceless Hermitian matrices com­
muting with any two givenH-vectors ofSU(N). What, then, 
is the smallest number of traceless Hermitian matrices for 
which it is not always possible to find a common, commut­
ing, nonzero, traceless, Hermitian matrix? The answer is 
three, as we shall now demonstrate. 

We first look for two H-vectors, H, H', such that the 
only Hermitian matrices that commute with them are diag­
onal. Referring to the preceding section, we see that this 
happens when none of the numbers nil' n 12 , n21 , n22 exceeds 
unity and H; has m distinct eigenvalues. The first require­
ment makes the submatrices L" L 2, L s, L6 in (12) diagonal 
(or vanishing altogether) while the second one forces L3 to be 
diagonal. Then it follows from (11) that L4 too is diagonal. 

If we can now find an H-vector H /I which is such that 
the only diagonal matrices which commute with it are the 
ones proportional to the identity, the only traceless Hermi­
tian matrix commuting withH,H I, andH /I will be zero. For 
this purpose, H /I has to have so many vanishing nondiagonal 
elements that given any two indices a,b (1 <a, b<N), there 
will exist numbers C I ,C2'''''Cn in the same range such that the 
(ac,), (c,c2 ),,,,,(cn _ ,cn ), (cnb) matrix elements ofH /I are non­
vanishing. Do H-vectors with such a property exist? The 
answer is yes. A trivial example is the (N - 1,1) H-vector 
which has all its diagonal elements equal to zero and all 
others equal to 1. 

If one wishes to have all three H-vectors of the same 
type, and if N>4, the H /I chosen above is not admissible: for 
N>4, two (N - 1.1) H-vectors cannot have all the numbers 
nil' n 12' n 21 , n 22 less than 2. We can however make H, H', and 
H /I of the type (p,p) or (p + l,p) depending on whether N is 
even ( = 2p) or odd ( = 2p + 1). In the former case one can 
have m = p, nil = nlZ = n ZI = n ZZ = 0, while in the latter 
case a possible combination is m = p, nil = 1, 
n 12 = n21 = n 22 = O. Of course, in addition to this it is neces­
sary to ensure that H; has all eigenvalues distinct; but this is 
easily done. As regards H /I, one can start from a diagonal 
(P.p) or (p + l,p) H-vector and make small SU(2) rotations 
in the (l,2),(2,3), ... ,(N - I,N) subspaces. It is straightfor­
ward to show that an H-vector can be constructed in this 
way with non vanishing (l,2),(2.3), .... (N - I.N) matrix ele­
ments. Then the only traceless Hermitian matrix to com­
mute with H, H " and H /I will be zero. 

5. DISCUSSION 

We have studied the general case of the spontaneous 
breakdown of an SU(N) gauge symmetry caused by two 
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Higgs multiplets in the adjoint representation and have 
shown that for N> 2 three such multiplets are needed if the 
symmetry is to be broken completely. It must be emphasized 
that the result4 that the minimum of the Higgs potential can 
occur only when the Higgs fields take zero or H-vector val­
ues ignored radiative effects of the kind studied by Coleman 
and Weinberg. H Consequently our conclusions too can be 
upset by such effects. 

Our proof of the fact that three Higgs multiplets in the 
adjoint representation can break SU(N) fully does not show 
that they always do. Indeed, it is easily seen from our proof 
that there can also bea residual U (1) symmetry. It should be 
possible to enumerate all the subgroups ofSU(N) that can be 
left unbroken when there are three (or more) multiplets. We 
do not have any general result of this kind. 

Our exclusive concern with the adjoint representation 
for Higgs multiplets is to be attributed to mathematical rea­
sons rather than physical exigencies. Such a choice of Higgs 
fields can perhaps be motivated by the hope that subsequent­
ly these fields will be expressible as dynamical constructs of 
the gauge bosons. However for other reasons (e.g., for the 
purpose of generating masses for fermions) model builders 
have generally preferred to put some Higgs multiplets in 
fundamental representation. In particular, this is the case 
with the SUeS) unification9 of the strong, electromagnetic, 
and weak interactions. Thus we can only hope that our re­
sults will be useful elsewhere. 
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Propagation in a tropospheric duct with a single-step discontinuity in the 
refractive index in the direction of propagation 
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A Green's function approach is used to derive an expression for the field inside a laterally 
inhomogeneous duct. The laterally inhomogeneous duct is assumed to have a single step, and 
convergence criteria for the step size and number of modes are discussed. 

PACS numbers: 41.10.Hv, 84.40.Ed, 92.60. - e 

I. INTRODUCTION 

The problem of finding the electromagnetic field in a 
duct with a single-step lateral inhomogeneity is given, using 
the Green's function method. The extension of the solution 
for propagation in a uniform medium to a medium com­
posed of steps, to represent the slow variation in refractive 
index with distance along the direction of propagation, al­
lows a solution for propagation in a laterally inhomogeneous 
medium. The coupling between normal modes in each re­
gion is easily separated out of the solution in the present 
formulation. The theory could be used to study the problem 
of propagation of underwater sound waves in shallow water 
with slowly varying depth. t The problem of propagation in a 
laterally inhomogeneous duct was investigated by Bahar2 

using an interative solution to Maxwell's equations directly. 

II. ANALYSIS 

The geometry of the propagation problem is shown in 
Fig. 1. The term duct refers to the concept of the trapping of 
modes and the resulting propagation over long distances. 

Our approach will be to find the Green's function for 
the bounded waveguide cross section in Fig. 1. In particular, 
we will analyze the effect of the step size, (a 2 - a d, and the 
refractive index contrast, n 2 - n t • 

The electric and magnetic fields will satisfy the two­
dimensional, time-harmonic, Helmholtz equation 

J..~(raG)+ J.. a
2
G +k 2G= 8(r-rs)8(t,h-t,hs) ,(1) 

r ar ar r at,h 2 r 

ao<r < 00, O<t,h< 21T, 

where (r, ,t,hs) and (r,t,h ) are the source and observation coordi­
nates, respectively, k is the wavenumber, and the time de­
pendence is e - iwt. Considering regions I and II separately, G 
must meet the periodicity requirement, and we have 

J.. ~ (r aG) + J.. a
2

G + k 2G 
r ar ar r at,h 2 

8(r- rs) ~ 
£.. 8(t,h - t,hs - 2n1T). (2) 

r n=-oo 

aiThe author is presently with the Consulative Committee for International 
Radio, International Telecommunications Union 1121 Geneva 20, 
Switzerland. 

2073 J. Math. Phys. 22 (9), September 1981 

We look for solutions to (2) with a singularity at rs ,t,hs on each 
"Riemann sheet" n as 

G (r,r') = ! G '" (r,r~), r~ = (r' ,t,hs + 2n1T), 

where G", satisfies 

1 -a ( aG) 1 a
2
G -- r-"'- + ---'" +k 2G 

r ar ar r at,h 2 

8(r - rs )8(t,h - t,hs) 
(3) 

r 

ao<r < 00, - 00 < t,h < 00. 

The completeness relation is 

Goo (r,r~) = - ~ ,( gr(r,rs; A. )g,p(t,h,t,hs; A.) dA., (4) 
2m j 

where the contour (counterclockwise) in (4) is selected to en­
close all the singularities in the complex A. plane. 

If we define 

V= VA., Im(v»O 
(5) 

dv = (1/2V A.) dA., 

then the Green's function goP on an "infinite" angular trans­
mission line is 

/ 

/ 

g,p(t,h,t,hs; v2
) = exp[iv(t,h - t,hs - 2n1T)]l2iv (6) 

C I -
I </>=41 
I~ 0 

I 
I 

\ I / 
\ I / 

I I Origin fl:: Perfect Absorber II at I</> - </>0 1 = 7T 

" " 

Field Variation 
vs Height 

FIG. I. Geometry for single step discontinuity in a tropospheric duct. 
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with Ig,p 1-0 as Ivl-oo. Substituting (6) in (4) gives 

Goo (r,r~) = - gr(r,rs; v2
) 1 Joo 

21T' - 00 

X exp [iv(t,6 - t,6s - 2n1T')] dv (7) 

with Fourier inversion 

gr(r,rs; v2) 

= f: 00 Goo (r,r';t,6,t,6s + 2n1T') exp[ - iv(t,6 - t,6s - 2n1T')] dt,6. 

(8) 

From (3), gr satisfies 

~~(ragr) k 2 _ v
2 

= D(r-rs! 
a a 

+ gr .2 gr . 
r r r r r 

(9) 

With a perfect absorber at 1t,6 - t,6s I = 1T', Fig. 1 corresponds 
to the case n = 0 for (7) and (8). Much of the discussion up to 
this point can be found in the literature. 3 

The field E (r) in region II due to the aperture field in the 
plane t,6 = t,60 in Fig. 1 is obtained from Green's theorem after 
integrating over the cylinder ~ at infinity and over the aper­
ture plane t,6 = t,60 yielding 

E (r) = _r_ E (r') __ 00 _ G 121 __ i
oo d ' [ aG 121 aE ] 

ao r' at,6 , 00 at,6' , 
(10) 

where by analogy with the problem to the left of the aperture 

G I;J (r,r' ;t,6,t,6 ') = -21 Joo g~21(r,r'; v)eiv(,p - ,p 'I dv, (11) 
1T' -00 

from which it follows that 

aG I;J 1 foc ., __ = - g121(r r'· v)e'v(,p -,p Iv dv. 
a<p ' 21T'i _ 00 r , , 

(12) 

We now make the parabolic wave equation assumption 

aE ~ikalE(r'). 
a<p ' 

Substituting (12) and (13) into (10) gives 

(13) 

i
oo 

dr' [ 1 Joo .. E(r) = -, E(r') -. g~2'(r,r'; v2)e'v(,p-,p Ivdv 
au r 21T'1 - 00 

+ k
2
a'.foo g~21(r,r';v)eiv(,p-,p'ldv], (14) 
1T'1 - 00 

and, because we are interested in solutions when v~ka I' (14) 
becomes 

E (r) = ka., 100 

d~' E (r') foc g~21(r,r'; v2)eiV(,p - ,p'1 dv. 
1T'l au r - 00 (15) 

Now E (r') is the field in the plane <p = <Po due to the point 
source at rs ,<Ps neglecting reflected fields and is given by 

E (r') = _1_ foc gi1l(r'r' v2)eiv(,po - ,p.1 dv (16) 
21T _ 00 ,. 's' . 

Substituting (16) into (15) gives the solution 

ka , i oo 
dr' Joc Joo E (r) = ---::2 -, dv, dV2 

21T· a o r -00 -00 

xg~ll(r',rs; ~)g~21(r,r';~) 

X exp [iv Mo - <Ps)] exp [iV2(<P - <Po)], (17) 

which is easily generalized to two-step discontinuities as 

E(r) = -4 ~ ~ dv , dV1 dV3 k i oc 
d " i oo 

d ' fX foo foc 
21T a o r au r - 00 .- oc 00 

xg~ll(r',rs; ~)g~21(r',r",v~)g~31(r",r; v~) 

Xexp[ivM, - t,6sl] exp[ivM2 - <pIl] 
X exp[ivMl - <Po)]. (18) 

The Greens's function for the source rs in the duct is 
given by the "broken" function 

{
T(V)[H~I(krs) + R,(v)H~I(krs)]H~V~r), al<;r< 00, 

g(r,rs; V) = a(v)[H~I(kr) + R2(V)H~I(kr)][H~I(krs) + R,(v)H~~I(krs)]' 
a(v) [H~I(krs) + R2 (v)H~I(krs)] [H~I(kr) + R ,(v)H~~I(kr)], 

In (19) H ~ \ and H ~\ are Hankel functions of the first and secopd kind. 
a, is the height where the refractive index changes from k to k where 

(19) 

(20) 
k=k(I-An) 

and a
o 

is the radius of the earth andAn is the refractive index contrast. The Green's function if the source is outside the duct is 

f
a-(v) [H;~I(krs) + R2(V)H~I(krs)]H~I(kr), rs <;r< 00, 

g(r,rs; v2) = ~(v)[H~I(kr) + R2(V)H~I(kr)]H~I(k~s.), a2<;r<;rs ' (21) 

T(v)[H;~I(kr) + R,(v)H~I(kr)]H~\(krsl, ao<;r<;az, 
~---------------------------

where the height of the duct is now labeled az, because, as we 
see in Fig. 2, the integration point for region II eventually lies 
outside the duct. 

From the jump condition 

ag I ag I---=-!. 
ar r ~ r. + € ar r ~ r, - € 21T'rs 

(22) 
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and the use of the following Wronskian 

H~I'(krs)H~I(krs) - H~~I(krs)H~"(krs) = 4i/1T'krs' (23) 

we obtain 

a(v) = - i/8[R2(V) - R,(v)] (24) 

and the "resonance" condition; i.e., R2(V) = R ,(v). From the 
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a __ ---"k __ --.Jl--\T k I It' 02p . , 

1 */1)1 YPICO n egrotlon olnts, r 

I . rsO---------IJ- v2 
Source * r- -------0 r v, i Observer 

°o--------.J1L------------- oo 

FIG. 2. Geometry for aperture integration. Modes in regions I and II are VI 

and V 2, respectively. 

boundary conditions at r = ai' i.e., 

g(r,rs; v) I r ~ a, _ E = g(r,rs; v) I r ~ a, + E (25) 

and 

(26) 

we find 

R (v) = - [kH~)'(ka,)H~)(ka,) - kH~)(ka,)H~)'(ka,)]/ 
[kH~)'(ka,)H~)(ka,) - kH~)(ka,)H~)'(ka,)], (27) 

a "reflection" coefficient at the boundary. Similarly, from 
the boundary condition at r = aa, i.e., 

we find 

R,(v) = - [H~I'(kao) + ioH~I(kao)]/ 
[H~I'(kao) + ioH~I(kao)]' 

where 

_ {(T/ - 1)1/2/T/, vertical polarization 
0- (T/ _ 1)1/2, horizontal polarization 

dr' (1)(' .. 2) 2( ' .. 2) -gr r ,r" VI gr r,r, V2 r' . 

where 

tPv(kr) = H~)(kr) + R2(V)H~)(kr). 

(28) 

(29) 

(30) 

and 

T/ = Er + i(7/WEo, (31) 

where (7 is the ground conductivity in Siemens/m and Er is 
the relative dielectric constant. Knowing RI(v), Rz(v), and 
a(v) allows us to solve for T(v) in (19), again using the con­
tinuity of gat r = a I' and we obtain 

T(v) = - (i/8)[H~I(ka,) + Rz(v)H~I(ka,)]/ 
[R2(V) - R,(v)lH~)(ka,). (32) 

Similarly, the jump condition for g gives 

a(v)Rz(v) = (i/8). (33) 

From the boundary condition at r = az, we find 

and 

Rz(v) = - !kH~)'(kaz) [H~)(ka2) + RI(V)H~)(ka2)] 
- kH~)(ka2)[H~I)'(kaz) + RI(v)H~)'(kaz)]J/ 
!kH~)'(ka2)[H~)(ka2) + Rl(V)H~)(kaz)] 
- kH~I(ka2)[H~)'(ka2) + RI(V)H~)'(ka2)]J 

(34) 

T(v) = a(v)[H~)(ka2) + R2(V)H~)(ka2)]/ 
[H~)(ka2) + R,(v)H~)(kaz)]. (35) 

We now turn our attention to the aperture integration 
ao';;'" < 00 in (17). The geometry of the problem is given in 
Fig. 2, where we will confine our analysis to the case where 
ao.;;,rs «a l and aO«r«a2. 

Using the "broken" functions in (19) and (20) with ap­
propriate interpretations for the source and observations 
points (i.e., in the aperture plane the integration point r' be­
comes the observation point r in region I while the integra­
tion point r' becomes the source point rs for region II), we 
have 

(37) 

From the differential equation (9) for the radial functions and linear combinations as given in (37), we have 

f d;' </Jv, (kr')</Jv, (kr') 

r [</J (k) a</Jv, I A. (k) a</Jv, I] ao [A. (k ) a</Jv, I A. (k ) a</Jv, I ] 
(.2 _ .2) v, r -a' , -'/'v, r -a', - (.2 .2 '/'v, ao -a' -'/'v, ao -a' , 

Vi" V::z: r r = r r r = r Vl - V2.) r r' = Go r r = Go 

r [A. (k) a</Jv, I A. (k) a</Jv, I ] 
(~ _ v;) '/'v, r ar' r' = r - '/'v, r ar' r' = r 

(38) 
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because cPv (kr) satisfies (28). Also 

('. d:' cPv, (kr'ltPv, (kr') 
J r 

= (0 ~ ~) [tPv, (krs) a;;, I r' = r. - cPv, (kr.) a:;, I r' = J - (vi ~ ~) [tPv, (kr) a;;, 1 r' = r - cPv, (kr) a:;, 1 r' = J. 
{' ~' tPv, (kr')tPv, (kr') 

(39) 

= (V. ~~) [tPv,(kadaatPr:' I _ -tPv,(kal)aa
tP

:, 1,_ ] - (V. ~~)[tPv,(krs)aatP:' 1,-. -tPv,(krs)aa
tP

:, 1,_ ]. 
I 2 r' - a l r r - at 1 2 r r - r,. r r - r", 

(40) 

(41) 

and finally, 

i
oo 

d:' H ~,V~r')H ~:(kr') 
a, r 

[ 
aH(I)(kr') I aHII)(kr') I ] 

= _ a2 H~;(ka2) v" _ H~,)(ka2) v" . 
(vi - ~) ar r' = a, ar r' = a, 

(42) 

Substituting (38)-(42) into (36) gives 

i
oo 

dr' (I)' . ,2 (2) '. ,2 -, gr (r ,r" Vi )gr (r,r, 'V2) 
a. r 

( - 1) 1 { [atPv 
I acPv 1 ] 

= 64 [R2(V2)-RI(V2)][R2(vd-RI(vd](vi _~) tPv,(kr')cPv,(kr)r cPv,(kr) a/ r'=r -tPv(kr) a/ r'=r 

[ 
a¢v, I atPv, 1 ] 

+ cPv, (kr )tPv, (krs)r tPv, (krs) ar' r' = r, - cPv, (krs) ar' r' = r, 

+ cPv(kr)cPv (krs) tPv,(k~d 2iJnk 2 ia, r' dr' H~)(kr')¢v (kr')}' (43) 
, 'H~,)(kad a, ' , 

Returning to (17), we have the v I and V2 integrations remaining. These are easily performed using Cauchy's theorem; the 
integrands are analytic except at the simple poles which are solutions or 

(44) 

The residues at the simple poles are 

1T { xD[Wz'I)(t+xDW 
al(t)=- -

2i [WiI21(t )Wi(l)'(t + xD) - WPJ'(t )Wz'I)(t + xDW 
(45) 

with 

Xo = k (a I - ao)/(ka J2)1/3. (46) 
2 2 

The VI and V 2 integrations yield the desired result 

E (r) = ( - 1/32) {(ka/2) -1/3 ~ a I(t ;")cP,;n(kr)tP,;.(krs )exp [i(cP - cPs )(ka I + i(ka 1/2) 1/3t ;" J 

+ (kaI2) - 1/3 I a ttt ~ )cP, ,(kr)tP,,(krsl exp [i(cP - cPs )(ka2 + i(ka2/2)1/3 t ~ ] + (1T
2iJ nI4)(kaI2) I 13 I I a If! ;")a Ift ~) 

" m " 

X [cP'l(kr)cP,;.(krs)/[(v;")2 - (V~)2]J [tP,;"(kadIH~~(kad] 

Xexp[ika l + (¢o - ¢s)t;"(kaJ2)1/3 + ika2 + (¢ - cPo)!~(ka2/2)1/3]k [' dr' H~I~(kr')tP,,(kr')} (47) 

2076 J. Math. Phys., Vol. 22, No.9, September 1981 R,H.Ott 2076 



                                                                                                                                    

with 

[(v;"f - (v~n~2ka,{k(a, - a2 ) + (ka/2)1/3[t;"(a 2/ad4
/
3 - t~]}. (48) 

In (47), E (r) is the field normalized by the source intensity; 
this result is used for numerical experimentation and has 
been further normalized as W = IE (r)1 ( - 1132). 

III. REMARKS 

(1) The single sums over the modes in (47) represent the 
field, assuming uncoupled normal modes. 5,6 The assumption 
proceeds by taking the boundary conditions to be indepen­
dent of the coordinate in the direction of propagation, but 
the boundary conditions in the normal direction are the 
same that would be applied for perfectly stratified media. It 
is also assumed that eigenfunctions corresponding to a par­
ticular normal mode are orthonormal; i.e., 

Unfortunately, in many theories, it is often very difficult to 
justify when to neglect the coupling. The solution given in 
(58) allows a direct determination of the effect of coupling. In 
(58), if the coupling is negligible, the solution suggests the 
angular position of the step is unimportant, and one must 
only remember which medium he is in; e.g., source in medi­
um I, observer in medium II. 

(2) Cho and Waie gave a derivation for the field in a 
stepped model for a nonuniform duct which employed the 
use of a non-Hilbert space inner product; i.e., (<Pn ,<Pm)' in­
stead of the usual definition in terms of a complex-valued 
function or ordered pairs with inner product (<Pn ,<p :,). The 
natural metric 

!x-y,x-yl'/2 
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w 

FIG. 3. Height-gain curves for a frequency of 100 MHz. Step height shown 
In legend. Refractive index contrast is 25 N-units. W is the normalized 
signal strength. The radial wavelength corresponding to the curve "20 m" is 
0.463 radians. 
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I 

is a real nonnegative quantity and represents the physical 
quantity power. Recalling that a metric space is complete if 
every Cauchy sequence is a convergent sequence, the usual 
definition of a Hilbert space is an inner product space which 
is complete with respect to its natural metric. The Cho and 
Wait result can be explained by the use of "biorthogonal" 
coordinates.s Let! Vn I be the set of nonzero eigenvalues of 
the differential operator 

!f=!!....(r!!....)+rk2, 
Jr Jr 

and let! <Pn I be the corresponding eigenfunctions. The non­
zero eigenvalues ofthe adjoint (formal) operator l? are given 
by ! v:' I and the corresponding eigenfunctions will be denot­
ed by ! tPm I· Now, take for the set! tPm I 

I tP m I = ! <P f<p ~ ",,1· 
Then, indeed, the inner product will satisfy 

(<Pn ,<Pm) = 8mn · 

In fact, Cho and Wait's result for (<Pn ,<Pm) equals our result; 
i.e., (<Pn ,<Pm) = a ,(t). This yields the interesting conclusion 
that the Cho-Wait inner product will equal zero if and only 
if a ,(t) equals zero, which requires the existence of a double 
root! This can occur even in a single section duct. 

Proof Since the denominator of a, (t ) is a rational func­
tion, the only singularities it can have in the entire complex 
plane are poles. A double root suggests degenerate modes in 
the two regions; i.e., the spatial distribution of sources across 
the aperture plane <P = <Po has the same wavlength as the 
normal modes being driven and a resonance occurs. The in­
tegral formulation used here in terms of the Green's function 
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FIG. 4. Convergence of solution with increasing number of modes. Dis­
tance between source and step and step and observer is 10 km. The frequen­
cy is 100 MHz and the refractive index contrast 25 N-units. 
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FIG. 5. Height-gain run for 300 MHz. Wis the normalized signal strength. 
The refractive index contrast is 25 N-units. lOO-km separation between 
source and aperture plane. 

approach completely sidesteps the issue of what the normal­
ized "eigenfunctions" should be in the biorthonormal co­
ordinate approach. It may be that since the residue in the 
Green's function approach equals the inner product in the 
biorthonormal case and because the H ~~ (kr) are dense in our 
Hilbert space, any function can be approximated to within 
€> 0 by l:m amH~) (kr). The problem comes in finding how 
to express theam 'so This is probably an example ofa problem 
where the solution can be found by a Green's function meth­
od but only a generalization of the notion of eigenfunctions 
permit a solution in terms of the latter. The other point is 
that the residues come out naturally in the Green's function 
method. 

(3) The double sum in (47) depends upon the location of 
the vertical step cPo and represents the coupling from mode m 
to mode n. The magnitude of this term depends, on the elec­
trical step size, k (a 2 - al)' as seen in (47) and (48). 
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FIG. 6. Height-gain run for 60 MHz. W is the normalized signal strength. 
The refractive index contrast is 25 N-units. 100-m separation. 
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FIG. 7. Height-gain run for 300 MHz. Wis the normalized signal strength. 
The refractive index contrast is 50 N-units. 

EXAMPLE 

The numerical results for the four "height-gain" curves 
in Fig. 3 correspond to the following choice of parameters: 

ao = 6378 km, 

a l = 6379 km, 

a2 = 6 379 000,6379 OlO, 6 379 020,6379030 m, 

rs = 6379 km, 

/= lOOMHz, 

..1n = 25 N-units, 

ao(cPo - d>s )"'-' 1 00 km, 

ao(cP, - cP)~ 100 km, 

S = 0.3 + i4 X lO-2 (a = 0.001 Siemens/m, €, = lO). 

From Fig. 3 it appears that a step size of about 20 m causes 
significant change in the height-gain pattern. We will refer to 
this as the "resonant" step size. This would correspond to a 
radial wavenumber of about 0.463 radians (i.e., about 1T/8). 
The second limiting criteria for our solution in (47) is the 
number of modes required for convergence of the series. For 
the example in Fig. 3, lO modes gave two significant figures. 
The convergence of the series is dominated by the exponen­
tial terms in the series for small m and by the asymptotic 
decay of residues for large m; i.e., 

where, for ton <Xo, the imaginary part of tm becomes small. 
In Fig. 4, the effect of the number of modes is shown for a 10-
km separation between source and step and step and observ­
er. At this distance 30 modes are required for convergence. 

In Figs. 5 and 6, the choice of the parameters is the same 
as in Fig. 3 except the frequency is 300 and 60 MHz, respec­
tively. Figure 7 is the same as Fig. 4 except the refractive 
index contrast is 50 N-units. The limiting step size for this 
case is a!)out lO m. The resonant step size for 300 MHz is 
about 5 m for..1n = 25. In Figs. 5,6, and 7, lO modes pro-
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vided adequate convergence of the sums. 
In Figs. 3, 5, 6, and 7 the double sum in (47) representing 

the coupling term has magnitude of the same order as the 
single sums in (47) representing the uncoupled fields, and the 
effect of the coupling is included in these figures. 

V. CONCLUSIONS 

A Green's function approach is used to examine the 
effect of varying the step height in a tropospheric duct with a 
single step discontinuity. If the electrical height of the step is 
less than the "radial" separation, 

k (a 2 - a d/(ka/2) l!3, 

the vertical distribution of the field strength agrees with the 
fields in a duct with no discontinuity. This agrees with a 
result obtained by Wait and Spies for an ionospheric duct.9 

The location of the step in relation to the source and observer 
determines the number of modes required for convergence. 
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This article presents two sufficient conditions for the linear stability of rotating ideal plasmas, the 
~rst based ~n co~servation of circulation and the second based on circle theorems applicable to 
linear Hamiltonian systems. The circle theorems also provide bounds on eigenmodes in the 
c?mplex plane. All results are applied to the rotating screw-pinch which can be described by a 
single second-order ordinary differential equation. 

PACS numbers: 52.35.Py, 52.30. + r, 52.55.Ez, 02.30.Hg 

I. INTRODUCTION 

Recently, there has been growing interest in the behav­
ior of rotating plasma systems, mainly due to the fact that 
tokamaks exhibit macroscopic flows after being heated by 
neutral beams. I Plasmas in other experimental devices were 
known for many years to rotate, for example in e pinches 
where the rotation is believed to be induced by end shorting 
of the electric field,2,1 and also in field reversed plasmas, for 
reasons which are still controversial.4.5 

Among the new questions that this phenomenon pre­
sents is the effect of rotation on the stability of the confined 
plasma. We will be concerned here with the linear stability of 
equilibrium states with flow, for plasmas described by the 
ideal magnetohydrodynamics model. The main difficulty in 
dealing with flow problems arises from the fact that they 
generally do not have a self-adjoint formulation like the stat­
ic case, <> and thus the powerful tool of an energy principle is 
not available. The most one can do is to use methods for 
Hamiltonian systems, as the plasma is known to be one. 7 

Mainly due to this difficulty, flow problems were hardly 
treated until very recently and the few cases which were 
treated tended to be rather specialized, e. g., rotating e 
pinchesx

-
Io or multipoles with purely toroidal rotation. I I A 

result of a more general character is the extension of Suy­
dam's stability criterion 12 to the rotating plasma. 1.1 

In this work we will be concerned with the linear stabil­
ity of general rotating eq uilibria. Because of the nonexis­
tence of an energy principle we cannot hope to find condi­
tions which are both necessary and sufficient for stability. 
However, it will be possible to derive sufficient conditions 
for stability as well as bounds on the spectrum in the com­
plex plane. The bounds are necessary for an effective numeri­
cal investigation since they are the main tool for restricting 
the search for eigenmodes to a reasonably limited domain in 
the complex plane. Alternative devices, like properties of the 
nodal structure of the eigenfunctions, are not available in the 
non-self-adjoint case. One of the sufficient conditions we ob­
tain is based on the conservation of circulation for a moving 
plasma. [All other conservation laws are automatically in­
corporated by a special choice of the perturbed density and 
magnetic field (5)]. Clearly, every conserved quantity re­
stricts the growth of a perturbation and implies some special 
property of the equations, which we utilize. The improve­
ment in stability, however, is effective only for symmetry 
preserving modes. Another sufficient condition, as well as 

the bounds on the spectrum, are obtained through the use of 
circle theorems 13, 14 which are a generalization of 
Howard's 15 estimate for incompressible fluids. This tech­
nique was recently utilized to obtain spectral bounds for a 
rotating e pinch to and for other configurations in fluid 
dynamics. 16 

Another objective of this work is to introduce the rotat­
ing screw-pinch as an important model for the investigation 
of the effects of flows. Due to the axial and azimuthal sym­
metrics, the problem reduces to the study of an ordinary 
differential operator. It can actually be reduced to a single 
second order equation, even for magnetic fields and flows 
having both axial and poloidal components. This property 
was observed 17 in the static case, and helped make the screw­
pinch the most fruitful case for studies of spectral properties 
of such equilibria. IX We anticipate that the reduction of this 
problem to a manageable form will facilitate exhaustive ana­
lytical and numerical studies comparable to those carried 
out in the static case. 19.20 

In the next section we describe the equations of motion 
and reduce the rotating screw-pinch problem to a single sec­
ond order equation. In Sec. III we derive a sufficient condi­
tion for stability based on the constants of the motion. The 
condition is then applied to the screw-pinch. Section IV de­
scribes an improved form of the circle theorem from which 
spectral bounds and another sufficient condition are ob­
tained. Section V is devoted to a rather thorough application 
of the spectral bounds to the screw-pinch, commensurate 
with the importance we attach to this model. We show how 
these bounds can be computed by a minor modification of 
any numerical code which will be used in the investigation. 

II. THE EQUATIONS OF MOTION 

The plasma is described using the ideal magnetohydro­
dynamics equations 

pu, + pu·Vu + Vp = JXB, 

p, + div (pu) = 0, 

B, + curl(BXn) = 0, 

s, +u·Vs=O, 

divB = 0, J = curlB, p = p (p,s), 

( 1) 

where B, n, p, p, s are the magnetic field and the plasma 
velocity, pressure, density, and entropy, respectively. The 
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last equation is a prescribed equation of state. We also define 

2 a (n )/J B2 ... = B2 +pa2, a = 'P 'I"s 'P, 
(2) 

/3=pa2IB~, p ... =p+B2/2, 

a is the speed of sound. Given an equilibrium state with flow 
we linearize Eq. (1) about it. Frieman and Rotenberg7 used 
the Lagrangian displacement vector S as the dependent vari­
able to obtain the following linearized equation, which we 
describe in detail for later use, 

ps" + 2A St - F S = 0, 

where the operators A and Fare 

AS =pu·VS, 

FS = V(pa 2V·s + S·Vp - B·Q) + B·VQ + Q·VB 

(3) 

+ V·(psu·Vu -puu·VS) (4) 

and Q = curl(s X B). All coefficients are equilibrium quanti­
ties. Equation (3) is obtained by using the following relations 
between the perturbed Eulerian quantities (denoted by a sub­
script 1) and s: 

BI = curl(sXB), 

PI = - divrpS), (5) 

PI = - S·Vp - pa2divs, 

u l = u.VS - S·Vu + St· 

S(r,t ) expresses the displacement from the equilibrium trajec­
tory of the fluid particle which would have been at the posi­
tion r at time t in the unperturbed motion. It was observed7 

that A is anti-Hermitian and F is Hermitian with respect to 
the inner product 

(6) 

for twice differentiable vector functions with a vanishing 
normal component at the boundary of the plasma (which is 
assumed to be a flux surface). Equation (3) has the form of a 
general linear Hamiltonian system, where the momentum 
coordinates were eliminated in favor of St. The evolution of 
solutions in time can be found by considering a dependence 
S - exp( - iwt). We obtain the nonlinear eigenvalue problem 
in OJ, 

(7) 

Notice that by taking the inner product with S one obtains a 
quadratic equation for OJ, and its solution is not complex if 

(8) 

If this inequality holds for all S it can be concluded that the 
plasma is exponentially stable. 7 

A configuration of great simplicity is the rotating 
screw-pinch. The plasma is contained in a circular cylinder 
oflength L (finite or infinite) and radius t. The two ends ofthe 
cylinder are identified to resemble a torus. All equilibrium 
profiles depend on the radial variable r only (in r, e, z coordi­
nates) and the magnetic field and velocity have vanishing 
radial components. ThusB = BeB + Bzi, u = vB + wiand 
we denote v = ril (r). Such an equilibrium state has to satisfy 
the single equation 
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where the prime denotes d 1 dr. Notice that the axial velocity 
w does non enter into Eq. (9) so that an arbitrary axial flow 
could be surperimposed on any equilibrium state to yield 
another such state. This of course is not true in a toroidal 
geometry where a centrifugal force associated with w will be 
present. 

In the linearized system, the coordinates e, z are ignora­
ble and we can assume a dependence s-
expi(me + kz - OJt). It was observed before21 that in the lin­
earized system (1) only two variables are differentiated in a 
direction normal to the equilibrium flux surfaces (the sur­
faces r = const. in the screw-pinch). Thus in our configura­
tion only two equations contain derivatives while six others 
are algebraic. The algebraic equations can be used to elimi­
nate six Eulerian variables and we obtain a 2 X 2 ordinary 
differential system 

AC(!)' = A (!), (10) 

where the elements of the matrix A are 

All = C [(2mlr)(BeH +pav) - (l/r)A ] 
+ (2/r)p2erBe(uHv + Beer) + (l/r)p2erv2A, 

AI2= - [p2u4 +C(k2+m2Ir)], 

A21 = - C [A 2 +Ar((l/r)p~)' - (4Ir)(Be H +pav)2] 

+ [(l/r)pv2A + (2/r)pBe(uHv + BeerJY, 

A22 = - All - (l/r)AC, 

and where 

H=k.B=mBelr + kBz' 

U=OJ - k·u:=OJ - (mil + kw), 

A =H2-per, C=B~(/3H2-per), 

(11 ) 

(12) 

¢l is the perturbed total pressure PI + B·B I and S is Sr' the 
radial component of S, and is related to the perturbed veloc­
ity by U r = - iuS. 

For given k and m, Eq. (10) is an "eigenvalue" equation 
for OJ, where the boundary conditions to be satisfied are regu­
larity of rs at r = 0 and S = 0 at the wall r = t. Notice that 
the coefficients in (10) are real except for OJ, and thus if OJ is an 
eigenvalue so is OJ *. Also - OJ, - OJ * are eigenvalues for wa­
venumbers - k and - m. For stability it is sufficient to 
consider OJ in the upper half complex plane. Also observe the 
existence of a real continuous spectrum given by the range of 
OJ for which A = 0 (the Alfven continuum) or C = 0 (the cusp 
continuum) anywhere in the plasma. For these values of OJ 
Eq. (10) becomes singular. This is analogous to the static 
case. 18 

System (10) can be further reduced to a single, second 
order equation in S. This can be achieved by multiplying the 
second equation in (10) by an integration functionfsuch that 
it takes the form 

(fAC¢l)' = fA 2ls, 

andfshould satisfy 

(fAC)' = - fA 22' 

(13) 

(14) 

The first equation in (10) is now multiplied by fAC IAI2 and 
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differentiated. Eqs. (13) and (14) are used to eliminate¢> and! 
The resulting equation has the form 

( rACS')'+r[ detA -(&)']s=o, (15) 
AI2 ACA I2 AI2 

which has the associated quadratic form 

Q(S)= LCPIS'1 2_qlsI 2)dr, (16) 

where P is the coefficient of S " and q the coefficient of S in 
(15). It is pointed out that the points where A 12 = ° are not 
singular points ofEq. (15), as is clear from Eq. (10). 

We now make the observation, to be used later on, that 
Eq. (15) can be derived formally in a variational way. Let U) 

be real for the time being, and consider the quadratic form 
associated with L,u in (7). The reality of U) implies that L,u is 
Hermitian. Vary the quadratic form with respect to admissi­
ble S and find the Euler equation. We have D (L,us,s) = (L,u 
S,D s) + (L,uDs,s) = 2Re(L",s,D s) = 0. By taking iD Sinstead 
of D S we find Im(L,u S,D s) = 0. Thus L", s = 0. In the screw­
pinch case (L,u s,s) contains derivatives of Sr =S only, but not 
of So,Sz' We find the stationary point of the quadratic form 
with respect to variations of So,Sz only, but not of S. This 
yields Se and Sz as linear combinations of sand S'. For these 
values of Se,Sz the variation of(L,us,s) with respect to S will 
yield Eq. (15). Notice that although we used U) real in the 
derivation, the same equation for S holds for complex U) since 
the coefficients are known to be rational functions of u). We 
now claim that for S () ,Sz as found before, 

(17) 

This is clear since the two forms generate the same differen­
tial equation in S and thus can differ only by a constant mul­
tiple. The constant can be found by looking at the leading 
term in U)2 for large u). 

It will be useful for the implementation of the results 
described in Secs. IV and V, to write down the explicit form 
of (L,uS,S)' Letting (S,1J,~) = (Sr,iSe, iSz) we get a quadratic 
form with real coefficients (except U)). 

(L,u S,S) = - f(So + SI + S2) d'r, 

where for real S,1J,~, 

SO = B;S'2 + s2[H2 -pc? - (B;lr)' + r(B~/r)'], 
SI = (2/r) [(mlr)1J + k~ 1 

X [pa 2(rs)' + pu2s 1 + 2(1JBz - ~Be) 
X [(kBf) + (mlr)Bz)S Ir 

+ ((mlr)Bz - kBe)s'] + 4pilo-S1J, 

S2 = pa2 [(mlr)1J + k~ f + (m 2lr + k 2) 

X (1JBz - ~Bo f - pc?(1J2 + ~ 2). 

III. CIRCULATION INVARIANTS 

In this section we assume that the equilibrium state con­
sists of a family of closed flux surfaces, not necessarily nest­
ed, and labeled by a parameter ¢. We also require the entro­
py to be constant on each surface s = s(¢). (A form of the 
following results holds even if the entropy assumption is vio­
lated. See the remark at the end of the section.) Since entropy 
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and flux are carried by the fluid, the same properties hold for 
the time-dependent motion and indeed, even for the per­
turbed system, as can be derived from (5). It is known 22 that 
for such configurations f", u·B d 3r is a constant of the mo­
tion, where the integral is understood to be taken over a 
volume enclosed by the same moving flux tube ¢. This con­
servation law is an analog of the consevation of circulation in 
fluid dynamics. We have, from the definition of S, 

Lu(r + S)·B(r + S) d '(r + S) 

= (uo(r).Bo(r) d ir + initial perturbation, (18) J,j. 
where here the subscript ° denotes equilibrium quantities 
and the other quantities represent the nonlinear time depen­
dent state. The initial perturbation term is time-independent 
and arises from the fact that perturbed states were not re­
quired to have the same f", u·B as the equilibrium state. To 
first order in S, 

u(r + S) = u(r) + S·Vu(r) = uo(r) + ul(r) + S·Vu()(r) 

and 

di(r + S) = (1 + divS) dir. 

It follows from (5) after expanding B(r + S) and dropping the 
subscript 0, 

( [B·(s, + u.VS) + u.(B·VS)] d ir Jv, 
= initial perturbation, (19) 

where all coefficients of S are equilibrium quantities. Using 
the equilibrium equations and also B·V¢ = ° and u·V¢ = ° 
(the equilibrium flow is within a flux surface), the last term 
under the integral can be integrated by parts and replaced by 
B·(u·VS)· The initial perturbation term can be eliminated by 
differentiating Eq. (19) by t. We get 

(B·(s" + 2u·VS,) d 3r = 0. (20) J,j. 
A comparison with Eq. (3) shows 

( B·F(s)/p d'r = ° 
J". 

(21 ) 

for every t/J and all admissible S. A direct verification of prop­
erty (21) will be comforting. We use the symmetry of F to 
write 

LB'F(s)IP dir 

= f S·F (BI p) d ir + boundary terms. 
", 

The boundary terms may be present since the normal com­
ponent of S does not necessarily vanish on ¢. It can be easily 
seen directly, though, that F(Blp) = ° and the boundary 
terms, which can be simply found from (4), also vanish. In 
fact, the same thing happens if B is replaced by any vector 
field b satisfying 

divb = 0, b·V¢ = 0, (22) 

curl(bXu) = 0, curl(bX Blp) = 0, (23) 

and we have, corresponding to Eq. (20), 
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r b.(~" + 2u.VS,) d.lr = O. 
)", 

(24) 

This property is related to the existence23 of additional circu­
lation invariants in magnetohydrodynamics. Equatioh (22) 
means that b is a magnetic tield-like vector field, having 
common flux surfaces with B. To solve Eqs. (22) and (23), we 
tirst notice that b = Band b = pu are solutions. If u is not 
parallel to B we can write 

b = fB + gpu, (25) 

wheref and g are scalar functions. However, from (23) we get 
(Bxu)X Vf = O,hencef = f(tf). Likewiseg = g(tf) and then b 
is also divergence free. Ifu is parallel to B, the two equations 
in (23) have the same content. To find a general b we write 
b =fB + gBx Vtf·Equation(23)impIiesthatgB2Ip = h (tf), 
some function of tf. Since b is divergence free, we have 
B· Vf = - h (tf)div (oB X Vtf/B2), andfis determined up to a 
function of 1/1 (for ergodic field lines), i. e., 

b = k (tf)B + h (tf)b l , (26) 

where b l is a particular solution for b which has a B X Vtf 
component and therefore is never parallel to B. [Notice that 
pu also must have the form (26) and therefore if it is parallel 
to B at a point, it wiI1 be parallel over the entire flux surface.] 
We remark that if the equilibrium state is axisymmetric, say 
independent of a toroidal angle 0, b = rpO is a solution, 
where r is the cylindrical radial coordinate. This solution is 
suggested by conservation of angular momentum. Also, for 
static equilibria b = J is a solution. Our tirst conclusion is 

Theorem 1: The point OJ = 0 is an eigenvalue of Eq. (7) 
with infinite multiplicity. 

Proof It was already pointed out that F(b/p) = O. The 
theorem was known for the static case but our treatment 
reveals its origin, namely conservation of circulation. The 
existence of an OJ = 0 eigenvalue does not therefore indicate 
bifurcation or marginal stability, at least within the present 
ideal plasma model. 

It is highly suggestive that we try to eliminate these 
zeroes of F from consideration, that is, restrict ourselves to 
states which automatically satisfy the conservation of circu­
lation. In order to do this it is convenient to introduce a new 
inner product 

(27) 

With respect to (27) we have the Hermitian operatorsF',A " 
where 

A' = (i/p)A, F' = (l/p)F, (28) 

and the eigenvalue equation (7) can be rewritten as 

(F' + 2OJA' + (ii)s = o. (29) 

Define now the subspace S which consist of all vectors blp, 
with b as in (26). Let P denote the orthogonal projection 
operator associated with S. Namely, P ~ = f(tf)B/p + g(tf)u 
andf(tf), g(tf) are determined by the requirement 
(P s,b/p) = (S,b/p) for al1 b.fand g can be easily found if 
we determine them on a surface by surface basis, and observe 
that d 3r = dtf dS /IVtfl. We want 
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1: dS 1: dS rPS·
b 

IVtfl = r s
·
b 

IVtfl ' 
(30) 

where dS is an area element on a flux surface. There are two 
independent b on each surface, and (30) completely deter­
minesPs· 
Clearly, 

p 2 =P=P*, (31) 

which is a restatement of the fact the P is a projection onto S 
in the direction orthogonal to S. The property F(b/p) = 0 
implies F'P = O. Taking the adjoint we have PF' = O. To 
summarize, 

PE' =E'P=O. (32) 

Define the projection on the orthogonal complement of S, 
Q = I - p, where I is the identity operator. We have 
Q = Q2 = Q*andQP= PQ = O. NowmultiplyEq. (29)byP 
and write S = P s + Q;. Because of (32) we have 

OJ(2PA 'P + 2PA 'Q + OJP)s = O. (33) 

For stability purposes we are not interested in OJ = ° and it 
can be divided out. We now claim 

PA'P=O. (34) 

To prove it we recal1 that A ' = iu· V so that for any S, 
A 'P s = u·V(b/p) for some b. Using (23) it can be directly 
shown that Sb' ·u· V(b/ p) d 3r = 0 for any b, b' as in (26). This 
shows that A 'P S is orthogonal to S and thus proves (34). 
From (33) we now have for an eigenvector with OJ r=O, 

(L)ps= -2PA'Qs· (35) 

Now, multiplying (29) by Q we get [since 
QF' = (Q + P)E' = E'], 

F's + 2(L)QA '(Q + P)s + OJ2Q S = 0, 

or, using (35), 

((F' - 4QA 'PA 'Q) + 2(L)QA 'Q + (L)2]Qs = O. (36) 

This is the restriction of Eq. (29) to the subspace orthogonal 
to S. Notice that it is still quadratic in OJ. Also, because of 
(34), and after denoting 1] = Q S, we have 

[(F' - 4A 'PA ') + 2(L)QA 'Q + (L)2J1] = 0, (36') 

and 'lJ automatically satisties 'lJ = Qt] if OJ r= o. The eigenvec­
tor s of Eq. (29) is obtained using (35), and is 
S = 'lJ - 2PA ''lJ/(L). An immediate result of(36') is, as in Eq. 
(8), 

Theorem 2: A sufficient condition for stability is 
F + 4AP(1/p)A<O. [We returned to the original notations of 
the operators and use the inner product (6) with respect to 
which P(lIp) is a symmetric operator.) 

We now test our condition on the screw-pinch where we 
consider the mode which preserves both the axial and azi­
muthal symmetries, namely the m = 0, k = 0 mode. 

Theorem 3: For the mode m = 0, k = 0 in the screw­
pinch, the sufficient condition in Theorem 2 is also necessary 
for stability. 

Proof In this case, the effect of P is to eliminate the r 
component of;, while Q ~ = 5r(r)f. u.VQs is then a vector 
with a 0 component only, so QA 'Q = ° and Eg. (36') reduces 
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to an ordinary eigenvalue problem for a self-adjoint opera­
tor. The nonpositivity of this operator is necessary and suffi· 
cient for stability. 

Remark: Even if the assumption of constant entropy on 
flux surfaces is violated, which is possible for nonergodic 
fluid trajectories, it is still true that F(blp) = 0, with 
b = I( I/J)pu. Thus Theorems I and 2 still hold, with P being 
the projection into this smaller subspace. 

Our sufficient condition is somewhat reminiscent of the 
Frieman-Rotenberg condition (8). The two criteria actually 
complement each other. To see this, observe that A and Fare 
real operators unless there is symmetry and one considers a 
particular Fourier mode denoted, say, by a wavenumber m. 
For m = 0, A and F are still real and considering a real test 
function~, (A ~,~) = 0 with no imaginary part. For such vec­
tors condition (8) reduces to (F~,~)<O. SinceFis also real th:: 
maximum of this quadratic form is attained for ~ real, so that 
condition (8) actually reduces to (F~,~)<O for all~, or F<O. 
For m #0, however, the A term in the condition offers an 
improvement. Considering our new condition, we notice 
that for m #0 the right-hand side ofEq. (30) always vanishes 
(~exp(ime) de = 0 for m #0] so P = 0 and the condition re­
duces to F<O. Improvement then is possible only for m = O. 
Notice that in the screw-pinch case, where there are two 
symmetries, only the mode m = 0, k = 0 could be consid­
ered. Theorem 3 shows that occassionally (but most likely 
not always) the improvement achieved is maximal. We con­
clude that our condition should be used for symmetry pre­
serving modes while condition (8) should be used for all other 
modes. 

IV. CIRCLE THEOREMS 

In this section we concern ourselves with the location in 
the complex plane of eigenvalues of the Hamiltonian equa­
tion (7). p, iA, and F are assumed to be Hermitian operators 
in an inner product space with p invertible (not necessarily 
positive definite). Taking the inner product of(7) with ~ and 
solving for (j), we have 

(j) = { - (iA ~,~) + [(iA !;,!;)2 - (p!;,!;)(F !;,!;) ]1!2} I( p!;,s). 

(37) 

For a complex (j) one finds 24 

RC{}) = - (iA s,s)/( p!;,!;), 

I{j) 12 = (F !;,!;)I( p!;,!;), 

and the following estimates hold: 

(38) 

(39) 

Inf(F!;,!;)/( p!;,~)< I (j) 12<SUp(F !;,~)I( PS,S). (41) 
~ s 

All complex eigenvalues (j) are contained in the strip (40) and 
in a concentric annulus centered at (j) = O. Notice, however, 
that the lower bound in (41) may be negative or the upper 
bound infinite in which case some of the bounds are not 
useful. This will certainly be the case if p is not definite. 
Improvement of the previous results is possible by observing 
that the bilinear transformation 
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(j) = (az + b )/(cz + d), ad - bc#O (42) 

yields another quadratic equation in z which, moreover, pre­
serves the symmetry properties of the operator coefficients if 
a, b, c, d are real numbers. This is assumed from now on. The 
coefficients transform according to the linear transforma­
tion rules of quadratic forms, that is, 

c.~, iA ') = (a c)(p iA)(a b) 
F' bdiAFcd' 

(43) 

where here primes indicate the new operators in (7) after (j) is 
replaced by z. Estimates (40) and (41) can now be carried out 
for z. Since the transformation (42) maps and circles and lines 
into circles and lines, one gets (nonconcentric) annuli in the 
intersection of which all complex eigenvalues (j) must be con­
tained. Notice that z = - (j) is a transformation which does 
not yield new bounds. Also it is possible to scale the coeffi­
cients in (42) without affecting anything. Hence we may re­
strict ourselves to real coefficients satisfying 

ad - be = 1. (44) 

To cover all possibilities, hopefully with some p' definite, 
involves a 3-parameter group of transformations. We re­
mark that the transformation rule (43) applies also to the 
quadratic forms (F s,s) and the like, and that the Frieman­
Rotenberg condition (8) involves the determinant of the ma­
trix in (43). The determinant is unchanged by the transfor­
mation considered so that the sufficient condition (8) is not 
improved. 

The case of p positive definite is of particular interest. It 
is useful in this case to consider the special class of 
transformations 

(45) 

with a real. Equation (7) takes a form quadratic in z, 

[Z2p + 2z(iA + ap) + La ]S = 0, (46) 

where La is defined in (7). The bounds on Rez yield (40) 
again, while an upper bound on Izl is 

(47) 

We neglect here the lower bound which is sometimes use­
ful. 10 One then obtains the following results 13.14: 

Theorem 4: All complex eigenvalues (j) are contained in 
the intersection of all disks of center a and radius R (a) as 
defined in (47), for all real a. 

Theorem 5: A sufficient condition for exponential sta­
bility is 

(48) 

(We changes our notation here from a to (j)). 
Condition (48) is not necessary for stability in general. 

To gain a better understanding of this condition we first 
point out that if L(u is self-adjoint and p is positive definite, 
then R 2({j)) is the upper edge of the A spectrum of Lw defined 
by 

(49) 

Consider now Eq. (7) in n-dimensional space withp, iA, F 
constant Hermitian matrices and p positive definite. Clearly 
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there are 2n eigenvalues w. It is possible to find all the real 
ones by considering problem (49) for all realw.w is an eigen­
value ifand only if Aj(w) = ° for somej, 1 <J<"n. If the largest 
eigenvalue A I becomes negative for some realw, then all 
curves Aj(w) do so. Since for large Iwl, Aj(w) behave like w2 

they must have vanished at least twice, and therefore, there 
are exactly 2n real eigenvalues wand stability follows (see 
Fig. I(a)). The unnecessity of condition (48) is described in 
Figs. l(b) and I(c). Two eigenvalue curvesAj(w) may intersect 
and exchange their labels, or one of the lower eigenvalues Aj' 
j> 1, may intersect the w axis more than twice even though 
A does not intersect it at all. For the screw-pinch we will I 

show, however, that the situation in Fig. l(b) cannot occur. 

w 

fa) 

(b) 

w 

(el 

FIG. I. Behavior ofeigenvaluesAj(w) ofEq. (49) with 2 X 2 matrices in stable 
cases. (a) Sufficient condition 148) is satisfied. (h) and (c) The condition is 
violated. 
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v. SPECTRAL BOUNDS FOR THE SCREW-PINCH 

The rotating screw-pinch with sufficiently smooth plas­
ma profiles presents a workable model for the application of 
the theory described in the previous section, as well as a 
possibility to check the closeness of the spectral bounds to 
reality. This section is devoted to the derivation of results 
which will facilitate such an application. The A-eigenvalue 
problem (49) is the main tool of our discussion. A computa­
tion of the A 's can be made possible in the screw-pinch case 
by observing that a change (J)2_W

2 
- A in L", has a form 

similar to (7) and will likewise reduce to a system like (10). 
Notice that only w 2 is changed but not w. We can distinguish 
between the two by noting that w in L", is mulitplied by u 
components while w 2 is not. The system (10) then should be 
modified such that a2-a2 - A everywhere except for the 
last term in A II (and ,1,22)' while ()" is not changed. In particu­
larA-A= H2 -p(a2 -A ),p2()"4_p2(a2 -A )2. We will de­
note modified expressions by adding a circumflex to the 
original notation, e. g., Eq. (10). w will be considered a real 
parameter. For convenience we cast some of the following 
results as claims. 

Claim 1: For fixed wave numbers m, k and for fixed real 
w, L," is essentially self-adjoint and bounded from above 
while the operator A is bounded. 

Proof: L,,> is a second order Hermitian ordinary differ­
ential operator and (L,v s,s) involves derivatives of S only but 
not of So' SZ' Since we imposed two boundary condition on 
S, self-adjointness can be shown in the same way that it is 
proved for more standard regular ordinary differential oper­
ators. (One shows that the Friedrichs self-adjoint extension 
of L", requires the same boundary conditions as we already 
imposed. 2s ) The highest order term in S' in (L",s,s) is 
- hIrB; Is r dr<"O. Thus it can be maximized with re­

spect to S " considered as independent of S. What is left is an 
algebraic quadratic form in S which is bounded. The ineffi­
cient circle bounds based on this approximation appear in 
Ref. 13. The operator A reduces to a matrix mulitplication 
and therefore is bounded. Indeed iA S = - pk·uS 
+ ipn ( - Sor + sB'). Bounds (40) are given in terms ofthd 
spectrum for - iA S = ApS' For each point in the plasma, 
- lA has three A eigenvalues, namely k·u and k·u ± n. The 

spectrum of - lA is the range of these values. It follows from 
(40) that 

Min(k.u - In I )<"Rew<"Max(k·u + In j). (50) 
r r 

Claim 2: L,v has aA-continuous spectrum consisting of 
all points A = a2 - 13H2/p, ,1,= a2 - H 2/p for any r in the 
plasma. 

Proof This is seen most directly from the analogy with 
the w spectrum. IX The continuous spectrum is visible in (10) 
when lettingA' and Cvanish. Note that since13 < 1, the upper 
edge Ac of the A-continuous spectrum is given by 

Ac(w) = Max(a2 -13H2/p). (51) 
r 

Claim 3: Eigenvalue curves A (w) outside theA-continu­
ous spectrum do not intersect each other. 

Proof The A eigenvalues can be obtained from the sec-

2085 



                                                                                                                                    

ond order ordinary differential scalar equation (15) when a 
solution satisfies the two boundary conditions. Intersection 
of two curves A (cu) at cu = cuo, A = ,.1,0 means that at this point 
two independent solutions of(15) vanish at the boundary. 
Hence every solution (their linear combination) should do 
so, which is impossible since one can prescribe an arbitrary 
value for a solution there. 

Claim 4: The highest eigenvalue curve A • (cu) is convex as 
long as A. (cu) > Ac (cu). 

Proof A. (cu) is an analytic function of cu. Differentiate 
the relation L,u S = A IPS twice by ill and denote such deriva­
tives by dots. 

Lu)~ + 2(pcu + iA)S = A.p~ + AlPS, 
L,u~ + 4(pcu + iA)~ + 2ps = AIP~ + UIP~ + i IPs. 
Take the inner product of the second equation with S 

and of the first equation with 2~ and subtract. It follows that 

i.(ps,s) = 2(PS,S) + 2[A.(p~,~) - (L",~,~)]. 
SinceA. is the uppermost point in the spectrum of L,u' 

the bracket term is nonnegative and we have 

d 2A/dcu2 >2 for A. >Ac. (52) 

We have obtained the following result 
Theorem 6: Let R 2(CU) = max I A. (cu), Ac (cu) 1 for cu real, 

where A. is the largest isolated eigenvalue of L,u. If R 2(CU)';;;0 
for any real cu, the plasma is stable. If this condition is not 
satisfied then every complex cu eigenvalue of Eq. (7) is con­
tained in the intersection of all circles with center cu and 
radius R (cu) for all real cu. If A. (cu) > Ac (cu) for all real cu, there 
is a unique circle of smallest radius. If Ac (cu) > A .(cu) for all cu, 
the circle (or circles) of smallest radius R is found by mini­
mizing Ac(cu) and 

R 2 = minmax(a2 - (3H2/p). 
'u r 

The following discussion deals with the question of how 
to decide the location of A. relative to Ac. 

Claim 5: For fixed real cu and in the region A >Ac(cu), 
solutions of Eq. (15) oscillate slower as A increases. 

Proof By slower oscillation it is meant that all zeroes of 
a solution which vanish at a fixed point, move monotonically 
away from that point as A increases. We prove the claim by 
noting that the quadratic form Q (s ) corresponding to (15) 
satisfies, similar to Eq. (17), 21TQ (S ) = (L,u S,;) - A (PS,S), 
where SII' Sz take their stationary value for given S. For 
A> Ac it can be shown directly that the stationary point is 
actually a maximum. Clearly L,u - Ap decreases monotoni­
cally withA, and thus so does Q (S ). The oscillation result now 
follows similar to the usual one for ordinary differential 
equations. 

In order to find whether A. <Ac or not, it is sufficient to 
decide whether L", - Ac (cu)P is negative semidefinite. If it is 
negative then Ac is the upper edge of the spectrum. Notice 
that for A = Ac, the coefficient C in (10) vanishes somewhere 
in the plasma and the equation becomes singular. In fact, 
since Ac has the maximum property (51), Cwill have in gen­
eral a double zero. Yet, the singularity will still be a regular 
singularity as can be seen from Eq. (15) after we note that the 
matrix A can be written as A = Ao + CA. and detAo-O, so 
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that detA is divisible by C. For the case of a regular singular­

ity at ro we know that solutions behave like (r - rcl' (i = 1,2). 
If the Ci are complex, solutions oscillate rapidly near roo We 
can now state the following 

Theorem 7: For a fixed real cu, Ac as defined in (51) is the 
uppermost point in the spectrum of L,u if and only if corre­
sponding to all increasingly ordered points r., ... ,rs for which 
C vanishes in the plasma (with A = A ), the indices c· (r) 

C " i J 

(i = 1,2,j = 1, ... ,s) are real and no solution ofEq. (IS) vanish-
es more than once in any of the intervals (O,r.), (rs ' I), (rj,rj + • ) 

forj = I, ... ,s - l. 
Proof The theorem is an analog of the well-known 

Newcomb theorem26 for the stationary pinch. The nonoscil­
lation requirement of the theorem implies Q (S ).;;;0, hence 
L,u - AcP';;;O. Notice that the theorem applies only ifChas at 
most a double zero at any rj , but not higher. IfChas a simple 
zero (the maximum in (51) is attained at the boundary) the 
singularity is still regular and the theorem holds. 

From a practical point of view it may be more advisable 
to consider A slightly larger than Ac and then use claim 5 to 
track down A. numerically. That is, if a solution of( 15) which 
satisfied the regularity condition at r = ° (equivalent to hav­
ing a zero there) vanishes before r = I, take A larger until the 
first zero reaches r = I and vice versa. We therefore do not 
pursue further the question of the value of the indices Ci in 
the last theorem or the question of optimizing the upper 
bound. We do discuss, however, our sufficient condition (48) 
for a particular point cu = CUo which is important in the deri­
vation of Suydam's condition for rotating equilibria. 3 and is 
also exceptional with respect to the previous discussion on 
A,. This is the point for which A and C both vanish at some 
point r = roo It follows that 

H (ro)-k.B(ro) = 0, CUo = k·u(ro). (53) 

We assume that the wavenumbers are such that k·B does 
indeed vanish somewhere in the plasma. We also assume 
that h and a do not both vanish, where 

h = H '(ro)' a = (k·u)'(ro). (54) 

Equation (53) can be used to eliminate one of the waven­
umbers from the definitions of hand a. Let f-l be the pitch of 
the magnetic field, 

f-l = Bo/rBz • 

We have 

h = - kBzf-l'/f-l, a = k (w' - n '/f-l). 

(55) 

(56) 

f-l' is the magnetic sqear while a is seen to be essentially the 
shear of the flow in a direction perpendicular to B. 

We would like to consider the possibility of Ac (cuo) = 0. 
Notice that a2 - (3H 2/ P has a stationary point at ro for 
cu = CUo. It will be a local maximum if (3h 2 - pa2 > 0, which 
we assume. This can be written as 

(57) 

and our assumption refers to the point r = roo In order to 
haveAc(cuo) = 0, ro must be the global maximum in (51). If H 
vansihes in more than one point, say at r = rj(j = 1, ... ,s), 
then corresponding to each point we have an cuj as in (53). If 
not all thecu; are equal we getAc (cuj ) =1=0 for allj, since at some 
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point r i , 0"#0 while H = 0. Equality of all the Wj can be 
guaranteed if the flow is parallel to B up to a superimposed 
rigid rotation of the plasma column. 

To apply the sufficient condition (48), consider Eq. (15) 
(i. e., Eq. (15) with A = 0). Denotingx = r - ro we notice that 
near the singular point A II = 0 (x3

), ,.1,12 = 0 (x 2
), 

A21 = 0 (X4) = A22, and A = 0 (x2
) = C. Thus the coefficients 

of the equation havep = 0 (x 2
), q = 0 (1) and the singularity 

is again regular. The indicial equation is of the form 
c(c + 1) + 1= ° and the solutions do not oscillate rapidly if 
I <~. This is Suydam's condition 13 for local stability when 
(57) is satisfied. Since the explicit form of the condition is not 
readily available, we bring it here. Define 

t/I = (v p)(il' - flW')/(Bzfl'), rp = (v p)v/B(J' 

The condition requires 

krB;(1-t/l 2
) ~ -t/lrpB;!!:..., +!?_(pil2)' +p' (58) ( ')2 ' B2 

fl fl B~ 
B2 

> f3~t/l2 -;-((I-f3)[~rp4(I-t/J2)-rp3t/J+#2rp21 
+ f3 [ !rp2( 1 + t/J 2) - 2t/Jrp + t/I 211 . 

When we let the flow vanish, (58) reduces to the classical 
Suydam condition 12 

k~B;(~ Y +p'>O. (59) 

If the flow is purely axial (rp = 0) which is the expected case 
for toroidal devices, 1 (58) reduces to 

krB;( :' t(I -t/J 2) + p' > f32~t/J; 2 Br~ (60) 

and is more difficult to satisfy than (59) since f3 > t/J 2 by (57). 
We can state the following result: 

Theorem 8: Let k·B vanish in the plasma at r = r} 

(j = I, ... ,s) and Wj = k·u(rj ). Assume that all the Wj 

(j = I, ... ,s) are equal (to wo) and that (wo - k'U)2 - f3H2 /p is 
everywhere negative except at r = rj • Then it is necessary for 
stability that condition (58) hold at r = rj Ii = I, ... ,s) and it is 
sufficient for stability that no solution ofEq. (15) with 
W = Wo vanishes more than once in any of the subintervals 
(O,rd, (r"/), (r), rj+I),j= I, ... ,s-1. 

Proof: The necessary part was proven in Ref. 13 (with­
out the maximality assumptions). The sufficiency part is a 
direct result of our sufficient condition (48) as described in 
the proof of Theorem 7. Notice that the violation of (58) 
implies that every solution vanishes infinitely many times in 
the appropriate subintervals. An interesting aspect of this 
theorem is that in the case of the static pinch, the sufficient 
condition is also necessary for stability.26 

As a final topic of this section we discuss the depen­
dence of our circle bounds on m and k. From the definition of 
Ac we find 

Ac(SW; sm, sk) = s2Ac(w; m, k) (61) 

for any number s, which is assumed from now on to be posi­
tive. Notice that the matrixA' in Eq. (10) is homogeneous of 
degree four as a function of m, k, w, v;r, except for the 
"exceptional" term, - CA 2 ini21 , which is of degree six. As 
a result, p of Eq. (15) is homogeneous of degree zero while 
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i} = i}o + rA, where i}o is also of degree zero while A is of 
course of degree two. Introducing s into the equation as a 
coefficient of m, k, w, vTwherever these parameters appear 
and assuming A »Ac (hence A> 0), we find that 0 (5';s) in (16) 
is monotone decreasing in s. Denoting by R (m,k ) the radius 
of the circle of smallest radius (possibly zero) after minimiz­
ing over w, we can now show 

Theorem 9: R (sm,sk)/s is a nonincreasing function of s. 
Proof: Assume that for mo = som, ko = sok, the smallest 

circl~ is centered at W = Wo with radius R o, ,.1,0 = R ~ and 00 
in (16) (with obvious notation) is non positive. For s > So and 
11}' = !m, k ' = sk, consider w' = (s/so)wo and A ' = Ao(S/so)2. 
Q' <Qo and A should be n:ade smaller (unless A = Ac) to re­
store the upper bound of Q to zero. This proves the theorem. 

Theorem 10: If a sufficient condition based on our circle 
estimates is satisfied for m = 1 and all k, and for m = 0, 
k_O, then the screw-pinch is stable to all modes. 

Proof: This theorem is the counterpart of Theorem 1, 
Ref. 26 for the static pinch. The assertions ofthis theorem for 
m> 1 follow from Theorem 9 by taking s = m and consider­
ingR (m,k) = R (s,sk /m).Ifm = O,itsimilarlyfollowsthatif 
R (O,kd = 0, it will also vanish for allik I > Ikll. Thus, the 
only mode to consider (except k = ° which is a special case) 
is either k I = 27r / L in a finite cylinder, or k-O in the infinite 
cylinder. The limit k-O should be taken by letting s = k, 
using sw and S2 A instead of w}lOd A, and then taking s-o. 
This amounts to using Eq. (IS) with k = I;w and A still ap­
pear and the exceptional term CA 2 in q is dropped. If the 
circle estimates imply stability in this limit, it follows from 
Theorem 9 that all modes m = 0, k #0 are stable. However, 
we can also show that the mode m = 0, k = ° will be stable in 
this case. Indeed, stability of the m = 0, k-o mode is shown 
by, finding some wand proper A for which the limiting 0 in 
(16) is negative definite. Thus it will remain negative if we let 
,.1,-+ + 00. This last limit however is identical with what is 
obtained from (16) by setting k = 0, m = 0, and then W = 0. 
It is already known from Sec. III that the mode k = 0, m = ° 
has a necessary and sufficient condition for stability, which 
is precisely the nonpositivity of the quadratic form we ob­
tained. This completes the proof. 

To conclude this section we summarize its practical 
consequences. A numerical calculation of W eigenvalues and 
of our circle estimates will be facilitated by introducing two 
additional parameters to Eq. (10). The first is A, as described 
at the beginning of the section, and the second is S2 as a 
coefficient of CA 2 in A21 . s will have the effect of enabling one 
to consider only modes with m = ° or m = I while all other 
modes (m,k) can be replaced by m-+l, k_k /m, s = m. The 
benefit of this change is that the search for W is done over a 
region smaller by a factor 1/s than in the actual problem. 
This is useful in particular if the actual complex eigenvalues 
ware sought (in which case A is set to 0). Of course, once an 
w(s) eigenvalue is found in this way, it should be multiplied 
by s to correspond to its actual value. The computation 
should be first run for real w in the range (50) (shrunk by a 
factor s). One should search for the first eigenvalue A which 
will result in a circle bound on all complex eigenvalues. The 
A parameter should then be set to 0 and the search for com­
plex w eigenvalue should be carried out inside that circle. 
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